L3b – Steiner-Tree
still-DRAFT (since 2017) VISUALIZATION:
https://visualgo.net/en/steinertree

PS: This lecture will run in two parts:
On Week 03 (up to the preview of MST-based approximation algorithm)
On Week 04 (the full details of this 2-approximation algorithm)
Motivation

Imagine you were given a map containing a set of cities, and were asked to develop a plan for connecting these cities with roads. Building a road costs 1,000,000 SGD per kilometer, and you want to minimize the length of the highways. Perhaps the map looks like this:

Figure 1: How do you connect the cities with a road network as cheaply as possible?

MST?
Run Prim’s or Kruskal’s algorithm
Cost: ~52 M SGD

\[O(V^2 \log V) \] solution
Note that we are dealing with \(K_V \)

But what if we can add new points to help us?
Cost: 50M SGD
EUCLIDEAN-STEINER-TREE

• Given a set \(\mathbf{R} \) of \(n \) distinct points in the Euclidean (2-dimensional) plane

• Find a(n additional, possibly empty) set of points \(\mathbf{S} \) and a spanning tree \(\mathbf{T} = (\mathbf{R} \cup \mathbf{S}, \mathbf{E}) \) such that the weight of the tree is minimized

• The weight of the tree is defined as:

\[
\sum_{(u,v) \in \mathbf{E}} |u - v|
\]

where \(|u - v| \) is the Euclidean distance from \(u \) to \(v \)

• The resulting tree is called a **Euclidean Steiner Tree** and the points in \(\mathbf{S} \) are called **Steiner points**
But there are some known properties of any optimal Euclidean Steiner Tree:

- Each Steiner point in an optimal solution has degree 3
- The three lines entering a Steiner point form 120 degree angles, in an optimal solution
- An optimal solution has at most \(n-2 \) Steiner points

So is this Steiner Tree (50M) optimal?

If no, can you come up with a better one?

Review recording to see the solution
Let’s define a metric function, e.g., Euclidean distance

Definition 3 We say that function \(d : V \times V \to \mathbb{R} \) is a metric if it satisfies the following properties:

- Non-negativity: For all \(u, v \in V \), \(d(u, v) \geq 0 \).
- Identity: For all \(u \in V \), \(d(u, u) = 0 \).
- Symmetric: For all \(u, v \in V \), \(d(u, v) = d(v, u) \).
- Triangle inequality: For all \(u, v, w \in V \), \(d(u, v) + d(v, w) \geq d(u, w) \).

There are several functions other than Euclidean distance that are metric, e.g., the Manhattan/taxicab/rectilinear distance.
Metric-Steiner-Tree (2)

Unlike in Euclidean case where the additional Steiner points can be anywhere on the 2D plane, we are also given the set of possible Steiner vertices S.

Definition 4 Assume we are given:

- A set of required vertices R,
- A set of Steiner vertices S,
- A distance function $d : (R \cup S) \times (R \cup S) \to \mathbb{R}$ that is a distance metric on the points in R and S.

The **Metric-Steiner-Tree** problem is to find a subset $S' \subset S$ of the Steiner vertices and a spanning tree $T = (R \cup S', E)$ of minimum weight. The weight of the tree $T = (R \cup S', E)$ is defined to be:

$$
\sum_{(u,v) \in E} d(u,v).
$$

Think: Does this make Metric-Steiner-Tree easier or harder than the Euclidean-Steiner-Tree?
We can generalize this even further

At this point, we can generalize even further to the case where d is not a distance metric. Instead, assume that we are simply given an arbitrary graph with edge weights, where some of the vertices are required vertices and some of the vertices are Steiner vertices.

Definition 5 Assume we are given:

- a graph $G = (V, E)$,
- edge weights $w : E \rightarrow \mathbb{R}$,
- a set of required vertices $R \subseteq V$,
- a set of Steiner vertices $S \subseteq V$.

Assume that $V = R \cup S$. The **General-Steiner-Tree** problem is to find a subset $S' \subset S$ of the Steiner vertices and a spanning tree $T = (R \cup S', E)$ of minimum weight. The weight of the tree $T = (R \cup S', E)$ is defined to be:

$$\sum_{(u,v) \in E} d(u, v).$$
Steiner-Tree (the 3 variants)

All NP-hard (proof by book, Garey & Johnson, 1979)...

- Euclidean: The points are in Euclidean plane
- Metric: We have a distance metric
- General: On arbitrary graph

General-ST is a generalization of Metric-ST

Metric-ST is not simply a generalization of Euclidean-ST as Euclidean-ST allows any points in the plane to be a Steiner point
Steiner-Tree Complete Search Solution

- https://visualgo.net/en/steinertree
- Draw all the **Required** vertices first, label as [0, 1, ..., s-1]
- Then draw all the **Steiner** vertices [s, s+1, ..., n-1]
- Click “Exact” and enter the value of s accordingly
- VisuAlgo will show one possible way to solve General-ST by trying all \(2^{|n-s|}\) possible subsets of **Steiner** vertices, include them and their associated weighted edges along with the **Required** vertices, and then run MST algorithm on them (each in \(O(E \log V) = O(n^2 \log n)\) here)
- Time complexity: \(O(2^{|n-s|} * n^2 \log n)\), very slow for big TC

- Review recording for a sample run
Steiner-Tree Approximations

• Steiner-Tree is known to have a close relationship with the (easier, e.g., in P) Min-Spanning-Tree problem (hence I put MST in PS1-prerequisites)

• So... what if we just ignore all Steiner points/vertices S and just find the MST on the required vertices R only?

Ratio: $2/(\sqrt{3})$ or ~1.15
Widening Approximation Ratio?

We can increase the size of this cycle graphs C_n

This test case shows that the MST approximation is no better than a $\frac{2(n-1)}{n}$-approximation of the optimal spanning tree (the Steiner tree).

- As n gets large, this is ~ 2-approximation
- We will do the more proper analysis soon
Bad news for general, *non metric*, Steiner Tree variant... as we can construct similar test case but play with the non-metric weights to have a very bad MST approximation solution
Most years, I won’t be able to finish all slides on Week 03.
The rest of the slides will be discussed on Week 04.
Focus on **Metric-ST First** (1)

Figure 4: Example for showing that a minimum spanning tree is a 2-approximation of the optimal Steiner tree, if the distances are a metric. Assume that all edges not drawn have distance 2. Verify that these distances satisfy the triangle inequality.

Figure 5: Here we have drawn the optimal Steiner tree T of graph shown in Figure 4.

Cost of the optimal Steiner tree $T = 8$
Focus on **Metric-ST First (2)**

Cost of DFS on T: $1+1+1+1+1+1+1+1+1+1+1+1+2+2 = 16$
Each edge in T is visited $2x$ in this cycle C, i.e., $\text{cost}(C) = 2 \times \text{cost}(T)$

This is what we want to prove..., i.e., what if we ‘ignore’ Steiner vertices

Cost of C', bypassing all Steiner vertices = 15 (see Fig 4 for clarity)
Such short-cutting won’t increase the cost, because of triangle inequality
Focus on Metric-ST First (3)

Figure 5: Here we have drawn the optimal Steiner tree T of graph shown in Figure 4.

Figure 6: Here we have drawn the cycle C' after the Steiner vertices have been short-cut and the repeated vertices have been deleted.

Cost of C'', bypassing all Steiner vertices from C and then removing duplicate vertices $= 11$

$$\text{cost}(C'') \leq 2 \times \text{cost}(T)$$

$$\text{cost}(C') \leq 2 \times \text{cost}(T)$$
Focus on Metric-ST First (4)

Cost of \(T' \), bypassing all Steiner vertices from \(C \) and then removing duplicate vertices and then breaking any one edge in this cycle (e.g., \(e \rightarrow a \)) = 9

This \(T' \) is an acyclic spanning tree of \(G \)

Let \(M \) be the minimum spanning tree of the required vertices \(R \) of \(G \)

So, \(\text{cost}(M) \leq \text{cost}(T') \)

\(\leq \text{cost}(C'') - \) one deleted edge

\(\leq 2 \times \text{cost}(T) \)

Conclusion: \(\text{cost}(M) \leq 2 \times \text{cost}(T) \), a 2-approximation ☺

Figure 6: Here we have drawn the cycle \(C \) after the Steiner vertices have been shortcut and the repeated vertices have been deleted.
Can we do this?
1. Given an instance of the General-ST problem
2. **Reduce it** to a new Metric-ST instance
3. Solve the new Metric-ST instance using an existing (approx) algorithm that solves the metric version (e.g., the 2-approximation: MST on \(\mathbb{R} \) vertices only)
4. **Convert the solution** of Metric-ST **back** to a solution for General-ST

Is this a **gap-preserving** reduction, i.e., can we also have 2-approximation on General-ST variant?
Step 2: Metric completion

We can make a non-metric edge weights into a metric one, using All-Pairs Shortest Paths algorithm, e.g., the $O(V^3)$ Floyd Warshall’s (other algorithms exist)

Definition 7 Given a graph $G = (V, E)$ and non-negative edge weights w, we define the metric completion of G to be the distance function $d : V \times V \to \mathbb{R}$ constructed as follows: For every $u, v \in V$, define $d(u, v)$ to be the distance of the shortest path from u to v in G with respect to the weight function w.

We can use proof by contradiction about shortest path properties to show that such metric completion preserves the triangle inequality

(the 3 other metric properties non-negativity, identity, and symmetric can be easily shown)

Details in the PDF
Step 4: Reconstruction

When we do the metric completion, we also remember the actual shortest paths, e.g.,

- Assume \(d(i, j) > d(i, k) + d(k, j) \)
 and thus we shorten \(d(i, j) \) into \(d(i, k) + d(k, j) \),

- In the event this 'virtual' edge \((i, j)\) is taken in the Metric-ST variant, we actually take edge \((i, k)\) and \((k, j)\) in the General-ST variant

- Some of these edges may overlap and create cycles, we have to remove some edges as we want a spanning tree, not cycle(s)
 - Thus the cost can be equal or lower in General ST version
Analysis

Theorem: Given an α-approximation algorithm for finding a Metric Steiner tree, we can find an α-approximation for a General Steiner tree.

Proof
Assume we have a graph $G^g = (V, E^g)$ with required vertices R, Steiner vertices S, and a non-negative edge weight function w. Let T^m be an α-approximate Steiner tree for (R, S, d), where d is the metric completion of G^g. Let T^g be the spanning tree constructed above by converting the edges in T^m into paths in $G^g = (V, E^g)$ and removing cycles. We will argue that T^g is an α-approximation of the minimum cost spanning tree for G.

First, we have shown that $\text{cost}_d(T^m) \leq \alpha \cdot \text{cost}_w(OPT^g)$. Second, we have shown that $\text{cost}_w(T^g) \leq \text{cost}_d(T^m)$. Putting the two pieces together, we conclude that $\text{cost}_w(T^g) \leq \alpha \cdot \text{cost}_w(OPT^g)$, and hence T^g is an α-approximation for the minimum cost Steiner tree for G with respect to w.

Full details in the PDF
Summary

• Introducing the Steiner Tree problem
 – Similar to the MST problem, but different and harder
• Three variants: Euclidean, Metric, General
 – All NP-hard, focus on Metric and General variants
 – Exponential Complete Search solution for General ST
• Approximation algorithm: MST of R vertices only
 – OK for Metric, can be awful for General variant verbatim
 – Proof of 2-Approximation on Metric variant
 – Converting General variant to Metric variant (metric completion) and then using the same 2-approximation algorithm (gap preserved)