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Lecture 1 Recap (1)

Definition of the first Combinatorial Optimization
Problem (COP) in C54234: Min-Vertex-Cover

« We revisit C53230 to (re-)prove that VC is NP-Complete
* Thus MVC is NP-hard (as hard as VC) but not in NP

|MVC| = 4 |MVC| — 5 (Prof Halim will improve the bruteforce animation)
example MVC ={1, 3, 5, 6} example MVC ={3, 0, 7, 8, 2}
1\ -\
O—Q—O0—0O
>—0—0
Now | remember why | add edge 1-5




Lecture 1 Recap (2)

What should we do if we know (or we can
reduce an known NP-complete problem into
our current problem (the decision variant)

« Hope that it is posed on special case that somehow has
polynomial solution(s) = lost universality

— e.g., MVC on (Binary) Tree, we have DP solution (or? see T01)
« Hope that it is on small instance/parameter
- still actually not fast (exponential time)
— e.g., MVC on small k (or? see future questions)
« Hope that we can get by with good enough solution fast
- good enough may be non-optimal

— e.g., MVC, but we are OK if the answer is at most 2 x OPT

e To be discussed now ©



AppI‘OX AlgO fOI‘ MVC — Deterministic 1

/+ This algorithm adds wvertices greedily, one at a time, until everything
is covered. The edges are considered in an arbitrary order, and for
each edge, an arbitrary endpoint is added. x/ _

1 Algorithm: ApproxVertexCover-1(G = (V, E)) Optimal
2 Procedure:
3 C«0

/* Repeat until every edge is covered: e [/
while E £ § do
Let e = (u,v) be any edge in 5.

4
;r- C +CU {u} Q: how to efficiently implement this?
8

G+ G_,// Remove u and all adjacent edges from
return C°

O—CO—0—) Can be very bad:

— ??-approximation (no bound)

4 5 (e
\—y \.) o
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AppI‘OX AlgO fOI‘ MVC — Deterministic 2

/* This algorithm adds wvertices greedily, two at a2 time, until ewverything
iz covered. The edges are considered in an arbitrary order, and for
each edge, both endpoints are added. &/ _

1 Algorithm: ApproxVertexCover-2(G = (V, E)) Optimal
2 Procedure:
Y G

/* Repeat until every edge is covered: e [/
4+ while E # i do
5 Let e = (u,v) be any edge in 5.
¢ € CU{u,v) Q: how to efficiently implement this??
7 G+ G_jyy) // Remove u and v and all adjacent edges from &.
3 return '

O—CO—0@—) Not that bad?
— More analysis later

4 5 (e
\—y \.) o

OENOZOSONONORONRO



AppI’OX A|gO fOI‘ MVC — Deterministic 3

/+ This algorithm adds wvertices greedily, one at a time, until everything
is covered. At each step, the algorithm chooses the next wertex that

will cover the most uncovered edges. */ _
1 Algorithm: Approx VertexCover-3(G = (V, E)) Optimal
2 Procedure:
3 O+
/+ Repeat until every edge is covered: */
4 while E # g do
5 Let d(x) = number of uncovered edges adjacent to . o . .
¢ Let u = argmax, ., d(z) Q: how to efficiently implement this?
7 C+ Cu{u}
] G+ G_quy // Bemove u and all adjacent edges from G.
9 return '

O—CO—0@—) Not that bad?
— More analysis in the next slide

4 fé
\—y \.) o
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Approx Algo for MV C - peterministic 3

/+ This algorithm adds wvertices greedily, one at a time, until everything
is covered. At each step, the algorithm chooses the next wertex that

will cover the most uncovered edges. */ _
1 Algorithm: Approx VertexCover-3(G = (V, E)) Optimal
2 Procedure:
3 O+
/+ Repeat until every edge is covered: */
4 while E # g do
5 Let d(x) = number of uncovered edges adjacent to .
6 Letu = argmax __, d(zx)
7 C+ Cu{u}
] G+ G_quy // Bemove u and all adjacent edges from G.
9 return '

Below, n = 4, there are n! = 4! = 24 whites/ /- 0/,
24/2 = 12 greens, 24/3 = 8 blues, and 24/4 = 6 reds



Zoomed-in

Optimal MVC = n! = 4! whites

28 2T o) 30 il iz 33 M 35 36

The output of ApproxVertexCover-3 could be:
n!/n reds + n!/3 blues + n!/2 greens + n!/1 =
n! * (1/n+1/3+1/2+1/1) = n! * (1/1+1/2+1/3+1/n) =n! * In n
(Harmonic series)
This is In-n (or log-n, base of log is negligible) factor worse than optimal answer



Approx Algo for MV C - peterministic 2

/* This algorithm adds wvertices greedily, two at a2 time, until ewverything
iz covered. The edges are considered in an arbitrary order, and for
each edge, both endpoints are added. &/

1 Algorithm: ApproxVertexCover-2(G = (V. E))
2 Procedure:
Y G
* /

/* Repeat until every edge is covered:
4+ while E # 0 do
5 Let e = (u,v) be any edge in 5.
6 C+Cufu,v}
7 G+ G_jyy) // Remove u and v and all adjacent edges from &.

] return

 This one has 2-approximation proof

— Let E' be the edges considered by this algorithm, this E' is
a matching M (revisited by Week 06 of C54234, details in

the PDF), E' = M
— |M| < |OPT(G)| (details in the PDF) and C = 2* | E'|

— SoC =2*%|E'| = 2¥|M| < 2*| OPT(G) |
Try Deterministic 2-Opt live at hitps://visualgo.net/en/mvc




AppI’OX AlgO fOI‘ MVC - Randomized

1 Algorithm: RandomizedVertexCover(G = (V, E))

2 Procedure:

3 C 0 Optimal
/* Repeat until every edge is covered: */

4 while £ # () do

5 Lete = (u,v) be any edge in G.

6 b+ Random(0,1) // Returns {0,1} each with probability 1/2.

7 it b=0thenz =u

8 else if b = 1 then z = v o . .

’ C e Cufz) Q: how to efficiently implement this?

0 G+« G__.// Remove z and all adjacent edges from G.

1

1
1 return

2-approximation Analysis:

— Watered down proof:
e In line [5-8], the probability that
5 O we choose the right z is at least 12

e We include z in the cover and remove z
(and 'cover' its edges) in line 9-10

@ e So Cisat most 2 * OPT when E =&

— In expectation *verbal discussion*
Try Probabilistic 2-Opt live at https://visualgo.net/en/mvc

O—C—0O0—0




I In Practice...

» All approximation algorithms for MVC shown
earlier run in polynomial time, i.e., fast

* No one is preventing you to run all of them
and then report this ©

— [see the recording]



A high-level tour
Also in CP4 Book 2, p586-589

LINEAR PROGRAMMING



Linear Programming (LP)

A typical LP consists of three components:
1. A list of (real-valued) variables x;, x,, ..., X,

— The goal: To find good values for these variables

2. An objective function f(x,, x,, ..., x,) that you are
trying to maximize or minimize

— The goal is to find the best values for the variables so as
optimize this function

3. A set of m constraints that limits the feasible solution space
— Each of these constraints is specified as an inequality

In a(n) LP problem, both the objective function and the
constraints are linear functions of the variables



LP Example

A slightly different LP will be used in the
“live” segment later

max (A 4+ 6B) where:
A < 200
B < 300
A+B < 400
A 2 0
B > 0

B Are you sure 1900 is
the maximum?
. (draw A+6B = f(A, B))
4008~ :
f(100, 300) = 1900
350 : |

300

always at a vertex
« (intersection of
sqQme constraints)?

' Is the maximum is
250 i

200

b

150 If ye's\‘;\t\hen J at

most mGn\ vertices,
or O(m") algorithm

S

100

50
O 50 100 150 200 250 300 350 400



Simplex Method

1. Find any (feasible) vertex v

2. Examine all the neighboring vertices of v:
Vi, Vo, ooy Vi

3. Calculate f(v), f(vy), f(v5), ..., f(v,)

— If f(v) is the maximum (among its neighbors),
then stop and return v

4. Otherwise, choose one of the neighboring vertices
v; where f(v;) > f(v)

P e
- lLetv =y, N
5 GO to Ste (2) \\4‘“\‘ Q Details of Simplex
. p "\\ is “dropped” in &2
TTTTTTTTTTTTTT CLRS 4" edition... oo

ALGORITHMS ALGORITHMS

rrrrrrrrrrrrr




Simplex Live Example

B

f(100, 300) = 1900

35
Find any (feasible) vertex v - ‘O “““““““““““

Examine all the neighboring vertices of

4nn|x“~ |

1
!
\ |
Vi Vo oy Vy f(0, 300) = 1800 .
Calculate f(v), f(vy), f(v,), ..., f(vy) Y :
LY
- If f(v) is the maximum (among its neighbors),250
then stop and return v
\

Otherwise, choose one of the neighboring 200

vertices v; where f(v;) > f(v) f(zoo 200) = 1400

- Letv =, 150
Go to step (2)

100

|
|
|
| \
|
|
|
|

5

50 100 150 205250 300 350 40
£0, 0) = 0 £(200, 0) = 200



LP Solver in Microsoft Excel

0 N Vs W N

alalalala
= W N = o

Ive Demonstration

MS Excel can be setup quickly to use Solver Ad

ee 02.ExcelSample.xlsx (tab 'LP")

Home

Insert

Get External Data

A
Variables
Coefficients
Solutions
zZ

Constraints 1
Constraints 2
Constraints 3

Constraints 1
Constraints 2
Constraints 3

Page Layout

fe || =B2*B3+C2°C3

A B

1
0

E:O -
1
0
1

LHS RHS

Formulas

Get & Transform

Review  View  Acrobat

Q Tell me what you want to

Sample - Excel

| Solver Parameters

Connections

6
0 <=run Data->Solver to see
you need to turn on Solver

0 <= 200
1<= 300
1<= 400

200
300
400

Set Objective: ses4/ &
Toi @ Max C Min O Value Of: ]
B/ Changing Variable Cells:
5BS3:5C53 =5
Subject to the Canstraints
SETLSES <o SOTISCSTS add
Change
Delete
Reset Al
Load/save

[ Make Unconstrained Variables Non-Negative

Simplex LP ~

Select a Soiving Optians
hod:

Metl

Sohing Method

Select the GRG Nonlinear engine for Solver Froblems that are smooth nonlinear. Seledt the LP
Simplex engine for linear Solver Problems, and select the Evolutionary engine for Solver
problems that are non-smooth.

Help

leg
o

=]

File

0N AW N =

w

5-

Home  Insert  Pagelayout  Formulas Review  View  Acrobat  Q Tellme what you want to do..
T B [ BE = Be

[=] Connections

F [ show Queries
|

=] From Table

£

Manage  Whi
Data Model  Analy

Save Scenario

New ;l Sort Filter Text to Remove Data Consolidate
Query - (% Recent Sources h Yo Advaneed | Columns Duplicates Validation -
Get External Data Get & Transform Connedtions Sort & Filter Data Tools
- £ | =s2*Bascatcs
A B C D E F G H | J
Variables A B
Coefficients 1 6 for A+6B
Solutions 100 300 <= run Data->Solver to see the answers (A = 100, B = 300)
z 1900 you need to turn on Solver Adg Soiver Results
Solver found a solution. All Constraints and optimality
Constraints 1 1 0<= 200 conditions are satisfied Regorts
- Answer
Constraints 2 0 1= 300 @ Keepsolver solution Eﬁ:i;mw
Constraints 3 1 1 <= 400 O Restore Origins Values
[ Return to Solver Parameters Dizlog. [ Qutline Reports
LHS RHS
Constraints 1 100 200 Cancel
Constraints 2 300 300
. Solver found a solution. All Constraints and optimality conditions are satisfied.
Constraints 3 400 400

When the GRG engine is used, Solver has found at least a local optimal solution. When Simplex LP.

is used, this means Solver has found a global optimal solution.



Ip_solve in Ubuntu

Cannot do live demonstration on Steven’s laptop...
it is on Windows ®

If I cannot SSH to my DO droplet, just see this screenshot

—I-'drﬂp].E"t:,."'# [E't ciq;_.aql'l-p
/¥ from C54234 lecture note 02 */

max: A + 6 B:

A <= 200;
<= 300:;
A + B <= 4008;
A »>= 0:
" -1 :

l-droplet:/# 1p_solve csd4234.1p
Value of objective function: 1500.00000000
Actual values of the variables:

A 106
B 306




Usable Simplex in C++

https://github.com/jaehyunp/stanfordacm/blob/master/code/Simplex.cc

Good usable Simplex code from Stanford ICPC team ©

I have a local copy of that Simplex code in Java
(thanks to a senior student from “many” AYs ago)

Any volunteer to convert this to Python?
* Probably ChatGPT can do the translation too

 for non-Kattis projects, you may want to use
https://docs.scipy.org/doc/scipy/reference/optimize.linprog-simplex.html




~Now use any tool to solve this

* Maximize 777x+7y

e Such that:
— 100x = 15000 Answer for this year
— 50y < 10000 [do it yourself!!]
— X+y < 300

« And X and y are non-negative

PS: Steven shall randomize the LP exercise each year



Two ways to approximately deal with this version...

MIN WEIGHT VERTEX COVER
(MWVC)



L]

MIN-WEIGHT-VERTEX-COVER

Both the Deterministic & Randomized 2-approximation
algorithm for Min-vertex-Cover "fail" on the

weighted version; Do you understand why?



MWVC as an (Integer) Linear Program e

The formulation (x; is a Boolean {0, 1} variable
where 0 = not in VC and 1 = in VC):

min (Z wiv;) - .i-'}) where: Notice that this line
j=1 actually has E copies in

ri+x; = 1 forall(i.j) € E<€ gn actual (I)LP program
riy = 0 foralljeV
r; < 1 foralljeV Some other textbook
- Py says x; € {0, 1}, and
The unweighted one i = forall j €1 yS % { }

Proven NP-hard last week there are V COpIES

Min}Vertex—Cover (set w(v;) to all 1) <, ILP

So ILP is also NP-hard
PS: A tool for ILP that | have explored in the past




MWVC as a Relaxed Linear Program

0. (D)
Relaxing the Integer constraint ><

O ©.
i Assume w is all 1
i (Z w(vy) - .r._]) where: Example LP solution
j=1 Xg = X4 =X, =X3=0.5
ri+x; = 1 forall(i,j)eFE What should we do?
ri = 0 foralljelV

L s PS: LP solution can be
ri = 1 foralljel

I SOl or better than
ILP solution. Why?

Round up xj Value |f |t |S > 0_5 lety, = 1ifx; > 1/2, and let y; = 0 otherwise.
But is this a good approximation?



Ip_solve output

# cat kd.lp
min: XO+x1+x2+x3;

_solve kd.1p
Value of objective function: 2.00000000

Actual values of the variables:
{3 Q.
x1 (.
X2 0.
X3 .

Lnoon wnoen



Analysis

OPT(G) = OPT(ILP) > OPT(LP)

cost(OPT) = i v ) - T
=R F—O
Assume w is all 1
Example ILP solution x; =x; =%, =1;X3=0
Example LP solution x5 = x4 =X, =X3=0.5
Rounded answer < 2 x OPT(LP)

E |'|:"'|:,!'_J: . :!'I-JI 1:_
g

Notice, however, that y; < 2z, forall j.

< 2% OPT(G)

Analysis: This is a 2-Approximation algorithm



~ Linear Programming Summary

General form of an LP:
1. A set of variables: x4, X5, ..., X,

2. A linear objective to maximize (or minimize): c'x
e ¢ and x as vectors,
e c'represents the transpose of ¢
e multiplication represents the dot product

3. A set of linear constraints written as a
Matrix equation: AXx <b

Presented as: maxX c'™x where Ax<band x>0



LP in Standard Form

Exercise to translate given LP into standard form

minr; + 2r. — s where // this 15 a minimization problem
r1 + T2 = T/ this 1s an equality
Tz — 2rs = 4/ this s a = mequality
r, = 2

Details in the PDF



I Wait...

* There is an even simpler 2-Approximation
algorithm for MWVC... which is...

— See https://visualgo.net/en/mvc, M weighted VC




Summary

« Approximation algorithms for MVC
— Deterministic, 3 variants, but only variant 2 is 2-Approximation

— Randomized, Expected 2-Approximation
 Introduction to LP and an overview of Simplex Method

— Simplex in Excel++, Ubuntu Ip_solve, and custom code

» Introducing the weighted MVC (MWVC)
— Problem with MVC approximation algorithms...
— Reducing MWVC to ILP
— Relaxing ILP to LP (we can use Simplex) and rounding up the answer
— Analysis of that solution: 2-approximation

— Plus yet another alternative 2-approximation solution



Admin

« PS1 is open until this Sun, 27 Aug 23, 11.59pm

— As of Thu, 24 August 2023, 11.30am...

e 47 with ACs on A+B+C+D or more,
— Ignore E+F+G+H if you have (many) other things to do

e 7 more with only = 2/4 ACs

— Should also be on track to complete PS1, but will have a busy day today/tomorrow...

e But a staggering 69-47-7 = 15 pax with only 1 or 0 AC...

— Are you staying in this course or not?

— Consider that first PS1, these first two lectures (,plus my Lecture
03a+03b recordings and future Tut01+Tut02) and decide if the
(optional/elective) CS4234 is for you...

e I am OK with if you drop* (Terms and conditions apply)
« PS2 still starts from Sat, 26 Aug 23, 08.00am

— Four (:0) NP-hard optimization problems
« TutO1.pdf is out; first tutorial next Mon, 28 Aug 23



'PS1 (More) Hints

* Only shown in the recording



