
Automatic Grading
All questions in this section are automatically graded. The order of questions and the options
are randomized. For fill-in-the-blanks, please follow the format as precisely as possible. Once
you move beyond this section, you cannot go back.

1. Check all statements that are True with respect to the Single-Source Shortest Paths
(SSSP) problems discussed in the Lecture 7b+8a.

(5 marks)

2. Check all statements that are True with respect to the Traveling-Salesman-Problem (TSP)
discussed in the last Lecture 8b.

(5 marks)

3. Check all statements that are True with respect to these Table ADT data structures
discussed in Lecture 5a/5b.

(5 marks)

We can easily (in not more than 15 lines) implement the O((|V|+|E|) log |V|)
Modified Dijkstra's algorithm in Python because we can use Python's standard
library: heapq in a Lazy manner.

We can solve the unweighted SSSP problem using O(|V|+|E|) BFS algorithm.

The O((|V|+|E|) log |V|) Modified Dijkstra's algorithm can be trapped in an
infinite loop if we run it on a graph with negative weight cycle reachable from
the source s.

We can solve the unweighted SSSP problem using O((|V|+|E|) log |V|)
Modified Dijkstra's algorithm.

We can solve the non-negative weighted SSSP problem using O((|V|+|E|) log
|V|) Modified Dijkstra's algorithm.

The algorithm that tries all permutations of N vertices runs in O(N!) (or O((N-
1)!) if the first vertex is fixed to vertex 0).

We can solve TSP using the Modified Dijkstra's algorithm to find the shortest
tour that visits each vertex of the graph once.

For small test cases, e.g., N <= 10, we can use
Python's permutations function from itertools to help us try which
permutation of N vertices yield the shortest cycle/tour.

We can solve TSP using the Breadth-First Search algorithm to find the
shortest tour that visits each vertex of the graph once.

()

4. Fill in the blanks
(5 marks)

You are given the following Python code. Notice the position of the comments.

N = 5000 # line 1
ans = 0 # line 2
for i in range(N//2): # line 3
 j = 1 # line 4
 while j < N: # line 5
 j *= 3 # line 6
 for k in range(N): # line 7
 ans += 5 # line 8
print(ans) # line 9

For all the boxes below, choose one of the following standard time complexities: 1,
log N, N, N log N, N^2, N^2 log N, or N^3. Do not write "O(" and ")" anymore
as O(your-actual-answer) anymore that Big-O notation is already written. Remember
that the grading by machine is very strict, so do not lose marks because of
formatting issues.

The time complexity of # line 1 to 2 (just before entering the outer loop) is O(1).

The time complexity of # line 4 to 6 (the first part of the inner loop) is O(2).

The time complexity of # line 7 to 8 (the second part of the inner loop) is O(3).

The overall time complexity of # line 1 to 9 (i.e., the whole program) is O(4).

The final value of ans when it is printed at line 9 is 5 .

Enter the correct answer below.

(Python custom-)implementation of Hash Table with Separate Chaining
collision resolution technique is just a Python list of Python lists.

To avoid ambiguity, we are referring to HashTableDemo.py shown in class.

There are Table ADT a few additional operations that balanced BST
implementation can do that a Hash Table implementation cannot do.

If we just need to support the 3 default Table ADT operations: Search(v),
Insert(v), and Remove(v) efficiently (i.e., faster than O(N) per operation), we
can either use a good Hash Table implementation (e.g., Separate Chaining) or
a balanced Binary Search Tree implementation (e.g., self-balancing BST like
AVL Tree - an extension of the standard BST that we learned in class).

(Python custom-)implementation of Binary Search Tree is already good enough
to be immediately used as a data structure to support Table ADT operations.

To avoid ambiguity, we are referring to BSTDemo.py shown in class (which is
not yet an AVL Tree).

5. Check all statements that are True with respect to the Graph Traversal algorithms: Depth-
First Search (DFS) and Breadth-First Search (BFS) discussed in Lecture 6b/7a.

(5 marks)

6. Check all statements that are True with respect to the Graph Data Structures discussed in
Lecture 6a.

(5 marks)

1 Character
Limit: 3

2 Character
Limit: 5

3 Character
Limit: 5

4 Character
Limit: 5

5 Please enter a number for this text box. Character
Limit: 9

We can modify either DFS or BFS algorithm in order to find ALL topological
orderings of a Directed Acyclic Graph (DAG) G = (V, E) in O(|V|+|E|) time.

We run DFS from a source vertex s on a same graph G = (V, E) and it
does not visit a vertex x. Therefore, if we run BFS from the same source
vertex s on the same graph G = (V, E), it will also not visit vertex x.

There is at least one graph traversal application that BFS can do but DFS
cannot and vice versa.

Both DFS and BFS run in O(|V|+|E|) when started from the same source
vertex s on the same graph G = (V, E) which has been stored in an Adjacency
List.

Both DFS and BFS visit the same set of vertices when started from the same
source vertex s on the same graph G = (V, E).

Both DFS and BFS visit the same sequence of vertices when started from the
same source vertex s on the same graph G = (V, E).

The best graph data structure to be used for ALL graph problems is Adjacency
List.

Adjacency List data structure uses O(|V|+|E|) space.

7. Match the algorithm names on the left with its tightest worst-case time complexity. Assume
that all graphs are simple graphs (no self-loop and no multi-edges).

(5 marks)
Drag the options on the left and drop them into the options on the right.

Reset

8. Fill in the blanks
(5 marks)

If the graph to be stored is a dense (to be precise, near complete) weighted
graph, then using either Adjacency Matrix or Adjacency List will not be too
much different, i.e., both will use O(V^2) space.

Converting a graph that is currently stored in an Adjacency Matrix into an
Adjacency List takes O(|V|+|E|) time.

Adjacency Matrix data structure uses O(|V|+|E|) space.

Depth-First Search on a graph G = (V,
E)

Modified Dijkstra's on a non-negative
weighted graph G = (V, E)

Breadth-First Search on a Tree T with
V vertices

Sort E weighted edges of an Edge List
based on non-decreasing weights
using Merge Sort

Converting an Adjacency Matrix of a
graph G = (V, E) into an Edge List

O(log V)

O(1)

O((V+E) log V)

O(V+E)

O(E log V)

O(V)

O(V log V)

O(V^2)

O(V^3)

Steven knows that most IT5003 students (final paper on 4 Dec 2021) will have
attempted (parts of) CS2040C final paper on 27 Nov 2021, thus probably have seen
the questions about median of 3 sorted arrays (called lists in Python), each array has
the same length N.

You are given the following Python code that is supposed to solve that question, but
is it the 'fastest way'? Let's find out:

>>> from statistics import median
>>> A, B, C = [1, 2, 3], [1, 5, 9], [2, 7, 8] # just an example
>>> median(A) # should be 2
2
>>> median(B) # should be 5
5
>>> median(C) # should be 7
7
>>> A+B+C # should be unsorted version of the 3 combined lists # question A
[1, 2, 3, 1, 5, 9, 2, 7, 8]
>>> median(A+B+C) # question B
3
>>> sorted(A+B+C) # to convince that 3 is the median of the 3 combined sorted lists
[1, 1, 2, 2, 3, 5, 7, 8, 9]

Now, the time complexity of the line A+B+C in terms of N as highlighted in #
question A is O(1). Do not write O() anymore. Remember that len(A) =
len(B) = len(C) = N for this problem.

Next, the time complexity of the line median(A+B+C) in terms of N as highlighted
in # question B is O(2). Do not write O() anymore.

Note that for question B, we need to know what is inside the black-box of
function median, so you are given the following information:

Reference, Steven has unpacked the latest statistics.py of Python 3.10 from
https://github.com/python/cpython/blob/3.10/Lib/statistics.py
copied verbatim below:

FIXME: investigate ways to calculate medians without sorting? Quickselect?
def median(data):
 """Return the median (middle value) of numeric data.
 When the number of data points is odd, return the middle data point.
 When the number of data points is even, the median is interpolated by
 taking the average of the two middle values:
 >>> median([1, 3, 5])
 3
 >>> median([1, 3, 5, 7])
 4.0
 """
 data = sorted(data)
 n = len(data)
 if n == 0:
 raise StatisticsError("no median for empty data")
 if n % 2 == 1:
 return data[n // 2]
 else:
 i = n // 2
 return (data[i - 1] + data[i]) / 2

9. Check all statements that are True with respect to the various ADT
(List/Stack/Queue/Deque/Priority Queue) topics discussed in Lecture 3a/3b/4a/4b.

(5 marks)

10. Check all statements that are True with respect to the Sorting topics discussed in Lecture
2a/2b.

(5 marks)

Enter the correct answer below.

1
Character

Limit: 7

2 Character
Limit: 7

We can implement Priority Queue ADT using Python heapq H efficiently (all
operations in O(log N)) like this:
from heapq import heappush, heappop

 def enqueue(v): heappush(H, v)
 def peek(): return H[0]

 def dequeue(): heappop(H)

We can implement PriorityQueue ADT using Python
list L efficiently (both enqueue(v) and dequeue() operations are in O(log N))
like the one shown in BinaryHeapDemo.py in class.

We can implement Queue ADT using Python list L efficiently (all operations in
O(1)) like this:
def enqueue(v): L.append(v)

 def peek(): return L[0]
 def dequeue(): L.pop(0)

We can implement Stack ADT using Python list L efficiently (all operations in
O(1)) like this:
def push(v): L.insert(0, v)

 def peek(): return L[0]
 def pop(): L.pop(0)

We can implement Queue ADT using Python deque D efficiently (all operations
in O(1)) like this:
from collections import deque

 def enqueue(v): D.append(v)
 def peek(): return D[0]

 def dequeue(): D.popleft()

IQ Tests
Both questions in this section are a bit challenging. Do not burn too much time. There are two
other application sections after this.

11. Steven claims that there is a better way to store a complete unweighted (simple)
graph K with N vertices and N* (N-1)/2 edges than the 3 default graph data structures
discussed in class, i.e., not using Adjacency Matrix, Adjacency List, nor Edge List.

If you concur, explain the better way and analyze its space complexity or other benefits!

If you disagree, explain why one of the 3 default data structures is still the most
appropriate way to store this kind of graph!

(5 marks)

12. Steven claims that there is a better way to sort (in ascending order) a nearly sorted
list L with N non-negative and distinct integers than just using O(N log N)
Python L.sort() or L = sorted(L) that has been asked in the earlier section (that
you can now cannot go back to).

PS: Here, nearly sorted is formally defined as follows: Each of the integer is at
most K indices away from its target sorted position and 0 <= K < min(N, 7). For example,
see list L = [3, 1, 2, 4, 5] with N = 5 and K = 2. Notice that integer 3 (at index 0) is just 2
indices away from its sorted location (index 2). Similarly, notice that integer 1 and 2 are
both just 1 index away from their sorted locations.

If you concur, explain the better way and analyze its time complexity!

N

Enter your answer here

Character Limit: 1000Word Limit:

The underlying implementation of L.sort() to sort a Python list L is
probably Timsort (a variant of Merge Sort).

We can sort a Python list L by calling L.sort() or L = sorted(L)

There is no difference between sorting a Python
list L using either L.sort() or sorted(L), i.e., list L will be sorted
afterwards using either way.

The time complexity of sorting a Python list L containing N integers using
either L.sort() or L = sorted(L) is O(N log N).

L.sort() is a stable sorting algorithm.

If you disagree, explain why just sorting the whole N integers in O(N log N)
using L.sort() or L = sorted(L) is already the best possible way!

(10 marks)

Application 1 (Second Last Section) - Queueing at Cashier Lines
A supermarket has N Cashiers. For each cashier, we know the number of people currently
queuing to be served by that cashier. These people form a line (a queue), waiting to be served
by that cashier.

Now, M customers will arrive in the next 1 minute (one by one, and during this next 1 specific
minute, none of the cashier will finish processing the head of his/her line - so the line length will
only increase). Each of these M customers (that come one after another in the next 1 minute)
uses the same greedy strategy: queue at the back of the current shortest line (the line with the
fewest number of people) and if ties, choose any such lines (it doesn't matter for this problem).

Your job is to determine the current number of people in the chosen cashier line every time each
of the M customers join that cashier line.

The input contains two integers N and M in the first line (N and M as explained above), followed
by N integers in the second line, denoting the number of people in each Cashier line initially. For
example:

3 4
3 2 4

Means that there are N = 3 Cashiers (numbered Cashier 0, 1, and 2) and currently they are
about to serve [3, 2, 4] customers, respectively.

We can visualize the initial state of the 3 Cashier lines as follows ('X's are customers already in
each Cashier line):

Cashier Line = 0 | 1 | 2

 X | X | X
 X | X | X
 X | | X
 | | X

Then, M = 4 customers come in the next 1 minute (one after another), so the first new customer
(i.e., 'A') will greedily select Cashier 1 (size 2 - we print 2, now Cashier 1 size is 3), the Cashier
lines become:

Enter your answer here

Character Limit: 2000Word Limit:

Cashier Line = 0 | 1 | 2

 X | X | X
 X | X | X
 X | A | X
 | | X

Next, the second new customer (i.e., 'B') will then greedily select either Cashier 0 or 1 (both size
3 - we print 3, suppose he/she goes to Cashier 0, now Cashier 0 size is 4), the Cashier lines
become:

Cashier Line = 0 | 1 | 2

 X | X | X
 X | X | X
 X | A | X
 B | | X

Note that even if 'B' goes to Cashier 1, we still print 3 at this stage, so there is no ambiguity.

Next, the third customer (i.e., 'C') will then greedily select the other line that the second
customer doesn't select earlier (in this case, Cashier 1, of size 3 - we print 3, now Cashier 1
size become 4 too), the Cashier lines become:

Cashier Line = 0 | 1 | 2

 X | X | X
 X | X | X
 X | A | X
 B | C | X

Finally, the last customer (i.e., 'D') will select any of the Cashier line (as all have size 4 - we
print 4). Therefore, we output the following M = 4 lines:

2
3
3
4

13. Solve this problem in pseudo-code (you will need time to answer the longer last question
after this). You can quote the name of some data structure(s) and/or algorithm(s) that we
learned in class verbatim in your explanation (if nothing is modified). Analyze the worst-
case time complexity of your proposed solution.

Note that you will only get full marks for this question if your proposed solution is correct
and runs in O(M log N) --- so that M and N can be up to 50,000 (lots of customers and
Cashier lines); partial if your solution is correct but runs in O(MN) --- so that M and N can
be up to just 1000, or just very low mercy marks if your solution is actually incorrect.

Model Answer: 36 words and 259 characters only.
(15 marks)

Application 2 (The Last Section) - Book Translation
Warning: This is the hardest question in this paper. If you don't spend enough time on this
section, you may not be able to complete them on time.

=======

As most of you already know, Steven has written a book titled "Competitive Programming 4"
(released on July 2020).

It has been translated into Korean (CP3) back in 2017.

In Spanish (CP4) back in early 2021 :).

Enter your answer here

Character Limit: 1000Word Limit:

And also in Bulgarian (CP3.18) recently (Nov 2021) :).

There are a few other book translation projects in the queue, e.g., Chinese, Portuguese,
Japanese, and even Indonesian.

Although Steven can code in multiple programming languages (e.g., C++, Python - this
course, Java, MATLAB, etc), he only speaks English and Indonesian (and too lazy to translate
his own book to Indonesian).

So, Steven has enlisted (paid) translators to help translate between languages, but obviously
they quote different costs. In some cases multiple translations might be needed. For example, if
Steven can’t find a person who can translate his book from English to Swedish, but have one
person who can translate from English to French and another from French to Swedish, then
Steven can actually do the translation.

While minimizing the total cost of all these translations is important to you, the most important
condition is to minimize each target language’s distance (in number of translation steps) from
English, since this cuts down on the errors that typically crop up during any translation.

Fortunately, the Method to Solve (MtS) this problem is in Chapter 4 of Steven's book (this
statement is True), so you should have no problem in solving this, right?

14. Input and potential (graph) data structure(s)
For this problem, the input starts with a line containing two integers n and m indicating
the number of target languages and the number of translators that Steven has contacted
(1 ≤ n ≤ 10,000, 1 ≤ m ≤ 50,000).

The second line will contain n short strings specifying the n target languages. Steven
wants his book to be translated to ALL these n target languages.

After this line are m lines of the form l1 l2 c where l1 and l2 are two different languages
(two short strings) and c (0 <= c <= 10,000) (let the unit be 1K SGD) specifying the cost
to translate the book between these two languages (in either direction). The
languages l1 and l2 are always either "English" (that has 7 characters) or one of the
target (real-life) languages (all short language names will be not more than 20
characters), and any pair of languages will appear at most once in the input. The initial
book is always written in "English".

g

A Sample Input looks like this:

4 6
Chinese French Portuguese Swedish
English Chinese 1
English French 1
English Portuguese 5
Chinese Portuguese 1
Portuguese Swedish 5
French Swedish 1

Write a simple Python code to handle the Input format as shown above and also show
how you are going to store this graph information in a (graph) data structure(s). If you
recall, the AM/AL/EL graph data structures that we learned in class only deal with vertices
labeled from [0..|V|-1].

(7 marks)

15. Fill in the blanks
(3 marks)

Enter your answer here

Character Limit: 2000Word Limit:

Output and Sample Test Cases to Confirm Understanding
For each test case, your task is to compute the minimum cost to translate
Steven's book (from "English") to all the n target languages, subject to the
constraints described above, or print "Impossible" (case sensitive, notice capital
"I") if it is not possible.

For this Sample Input 1 (shown earlier):

4 6
Chinese French Portuguese Swedish
English Chinese 1
English French 1
English Portuguese 5
Chinese Portuguese 1
Portuguese Swedish 5
French Swedish 1

The expected Output is:

8

Because Steven can translate "English" to "Chinese" for 1K SGD, "English" to
"French" also for 1K SGD, then translate the "French" translation one more time
into "Swedish" for another 1K SGD Finally for "English" to "Portuguese"

into Swedish for another 1K SGD. Finally, for English to Portuguese ,

Steven prefers to pay 5K SGD (for translation accuracy) instead of going via
"English" -> "Chinese" -> "Portuguese" that "only" costs 2K SGD. Thus, in
overall, the total of the translation costs is 1+1+1+5 = 8K SGD. Thus, the output is
"8".

=======

For this Sample Input 2:

2 1
A B
English B 1

The expected Output is:

Impossible

Because there is no suitable direct (or indirect) translator(s) to help us translate
Steven's book into language "A".

=======

Now the questions that will be automatically graded. For the following Test Case A,
B, and C, what should be the output?

Test Case A

5 5
AAA BBB CCC DDD EEE
English AAA 1
BBB English 2
DDD English 3
English EEE 5
English CCC 4

The output of Test Case A should be 1 .

=======

Test Case B

5 5
AAA BBB CCC DDD EEE
English AAA 1
BBB AAA 2
DDD CCC 3
DDD EEE 5
BBB English 4

The output of Test Case B should be 2 .

=======

Test Case C

2 3
BBB AAA
English AAA 10
BBB AAA 5
English BBB 14

16. Now the second last part, solve this problem in pseudo-code. You can quote the name of
some data structure(s) and/or algorithm(s) that we learned in class verbatim in your
explanation (if nothing is modified). Analyze the worst case time complexity of your
proposed solution.

(7 marks)

17. Show the Python code of your previous answer (combining Q14+Q16 answers in Python
code). Note that this part will be graded as 0 (regardless of what you wrote) if your
previous answer in Q16 is incorrect. Thus, please explain your algorithm in pseudo-code
first (in Q16) and only if you are convinced that your algorithm is correct and fast, then
use the remainder of this final assessment to code the solution in Python for the last few
marks.

Model Answer: 106 words and 725 characters only.
(3 marks)

The output of Test Case C should be 3 .

Enter the correct answer below.

1 Please enter a number for this text box.

2

3 Please enter a number for this text box.

Enter your answer here

Character Limit: 1000Word Limit:

Enter your answer here

Character Limit: 5000

