1 Introduction and Objective

In this tutorial, we will transition to the last \(\frac{1}{3} \) of CS2040/C/S and IT5003: Graph. We will discuss various graph data structures and on how to explore them with basic graph traversal algorithms.

Only for CS2040S: We will also revisit the UFDS data structure as it has one related graph application (to be contrasted with Graph Traversal solution — IT5003 students probably will just fall back to this).

The VisuAlgo pages that are used in this tutorial are https://visualgo.net/en/graphds, https://visualgo.net/en/dfs bfs, and only for CS2040S: https://visualgo.net/en/ufds.

2 Tutorial 08 Questions

Basic Stuffs About Graph DSes

Q1). The tutor will draw a two-dimensional depiction of a random small graph on the whiteboard first and ask students to store that graph in either Adjacency Matrix (AM)/Adjacency List (AL)/Edge List (EL) data structure on the whiteboard. Then, the tutorial group can compare the answers by re-drawing the same small graph on https://visualgo.net/en/graphds, possibly in different 2D depictions of the same graph to reinforce the concept that graph is a set of vertices and edges and can have many possible 2D depictions/embeddings.
Not-So-Basic Stuffs About Graph DSes

Q2). (Choose 2 out of 3) Many of these are in VisuAlgo online quiz, get ready:
 a). Draw a Directed Acyclic Graph (DAG) with V vertices and $V \times (V - 1)/2$ directed edges.
 b). Draw a Bipartite Graph with V vertices (assume that V is even) and $V^2/4$ undirected edges.
 c). Draw a Tree with V vertices (and $E = V - 1$ edges) that is not a Bipartite graph.
 All these drawing questions have been integrated in VisuAlgo Online Quiz :).

Q3). (Choose 2 out of 6) Show what is the best (fastest) way to convert a graph currently stored in graph data structure A into graph data structure B.
 a). From Adjacency Matrix (AM) to Adjacency List (AL)
 b). From AM to Edge List (EL)
 c). From AL to AM
 d). From AL to EL
 e). From EL to AM
 f). From EL to AL
 For the interest of time, tutor will only pick subset of two of these for live discussion (the rest are documented in modal answers)

DFS Initial Review

Q4). The tutor will then review (the basic form of) DFS graph traversal algorithms using https://visualgo.net/en/dfsbfs starting from the same randomly drawn graph from Q1). The tutor will ask some students to join the live demonstration. We will discuss harder applications of these two graph traversal algorithms in Tut09.

CS2040S Only (Skipped for IT5003): UFDS, Revisited

Q5). Previously, we have discussed a one-off data structure with specific application: Union-Find Disjoint Sets (UFDS). Now we want to connect this data structure with one specific graph application: To find Connected Components (CCs) of an undirected unweighted graph. Contrast this UFDS data structure with graph traversal approach for the same application (finding CCs).

Hands-on 8

TA will run the second half of this session with a few to do list:

- Very quick review of Prof Halim’s

- Very quick review of Prof Halim’s
 (BFS will be covered next week),
• Do a sample speed run of VisuAlgo online quiz that are applicable so far (just skip BFS-related questions first), e.g.,

https://visualgo.net/training?diff=Medium&n=5&tl=5&module=graphds,dfs,bfs

• Then, live solve another chosen Kattis problem involving graph data structure.

Problem Set 5
TAs can discuss the high-level ideas to get full marks for PS5 tasks, hence it is just an ‘implementation issue’ from here onwards (use the following fast I/O template for PS5C).

```java
import java.io.*;
import java.util.*;

public class ninetynineproblems2 {
    private static byte[] b;
    private static int off;

    private static int getInt() {
        byte c = b[off++];
        int res = 0;
        do {
            res = res * 10 + c - '0';
        } while ((c = b[off++]) >= '0');
        return res;
    }

    public static void main(String[] args) throws IOException {
        System.in.read(b = new byte[System.in.available()]);
        PrintWriter writer = new PrintWriter(new BufferedWriter(
            new OutputStreamWriter(System.out)));

        int N = getInt(), Q = getInt();
        writer.println("Do something with " + N + " and " + Q);
        writer.flush();
        writer.close();
    }
}
```

WARNING: Anyone who still relying too much on TA/peer hints to get unstuck in the much longer (∼ 2 weeks) PS need to prepare to say goodbye to lots of marks for the 1 hour PE on Week 10, or 2 hours final at the end.
Practical Exam

TA may give remark about Practical Exam (PE).
This semester, it will be just one hour PE (1 task) instead of the usual two hours (2 tasks).