
CS4234
Optimiz(s)ation Algorithms

L1 – Min-Vertex-Cover
https://visualgo.net/en/mvc

Definition:
– A vertex cover for a graph G = (V, E) is a

set S  V such that for every edge e = (u, v)  E,
either u  S or v  S

Vertex Cover

Definition:
– Given a graph G = (V, E), find a minimum-sized

set S that is a vertex cover for G
Analogy: A certain coffee brand in Singapore

Min-Vertex-Cover (MVC)

Try Brute Force live at https://visualgo.net/en/mvc

The decision version
– Given a graph G = (V, E) and a parameter k,

does there exist a Vertex-Cover of G
of size k (vertices)?

Proof:
– Vertex-Cover is in NP
– Vertex-Cover is NP-hard

•Clique p Vertex-Cover

– See revision slides from CS3230 (copied here)

Vertex-Cover is NP-Complete

1. VERTEX-COVERNP

Input: An undirected graph G = (V, E) and an integer k
Certificate: A subset V' of size k

The O(V+E) verification algorithm checks:
• if |V'| = k and insert those vertices into a __________

(O(1) per that data structure insertion, so O(V) overall)
• Then, it scans all edge (u, v)  E to check if at least

one of u and v belongs to V' (O(1) per that data
structure check, so O(E) overall)

Therefore, Vertex Cover is in NP

Agenda for showing more
NP-complete problems

Using polynomial time reduction,
we can obtain more NP-complete problems

CLIQUE: Given a
graph G = (V, E) and
an integer k, is there
a subset C ⊆ V of size
k (vertices) such that
C is a clique in G?

For now, “assume”
that CLIQUE
has been proven
to be NP-hard G

u0

u1

u2 u3

u4

u5

Eyeball: Is there
a clique of size
k = 4 below?

2. CLIQUEpVERTEX-COVER (1)

Given an undirected graph G = (V, E) and k (note: n = |V|),
we construct a graph 𝐆ത = (V, Ē) where (u, v)  Ē iff (u, v)  E

Claim: G has a size-k clique iff 𝐆ത has a size-(n-k) vertex cover

G

u0

u1

u2 u3

u4

u5
u1

u2 u3

u4

u5

u0

Exercise: Draw the
complement graph 𝐆ത in O(V2) Graph G

6 vertices,
10 edges
K6 has 15 edges

2. CLIQUEpVERTEX-COVER (2)

Given an undirected graph G = (V, E) and k (note: n = |V|),
we construct a graph 𝐆ത = (V, Ē) where (u, v)  Ē iff (u, v)  E

Claim: G has a size-k clique iff 𝐆ത has a size-(n-k) vertex cover

Graph G
6 vertices,
10 edges
K6 has 15 edges

Complement
graph 𝐆ത
6 vertices,
5 edges

G

u0

u1

u2 u3

u4

u5
u1

u2 u3

u4

u5

u0

G has a size-k clique  has a size-(n-k) vertex cover

Suppose V'  V is a size-k clique of G,
e.g., V' = {u1, u2, u3, u4} is a size-4 clique of G
• For any arbitrary edge (u, v)  Ē in the complement graph Gഥ, then (u, v)  E

– Which implies that at least one of u or v does not belong to a clique V' as every pair of
vertices in V' are connected by an edge in E and thus won’t be in Ē

Hence, at least one of u and v belongs to V-V' (of size n-k),
e.g., V-V' = {u0, u5} is a size-2 vertex cover of Gഥ
• Since edge (u, v)  Ē was chosen arbitrarily, every edge (u, v)  Ē is

covered by a vertex in V-V', so V-V' (of size n-k) is a VC of Gഥ

G

u0

u1

u2 u3

u4

u5
u1

u2 u3

u4

u5

u0

G has a size-k clique  has a size-(n-k) vertex cover

Conversely, suppose U  V is the size-(n-k) vertex cover of Gഥ,
e.g., U = {u0, u5} is a size-2 vertex cover of Gഥ
• By definition of vertex cover, for all u, v  V,

if (u, v)  Ē, then at least one of u and v belong to U
• The contrapositive of this statement is for all u, v  V and

both u and v do not belong to U  (u, v)  Ē  (u, v)  E
Hence, V-U is a clique and V-U has size = n-(n-k) = k,
e.g., V-U = {u1, u2, u3, u4} is a size-4 clique of G

u1

u2 u3

u4

u5

G

u0

u1

u2 u3

u4

u5

u0

VERTEX-COVER is NP-Complete

We have shown that:
1. VERTEX-COVER is in NP
2. VERTEX-COVER is NP-Hard

Therefore, VERTEX-COVER (the decision problem)
is NP-Complete

Clearly, if we could efficiently find a MIN-VERTEX-
COVER (MVC, an optimization problem), then we
could also efficiently answer the decision version of
VERTEX-COVER (VC), i.e., VERTEX-COVERpMIN-VERTEX-COVER

Decide: Can we have VC with k vertices of this graph?
 Just run MVC optimization algorithm on that graph
output yes if the ans ≤ k
or no otherwise
• An O(1) (polynomial) reduction

MIN-VERTEX-COVER is NP-hard (1)

Hence finding a MIN-VERTEX-COVER (MVC) is at least
as hard as the decision version, and hence we term it
NP-hard

MVC is not NP-complete
• We do not have polynomial time verifier to show that MVC is in NP

Bonus:
• Solving MVC also solves another

NP-hard problem (details in tutorial):
Max-Independent-Set (MIS)
– MIS: un-selected vertices in the example

MIN-VERTEX-COVER is NP-hard (2)

What is the minimum-sized vertex cover of this graph?

It is really hard… (1)

What is the minimum-sized vertex cover of this graph?

It is really hard… (2)

Desirable Solution:
1. Fast (i.e., polynomial time)
2. Optimal (i.e., yielding the best solution possible)
3. Universal (i.e., good for all instances/inputs)

In reality: Choose 2 out of 3:
1. Deal with the special case (lost universality)
2. Deal with parameterized solution (lost speed)
3. Consider approximate solution (lost optimality)

Dealing with an NP-hard Problem
Fast

Optimal

Universal

PS: Similar pictures can be easily Googled online

Intermezzo

Dynamic Programming solution:
– in(v) = 1 + ∑c ⸦ children(v) min(in(c), out(c))
– out(v) = ∑c ⸦ children(v) in(c)
– Base case at a leaf v: in(v) = 1, out(v) = 0
– answer = min(in(r), out(r)), computable in O(n)
– The tree can be a general tree (it does not have to be a binary tree)

MVC on Tree – Special Case
Fast

Optimal

Universal

Try DP on Tree live at https://visualgo.net/en/mvc

PS: There are a
few other known
special cases of
MVC 

Parameterized Complexity
– What if you are told that k  2?

– What if you are told that k is much smaller than n?
• Naïve O(nkm) algorithm

– Very not scalable 
• Better O(2km) algorithm

– Also not scalable, but much better than the naïve one

MVC with small k – Parameterized Solution
Fast

Optimal

Universal

PS: Pure Brute Force is O(2nm), see https://visualgo.net/en/mvc

MVC with small k – Parameterized Solution

Analysis:
T(k, m)  2T(k-1, m) + O(m)
O(2km)

k = 1

k = 0?
No… 

k = 0?
Yes,  (we are done)

• The third slice of the pie…

To be continued on Week 02
Fast

Optimal

Universal

• Re-introducing the MVC problem
• Re-proof that VC (decision) is NP-complete
• 3C2 scenarios
• Special case of MVC: On (Binary) Tree, use DP
• Parameterized MVC: Small k, good brute force
• Approximation algorithms for MVC  Week 02

Summary

