IT5003 Semester 2 2024 /2025
Data Structures and Algorithms

Tutorial 03
Linked List, Stack, Queue, Deque
For Week 05 (Sat)/06 (Mon)

Document is last modified on: January 17, 2025

1 Introduction and Objective

For this tutorial, you will need to (re-)review https://visualgo.net/en/list?slide=1 (to last slide
9-6) about List ADT and all its variations (compact array (or vector/ArrayList-)based List - from
tutOl.pdf - review https://visualgo.net/en/array?slide=1, SLL, Stack, Queue, DLL, Deque) as
they will be the focus of today’s tutorial.

2 Tutorial 03 Questions

Linked List, Mini Experiment

Q1). Please use the ‘Exploration Mode’ of https://visualgo.net/en/1list/to complete the following
table (some cells are already filled as illustration). You can use use the mode selector at the top to
change between (Singly) Linked List (LL), Stack, Queue, Doubly Linked List (DLL), or Deque mode.

You can use ‘Create’ menu to create input list of various types.

https://visualgo.net/en/list?slide=1
https://visualgo.net/en/array?slide=1
https://visualgo.net/en/list

Mode — Singly Stack Queue Doubly Deque
J Action Linked List Linked List
search(any-v) O(N) not allowed | not allowed O(N) not allowed
peek-front() 0(1)
peek-back() 0(1)
insert (0, new-v) O(1)
insert(N, new-v) 0o(1)
insert (i, new-v), ¢ €[1..N-1] not allowed
remove(0) 0O(1)
remove(N-1) not allowed
remove(i), i €[1..N-2] O(N)

You will need to fully understand the individual strengths and weaknesses of each Linked List variations
discussed in class in order to be able to complete this mini experiment properly. You can assume that
all Linked List implementations have head and tail pointers, have next pointers, and only for DLL

and Deque: have prev pointers.

Q2). Assuming that we have a List ADT that is implemented using a Singly Linked List with both

head and tail pointers. Show how to implement two additional operation:

1. reverseList() that takes in the current list of N items {ag, a1, ...,an_2,an—_1} and reverse it
so that we have the reverse content {any_1,an—_2,...,a1,a0}. What is the time complexity of

your implementation? Can you do this faster than O(N)?

2. sortList() that takes in the current list of IV items and sort them so that ag < a1 < ... <

an—2 < ay_1. What is the time complexity of your implementation? Can you do this faster
than O(N log N)?
Stack, Queue, or Deque

Q3). In the Lisp programming language, each of the four basic arithmetic operators appears before an
arbitrary number of operands, which are separated by spaces. The resulting expressions are enclosed

in parentheses. There is only one operator in a pair of parentheses. The operators behave as follows:

e (+ a b c) returns the sum of all the operands, and (+) returns 0.

e (~abc)returnsa - b - cand (- a) returns 0 - a,

i.e., the minus operator must have at least one operand.
e (*x a b ¢) returns the product of all the operands, and (*) returns 1.

e (/abc)returnsa / b / cand (/ a) returns 1 / a, using double division.

The divide operator must have at least one operand.

You can form larger arithmetic expressions by combining these basic expressions using a fully paren-

thesized prefix notation, e.g., the following is a valid Lisp expression: (+ (= 6) (* 2 3 4)).

The expression is evaluated successively as follows: (+ -6.0 (* 2.0 3.0 4.0)), then we have
(+ -6.0 24.0), and we finally have 18.0.

Another valid Lisp expression where noncommutative property of subtraction and division are
important: (/ (= 138 1) (/ 24 3 4)). The expression is evaluated successively as follows:
(/4.0 (/2434)), then we have (/ 4.0 2.0), and we finally have 2.0. If you mess up
the order of the operands for subtraction and division operations, you will get wrong answer.

Design and implement an algorithm that uses up to 2 stacks to evaluate a legal Lisp expression
composed of the four basic operators, integer operands, and parentheses. The expression is well formed
(i.e., no syntax error), there will always be a space between 2 tokens, and we will not divide by zero.

Output the result, which will be a double-precision floating point number.

Hands-on 3
TA will run the second half of this session with a few to do list:
e Do a short debrief of PS2 (after grading),

e IT5003: Very quick review of Python list (not Singly Linked List), using Python list as Stack,

and using Python deque as Queue,

e Do a sample speed run of VisuAlgo online quiz that are applicable so far, e.g.,
https://visualgo.net/training?diff=Medium&n=5&t1=5&module=1ist.

e Finally, live solve another chosen Kattis problem involving list ADT.

Problem Set 3

We will end the tutorial with high level discussion of PS3 (Preview).

https://visualgo.net/training?diff=Medium&n=5&tl=5&module=list

	Introduction and Objective
	Tutorial 03 Questions

