
CS4234
Optimiz(s)ation Algorithms

L2 – Approximation Algorithms
and Linear Programming

https://visualgo.net/en/mvc
(both unweighted and weighted version)

Right Infringements on NUS Course Materials

All course participants (including permitted guest students)
who have access to the course materials on Canvas/LumiNUS

or any approved platforms by NUS for delivery of NUS
modules are not allowed to re-distribute the contents in any
forms to third parties without the explicit consent from the

module instructors or authorized NUS officials

For CS4234: probably the PS (high-level) solutions, tutorial, and past
midterm/final answers that are preferably not stored in public domain that
will be ‘easily indexed by Google’

https://www.comp.nus.edu.sg/~stevenha/cs4234.html is public

Definition of the first Combinatorial Optimization
Problem (COP) in CS4234: Min-Vertex-Cover
• We revisit CS3230 to (re-)prove that VC is NP-Complete
• Thus MVC is NP-hard (as hard as VC) but not in NP

Lecture 1 Recap (1)

|MVC| = 4
example MVC = {1, 3, 5, 6}

|MVC| = 5 (Prof Halim will improve the bruteforce animation)

example MVC = {3, 0, 7, 8, 2}

Now I remember why I add edge 1-5

What should we do if we know (or we can
reduce an known NP-complete problem into
our current problem (the decision variant)
• Hope that it is posed on special case that somehow has

polynomial solution(s)  lost universality
– e.g., MVC on (Binary) Tree, we have DP solution (or? see T01)

• Hope that it is on small instance/parameter
 still actually not fast (exponential time)
– e.g., MVC on small k (or? see future questions)

• Hope that we can get by with good enough solution fast
 good enough may be non-optimal
– e.g., MVC, but we are OK if the answer is at most 2 x OPT

• To be discussed now 

Lecture 1 Recap (2)
Fast

Optimal

Universal

Can be very bad:
– ??-approximation (no bound)

Approx Algo for MVC – Deterministic 1
Fast

Optimal

Universal

Q: how to efficiently implement this?

Not that bad?
– More analysis later

Approx Algo for MVC – Deterministic 2
Fast

Optimal

Universal

Q: how to efficiently implement this?

Not that bad?
– More analysis in the next slide

Approx Algo for MVC – Deterministic 3
Fast

Optimal

Universal

Q: how to efficiently implement this?

Below, n = 4, there are n! = 4! = 24 whites/yellows,
24/2 = 12 greens, 24/3 = 8 blues, and 24/4 = 6 reds

Approx Algo for MVC – Deterministic 3
Fast

Optimal

Universal

Zoomed-in
Optimal MVC = n! = 4! whites

The output of ApproxVertexCover-3 could be:
n!/n reds + n!/3 blues + n!/2 greens + n!/1 yellows =

n! * (1/n+1/3+1/2+1/1) = n! * (1/1+1/2+1/3+1/n) = n! * ln n
(Harmonic series)

This is ln-n (or log-n, base of log is negligible) factor worse than optimal answer

• This one has 2-approximation proof
– Let E' be the edges considered by this algorithm, this E' is

a matching M (revisited by Week 06 of CS4234, details in
the PDF), E' = M

– |M|  |OPT(G)| (details in the PDF) and C = 2*|E'|
– So C = 2*|E'| = 2*|M|  2*|OPT(G)|

Approx Algo for MVC – Deterministic 2

Try Deterministic 2-Opt live at https://visualgo.net/en/mvc

2-approximation Analysis:
– Watered down proof:

• In line [5-8], the probability that
we choose the right z is at least ½

• We include z in the cover and remove z
(and 'cover' its edges) in line 9-10

• So C is at most 2 * OPT when E = 
– In expectation *verbal discussion*

Approx Algo for MVC - Randomized
Fast

Optimal

Universal

Try Probabilistic 2-Opt live at https://visualgo.net/en/mvc

Q: how to efficiently implement this?

• All approximation algorithms for MVC shown
earlier run in polynomial time, i.e., fast

• No one is preventing you to run all of them
and then report this 
– [see the recording]

In Practice…

LINEAR PROGRAMMING

A high-level tour
Also in CP4 Book 2, p586-589

A typical LP consists of three components:
1. A list of (real-valued) variables x1, x2, …, xn

– The goal: To find good values for these variables
2. An objective function f(x1, x2, …, xn) that you are

trying to maximize or minimize
– The goal is to find the best values for the variables so as

optimize this function
3. A set of m constraints that limits the feasible solution space

– Each of these constraints is specified as an inequality
In a(n) LP problem, both the objective function and the
constraints are linear functions of the variables

Linear Programming (LP)

LP Example

f(100, 300) = 1900

Are you sure 1900 is
the maximum?
(draw A+6B = f(A, B))

Is the maximum is
always at a vertex
(intersection of
some constraints)?

If yes, then  at
most mCn vertices,
or O(mn) algorithm

A slightly different LP will be used in the
“live” segment later

1. Find any (feasible) vertex v
2. Examine all the neighboring vertices of v:

v1, v2, …, vk
3. Calculate f(v), f(v1), f(v2), …, f(vk)

– If f(v) is the maximum (among its neighbors),
then stop and return v

4. Otherwise, choose one of the neighboring vertices
vj where f(vj) > f(v)
– Let v = vj

5. Go to step (2)

Simplex Method

Details of Simplex
is “dropped” in
CLRS 4th edition…

Simplex Live Example

1. Find any (feasible) vertex v
2. Examine all the neighboring vertices of v:

v1, v2, …, vk
3. Calculate f(v), f(v1), f(v2), …, f(vk)

– If f(v) is the maximum (among its neighbors),
then stop and return v

4. Otherwise, choose one of the neighboring
vertices vj where f(vj) > f(v)

– Let v = vj

5. Go to step (2)

f(0, 0) = 0 f(200, 0) = 200

f(0, 300) = 1800

f(200, 200) = 1400

f(100, 300) = 1900

Live Demonstration
(MS Excel can be setup quickly to use Solver Add-in)

See 02.ExcelSample.xlsx (tab 'LP')

LP Solver in Microsoft Excel

Cannot do live demonstration on Steven’s laptop…
it is on Windows 

If I cannot SSH to my DO droplet, just see this screenshot

lp_solve in Ubuntu

https://github.com/jaehyunp/stanfordacm/blob/master/code/Simplex.cc

Good usable Simplex code from Stanford ICPC team 

I have a local copy of that Simplex code in Java
(thanks to a senior student from “many” AYs ago)

Any volunteer to convert this to Python?
• Probably ChatGPT can do the translation too
• for non-Kattis projects, you may want to use

https://docs.scipy.org/doc/scipy/reference/optimize.linprog-simplex.html

Usable Simplex in C++

• Maximize 777x+7y
• Such that:

– 100x ≤ 15000
– 50y ≤ 10000
– x+y ≤ 300

• And x and y are non-negative

PS: Steven shall randomize the LP exercise each year

Now use any tool to solve this

Answer for this year
[do it yourself!!]

MIN WEIGHT VERTEX COVER
(MWVC)

Two ways to approximately deal with this version…

Both the Deterministic & Randomized 2-approximation
algorithm for Min-Vertex-Cover "fail" on the
weighted version; Do you understand why?

MIN-WEIGHT-VERTEX-COVER

The formulation (xj is a Boolean {0, 1} variable
where 0 = not in VC and 1 = in VC):

Min-Vertex-Cover (set w(vj) to all 1) p ILP
So ILP is also NP-hard

MWVC as an (Integer) Linear Program ILP/IP

Notice that this line
actually has E copies in
an actual (I)LP program

Some other textbook
says xj  {0, 1}, and
there are V copiesThe unweighted one

Proven NP-hard last week

PS: A tool for ILP that I have explored in the past

Relaxing the Integer constraint

Round up xj value if it is  0.5
But is this a good approximation?

MWVC as a Relaxed Linear Program

Assume w is all 1
Example LP solution
x0 = x1 = x2 = x3 = 0.5
What should we do?

PS: LP solution can be
equal or better than
ILP solution. Why?

lp_solve output

Analysis: This is a 2-Approximation algorithm

Analysis

Assume w is all 1
Example ILP solution x0 = x1 = x2 = 1; x3 = 0
Example LP solution x0 = x1 = x2 = x3 = 0.5

OPT(G) = OPT(ILP)  OPT(LP)

Rounded answer  2 x OPT(LP)

General form of an LP:
1. A set of variables: x1, x2, …, xn

2. A linear objective to maximize (or minimize): cTx
• c and x as vectors,
• cTrepresents the transpose of c
• multiplication represents the dot product

3. A set of linear constraints written as a
Matrix equation: Ax  b

Presented as: max cTx where Ax  b and x  0

Linear Programming Summary

Exercise to translate given LP into standard form

Details in the PDF

LP in Standard Form

• There is an even simpler 2-Approximation
algorithm for MWVC… which is…
– See https://visualgo.net/en/mvc, M weighted VC

Wait…

• Approximation algorithms for MVC
– Deterministic, 3 variants, but only variant 2 is 2-Approximation
– Randomized, Expected 2-Approximation

• Introduction to LP and an overview of Simplex Method
– Simplex in Excel++, Ubuntu lp_solve, and custom code

• Introducing the weighted MVC (MWVC)
– Problem with MVC approximation algorithms…
– Reducing MWVC to ILP
– Relaxing ILP to LP (we can use Simplex) and rounding up the answer
– Analysis of that solution: 2-approximation
– Plus yet another alternative 2-approximation solution

Summary

• PS1 is open until this Sun, 27 Aug 23, 11.59pm
– As of Thu, 24 August 2023, 11.30am…

• 47 with ACs on A+B+C+D or more,
– Ignore E+F+G+H if you have (many) other things to do

• 7 more with only ≥ 2/4 ACs
– Should also be on track to complete PS1, but will have a busy day today/tomorrow…

• But a staggering 69-47-7 = 15 pax with only 1 or 0 AC…
– Are you staying in this course or not?

– Consider that first PS1, these first two lectures (,plus my Lecture
03a+03b recordings and future Tut01+Tut02) and decide if the
(optional/elective) CS4234 is for you…
• I am OK with if you drop* (Terms and conditions apply)

• PS2 still starts from Sat, 26 Aug 23, 08.00am
– Four (:O) NP-hard optimization problems

• Tut01.pdf is out; first tutorial next Mon, 28 Aug 23

Admin

• Only shown in the recording

PS1 (More) Hints

