
National University of Singapore

School of Computing

IT5003 - Data Structures and Algorithms

Final Assessment

(Saturday, 05 December 2020, AM)

Time Allowed: 2 hours

INSTRUCTIONS TO CANDIDATES:

1. Do NOT open this final assessment paper until you are told to do so.

2. This assessment paper contains THREE (3) sections.

It comprises SEVEN (7) printed pages, including this page.

3. This is an Open Book/Open Laptop/Open PC Assessment.

But you are NOT allowed to use the Internet (web browser, messaging/cloud services, etc).

You are free to use your Laptop/PC as you see fit without accessing the Internet other than for

Zoom e-proctoring and to upload the (scanned) soft copy answer at the end of the paper.

4. There are FIVE (5) pages of answer sheets (Answer Sheets.docx, not password protected).

If you have printer, you can print the blank answer sheets earlier.

If you don’t have printer, just mimic the format on FIVE (5) blank pages as best as you can.

Answer ALL questions within the given (boxed) space to make grading easier.

When you write your answers, you can do so using either pen or pencil, just write legibly!

Scan the printed Answer Sheets and upload the scan to LumiNUS files at the end of the paper.

Note that if you prefer to write your answers digitally, we can also type your answers at Answer

Sheets.docx and simply upload this softcopy to LumiNUS files at the end of the paper.

5. Important tips: Pace yourself! Do not spend too much time on one (hard) question.

Read all the questions first! Some (subtask) questions might be easier than they appear.

6. You can use pseudo-code in your answer but beware of penalty marks for ambiguous answer.

You can use standard, non-modified classic algorithm in your answer by just mentioning its

name, e.g. run DFS on graph 𝐺, Dijkstra’s on graph 𝐺′, etc.

7. All the best :)

1

IT5003

A Basic Python and Time Complexity Analysis (5x4 = 20 marks)

For each question below, write a short one liner Python code at the commented part (that starts with

###) to complete the program (3 marks). (You will -1 mark if your code is correct but you need more

than one line). Afterwards, write the big-O time complexity of the short program and with a short

explanation (1 mark). An example A-Q0 is shown below.

A-Q0, Sample Input = "7", Sample Output = "12"

n = int(input())

print the sum of even integers in [0/1/../n-1]

answer for A-Q0 should be:

print(sum(range(0, n, 2)))

the time complexity is O(n), range and sum goes through n (over 2) integers

A-Q1, Sample Input = "1 4 2 6 9 5 3 8 7 10", Sample Output = "8"

L = list(map(int, input().split())) # there are n (7 <= n <= 100000) integers in L

print the first (0-based) index in L with value 7

A-Q2, Sample Input = "1 4 2 6 9 5 3 8 7 10", Sample Output = "[9, 8, 7, 10]"

L = list(map(int, input().split())) # there are n (7 <= n <= 100000) integers in L

update list L by removing integers in L that is < 7, but preserve the order

print(L)

A-Q3, Sample Input = "1 4 2 6 9 5 3 8 7 10", Sample Output = "4,5,6,7,8,9,10"

L = list(map(int, input().split())) # there are n (7 <= n <= 100000) integers in L

L.sort()

print seven largest integers in L (comma separated, no [], non-decreasing)

A-Q4, Sample Input = "1 4 2 6 9 5 3 8 7 10", Sample Output = "4,5,6,7,8,9,10"

from heapq import heapify, heappop

there are n (7 <= n <= 100000) integers in PQ

PQ = list(map(lambda x: -int(x), input().split())) # store negative x instead

heapify(PQ) # __doc__ ’Transform list into a heap, in-place, in O(len(heap)) time.’

print seven largest integers in PQ (comma separated, no [], non-decreasing)

A-Q5, Sample Input = "2 3 2 1 1 3 2 8 7 3 6", Sample Output = "4,5,9"

there are n (7 <= n <= 100000) integers in input, but each integer is in [1..9]

s = set(map(int, input().split()))

print 1-digit integer(s) not in s (comma separated, no [], non-decreasing)

2

IT5003

B Theory Questions (45 marks)

B.1 List/Stack/Queue ADT (7x2 = 14 marks)

For each question below, fill in the blank with the best short answer (2 marks each).

1. The easiest index in a Python list of 𝑛 integers that can be removed in 𝑂(1)

is index .

2. The easiest index in a Python list of 𝑛 integers for inserting a new integer in 𝑂(1)

is index .

3. The fastest way (i.e., in 𝑂(𝑛)) to reverse a Python list of 𝑛 integers is

.

4. One of the best way to implement efficient Stack ADT is to use Python list

with its side as the top of the Stack.

5. The easiest indices in a Python deque of 𝑛 integers that can be removed in 𝑂(1)

are indices .

6. The easiest indices in a Python deque of 𝑛 integers for inserting a new integer in 𝑂(1)

are indices .

7. One of the best way to implement efficient Queue ADT is to use

with its front/back as the front/back of the Queue.

B.2 Binary Heap Questions (3x2 = 6 marks)

For each question below, fill in the blank with the best short answer (2 marks each).

1. The height of a complete binary tree of 𝑛 integers is .

2. Binary Heap data structure is one of the best way to implement ADT

because it can be used to enqueue(new-value) and extract-max-value() in efficient 𝑂(log 𝑛).

3. Binary Heap data structure can be implemented by using its one-to-one mapping with a compact

Python list that ignores index 0: index 1 is the root, index 2/3 are the left/right child of the

root, respectively, and so on.

This way, we can navigate from index 𝑖 to its left child (‘L’) / right child (‘R’) / parent (‘P’) by

simply computing (𝑖 * 2) / (𝑖 * 2 + 1) / (𝑖//2), respectively.

If starting from the root, we arrive at index 4 via an ‘LRPL’ path.

Now, where will be be if we start from the root and use path ‘RLLPLRPPRL’ instead?

Answer: At index .

3

IT5003

B.3 Hash Table Questions (3x3 = 9 marks)

We implement a Hash Table of size 𝑚 to store 𝑁 Integers.

We use hash function ℎ(𝑣) = 𝑣%𝑚.

We resolve collision using Separate Chaining.

1. The Hash Table is initially empty and 𝑚 = 17.

Which sequence of 𝑘 = 7 integers if inserted one by one will result in at least one of the chain

to have length ≥ 3? Give a short justification!

a). {1, 2, 3, 4, 5, 6, 7}

b). {17, 34, 18, 35, 19, 36, 20}

c). {32, 47, 88, 93, 23, 47, 22}

d). {77, 25, 10, 34, 27, 44, 70}

e). None of the above

2. The Hash Table is initially empty and 𝑚 = 17.

Propose a sequence of 𝑘 = 7 integers if inserted one by one will result in at least one of the chain

to have length 7? Give a short justification!

3. We have at most 𝑁 ≤ 10 000 integers to be inserted into the Hash Table.

There can be some future deletions but not guaranteed.

Which is the best setting for 𝑚? Give a short justification!

a). 𝑚 = 17

b). 𝑚 = 97

c). 𝑚 = 3331

d). 𝑚 = 5000

e). None of the above

B.4 Binary Search Tree Questions (3x2 = 6 marks)

For each question below, fill in the blank with the best short answer (2 marks each).

1. Without the self-balancing ability in the advanced version of Binary Search Tree (BST), the

height of a possibly unbalanced BST of 𝑛 distinct integers can be as tall as (in terms of

number of edges from root to the deepest leaf).

2. The smallest integer in a BST of 𝑛 ≥ 2 distinct integers can be found by starting from root and

keep going to the left subtree until we reach a vertex without a left child. Now the question is:

how to find the second smallest integer in a BST? .

3. How to find the median integer inside a BST of 𝑛 distinct integers (assume 𝑛 ≥ 3 and 𝑛 is odd

so the median is clearly defined: larger than (𝑛 − 1)//2 integers and smaller than the other

(𝑛− 1)//2 integers)? .

4

IT5003

B.5 Basic SSSP Questions (3+3+2+2 = 10 marks)

Figure 1: Directed Weighted Graph

For all questions below, please refer to the directed weighted graph shown in Figure 1.

1. Show the Single-Source Shortest Paths (SSSP) distance values D of Figure 1 if the source vertex

is vertex 𝑠1 = 0. What algorithm that you will use to compute these values and what is its time

complexity in terms of 𝑉 and 𝐸?

2. If we assume that all edges in Figure 1 have weight 1, show the unweighted SSSP distance

values D if the source vertex is vertex 𝑠1 = 0. What algorithm that you will use to compute

these values and what is its time complexity in terms of 𝑉 and 𝐸?

3. Show the SSSP distance values D of Figure 1 if the source vertex is vertex 𝑠2 = 5.

4. If we assume that all edges in Figure 1 have weight 1, show the unweighted SSSP distance

values D if the source vertex is vertex 𝑠2 = 5.

C Applications (35 marks)

C.1 Efficient Additions (15 marks)

You need to add a (multi)set of integers (that may contain duplicates). However, each addition

operation has a cost now. The cost is the addition of those two to be added. So, to add 2 integers

{1, 10}, you need a cost of 11 (and the final sum is also 11). Now, if you want to add 3 integers:

{1, 2, 3}, there are several ways:

1. Add 2 + 3 = 5 first with cost 5, then add 5 + 1 = 6 with another cost 6,

we get the final sum 6, but with total addition cost of 5 + 6 = 11.

2. Add 1 + 3 = 4 first with cost 4, then add 4 + 2 = 6 with another cost 6,

we also get the final sum 6, but with smaller total addition cost of 4 + 6 = 10.

3. Add 1 + 2 = 3 first with cost 3, then add 3 + 3 = 6 with cost 6,

we also get the final sum 6, but with the smallest total addition cost of 3 + 6 = 9.

5

IT5003

The first line of input contains an integer 𝑁 (2 ≤ 𝑁 ≤ 100 000).

The second line is a list 𝐿 that contains 𝑁 positive integers not more than 100 000.

The final sum is definitely sum(L) so we are not interested with that. Your job is to write a full

Python code to print the minimum total cost of addition instead. Write a short comment about the

overall time complexity of your code.

Your code will be graded first by correctness and if correct, by its time complexity. You will get

up to 10 marks if you can only describe your solution in pseudo-code.

Here are four sample inputs with the associated sample outputs.

|Input 1|Output 1| |Input 2|Output 2| |Input 3 |Output 3| |Input 4 |Output 4 |

|-------|--------| |-------|--------| |---------|--------| |---------|---------|

|2 |11 | |3 |9 | |4 |19 | |5 |32 |

|1 10 | | |1 2 3 | | |1 2 3 4 | | |7 1 3 1 4| |

C.2 Lots of Tasks (20 marks)

Steven has 𝑛 tasks to do (1 ≤ 𝑛 ≤ 100 000, yes, that’s a lot, sequentially numbered from 1 to 𝑛).

Unfortunately, the tasks are not independent and the execution of one task is only possible if all its

dependent tasks have already been executed.

He has an initial plan to do these 𝑛 tasks one after another (as he cannot split himself). Your job

is to write a Python code help him check on whether his initial plan is valid (or not). If it is valid,

print “Go Ahead” (without the quotes), otherwise print any valid ordering of 𝑛 tasks that Steven has

to follow instead.

The first line of input containing two integers 𝑛 and 𝑚 (0 ≤ 𝑚 ≤ 𝑚𝑖𝑛(100 000, 𝑛× (𝑛− 1)/2)).

𝑚 is the number of dependency relations between the 𝑛 tasks. There is no acyclic dependency.

The next 𝑚 lines of input contains two integers 𝑢 and 𝑣 (1 ≤ 𝑢, 𝑣 ≤ 𝑛) that means task 𝑢 must be

executed before task 𝑣.

Finally, in the last line of input, Steven describes his initial plan as 𝑛 integers that is a permutation

of {1, 2, . . ., 𝑛}.

Here are four sample inputs with the associated sample outputs.

|Input 1|Output 1| |Input 2|Output 2| |Input 3 |Output 3| |Input 4 |Output 4 |

|-------|--------| |-------|--------| |---------|--------| |---------|---------|

|3 2 |Go Ahead| |3 2 |1 2 3 | |5 0 |Go Ahead| |5 1 |5 1 2 3 4|

|1 2 | | |1 2 | | |5 2 1 3 4| | |1 2 | |

|1 3 | | |1 3 | | | | | |5 2 1 3 4| |

|1 3 2 | | |2 1 3 | | | | | | | |

Graph Data Structure (4 marks)

This is clearly a graph problem.

How are you going to store the input graph? Describe the details of your chosen graph DS.

Is the graph in this problem special? If yes, what is its name?

6

IT5003

Subtask 1 (3 marks)

Let’s assume that the last line of input (Steven’s initial plan) is always valid.

What is/are the significance of this constraint? (1 mark)

What is your proposed algorithm to solve this Subtask 1 (full Python)? (1 mark)

What is the time complexity of your Subtask 1 algorithm in terms of 𝑛 and 𝑚? (1 mark)

Subtask 2 (6 marks)

Let’s assume that the last line of input (Steven’s initial plan) is always invalid.

What is/are the significance of this constraint? (1 mark)

What is your proposed algorithm to solve this Subtask 2 (full Python)? (4 marks)

What is the time complexity of your Subtask 2 algorithm in terms of 𝑛 and 𝑚? (1 mark)

Final Subtask 3 (7 marks)

Let’s assume that the last line of input (Steven’s initial plan) can be either valid or invalid.

Obviously if it is valid, we call Subtask 1 solution, otherwise we call Subtask 2 solution.

What is your proposed algorithm to solve this final Subtask 3 (full Python)? (6 marks)

What is the time complexity of your final Subtask 3 algorithm in terms of 𝑁 and 𝑀? (1 mark)

– End of this Paper, All the Best –

7

	Basic Python and Time Complexity Analysis (5x4 = 20 marks)
	Theory Questions (45 marks)
	List/Stack/Queue ADT (7x2 = 14 marks)
	Binary Heap Questions (3x2 = 6 marks)
	Hash Table Questions (3x3 = 9 marks)
	Binary Search Tree Questions (3x2 = 6 marks)
	Basic SSSP Questions (3+3+2+2 = 10 marks)

	Applications (35 marks)
	Efficient Additions (15 marks)

