
CS4234
Optimiz(s)ation Algorithms

L4 – Travelling-Salesman-
Problem (TSP)

British: Travelling
American: Traveling

We don’t say TSP Problem



• PS1 final average = 4.92/5.00 for 31 of you :O

• PS2 grading at 18/31 (as of Wed, 01 Sep 2021, 3pm)…

– That’s the number of you who have AC*-ed all 5 tasks…
• With help of online judge, many of you are “self-correcting” your own issues

(at the expense of your own personal time… remember 3C2 of college students?),
thereby simplifying the grading only for the non-AC submissions at the end

• PS: You are *NOT* technically allowed to ‘try’ at open.kattis first (it skews the stats)

Admins (1)



• Good? News: PS3+4 workload will be made “lighter”
and possibly over “longer period”

– PS2 pace at the wrong end of the ranklist is slower than expected

– PS3 will be at 4 tasks
• And if need be, I can set its deadline to be ‘sometime in the middle of recess week’
• At the expense of not having `recess week break’ (for those who struggled to finish PS3)
• I prefer to clear all PS3 grading during this recess week though…

– PS4 will also be at 4 tasks
• And if need be, I can set its start time to be `in the middle of recess week after PS3 ends’ too
• At the expense of `spending a few hours during recess week break’ (for those who aim for top 7 in PS4)

Admins (2)



Time to do attendance taking 
• https://inetapps.nus.edu.sg/ctr/Home

You need to:
• Declare your temperature regularly (no longer needed)

• Declare your (+family member(s)) health regularly 
• Do your FET/ART test if you are scheduled for it
• Should *not* be on SHN/LOA at the moment

Before I forget



One of the most famous COP



Travelling-Salesman-Problem (TSP)

Complete Graph, O(V2)



There are N! permutations of N cities
• Or just (N-1)! Permutations if we “fix one city”

– So, this runs in O(N! * N) time as we run O(N) check per permutation

But many of the sub-tours are repeated
• If we memoize (this word is not a typo) parts of the subtours, 

we can improve runtime to O(N2 * 2N-1)

– Called Held-Karp DP for TSP

– A few mini optimizations exist, including “fix one city” (not for CS4234)

– A short demo (not live code) https://nus.kattis.com/problems/beepers
• https://github.com/stevenhalim/cpbook-code/blob/master/ch3/dp/beepers_UVa10496.cpp / py / java / ml

Let’s analyze the animations: https://visualgo.net/en/tsp

Digress a bit to Brute Force and DP



4 Variants (so far), all NP-hard

M-Metric
• That  inequality

G-General

R-Repeated-Visits-OK
NR-No-Repeat
• Easy reduction from an

NP-c Hamiltonian-Cycle
– A Hamiltonian cycle (circuit) is a cycle

in an undirected or directed graph
that visits each vertex exactly once

The one in VisuAlgo*



But 3 (out of 4) variants are equivalent

If we have a
c-approximation
algorithm for one
variant, we can
construct a
c-approximation
algorithm for the
other two

We will learn 2-approx and
1.5-approx for these 3 variants

Temporarily ignored, 
NP-hard even to 

approximate (see T03)

Shortcut on Metric space

Metric 
completion



Are given in the next few slides and in the more 
detailed pdf, but are to be skipped in class

We focus on the approximation algorithms for M-R-TSP

Proof of Equivalency of the 3 variants



M-R-TSP  M-NR-TSP (1)

Both are M-Metric

NR to R  trivial, no change
• A legal NR cycle is also legal

in the R variant
• Recall ILP to LP ‘relaxation’ in the previous lecture
• So OPT(R)  OPT(NR)

R to NR  we use that shortcut(s) technique
• Recall discussion during Steiner Tree lecture about using 

shortcut(s) in the metric version of Steiner Tree



M-R-TSP  M-NR-TSP (2)

R to NR  we use that shortcut(s) technique
e.g*., C = {0,2,4,1,4,3(,0)}, C’ = {0,2,4,1,3(,0)}
• So OPT(NR)  OPT(R) (via shortcuts, e.g., d(1, 3)  d(1, 4) + d(4, 3) due 

to  inequality)
• As OPT(R)  OPT(NR) (from previous slide) and OPT(NR)  OPT(R) 

(above), we have OPT(R) = OPT(NR)
• If A that produces cycle C is a c-approx algo

for NR, then A is a c-approx algo for R
as d(C)  c*OPT(NR) = c*OPT(R)

• If A that produces cycle C is a c-approx algo
for R, then A' (that runs A and skips repeated
vertices to produce cycle C') is a c-approx algo
for NR as d(C)  c*OPT(R) = c*OPT(NR)

* This example is just for illustration



M-R-TSP  G-R-TSP (1)

Both are R-Repeated
We cannot create shortcuts as 
inequality does not hold, but
we can use repeated vertices

G to M  trivial, if we have a c-approx algo A for G-R-TSP and 
the input is metric, no change is needed; we just run A on this 
metric input as this metric input is a valid input for the general 
one too, and we are guaranteed to get c-approx result 

M to G  if we have a c-approx algo for M-R-TSP, we have to 
do metric completion on input instance (V, dg) using any All-
Pairs-Shortest-Paths (APSP) algorithm like in the Steiner-Tree 
problem (previous lecture) to get (V, dm), see the next slide



M-R-TSP  G-R-TSP (2)

Then, we run the c-approx algo A on the metric instance (V, dm) 
to produce a cycle C, e.g*., C = {0,4,1,2,3,0}

Then, we undo the process by replacing edge (u, v) with 
shortest path from u to v in the original graph to produce cycle, 
e.g*., C' (may contain repeats – it is fine) = {0,4,1,2,3,4,0}
• d(C') = d(C) (obvious, hopefully)
• d(C)  c*OPT(V, dm) (by definition of c-approx algo A)
• OPT(V, dm)  OPT(V, dg) (all edge (u, v) in dm is shortest paths, see PDF)

• So d(C')  c*OPT(V, dg)
* This example is just for illustration

Assume the two
red edges are 

dg dm



As we have shown equivalence between M-R-TSP,
M-NR-TSP, and G-R-TSP, this 2-Approx algorithm 
described below will work for all three variants:

1. Run MST of the input Graph (we only accept metric in VA)
2. Run DFS on the resulting MST (usually from vertex 0)
3. Output the vertices in cycle induced by DFS (no repeat in VA)

Notice similarity with Metric-Steiner-Tree approximation

2-Approx for M-NR-TSP

DFS={0,4,1,2,1,4,3,4,0}
Output C={0,4,1,2,3,0}

Try this at https://visualgo.net/en/tsp (still not 100% clear though)

Assume two non-drawn edges 0-2 and 1-3 are 



The analysis is similar to Metric-Steiner-Tree
2-Approx analysis

Let: C* = OPT(V, d) where d is not necessarily metric (hence 
the G in G-R-TSP) and E* be the edges in the optimal cycle C*

Notice that G* = (V, E*) is connected as C* is a cycle that 
includes all vertices in V

Let T* be the MST of G = (V, E*)

We know that d(T*)  d(C*) = OPT
(similar as with Metric-Steiner-Tree analysis)

2-Approx for G-R-TSP (Analysis)
We know M-R-TSP and M-NR-TSP are equivalent with G-R-TSP that will 

be analyzed now; In class, I use M-NR-TSP as VisuAlgo is limited to 
Metric* input and VisuAlgo avoids repeat vertices at the end



As the tree T (the one used by the approximation algorithm) is 
also an MST, but on G = (V, E) (a complete graph) and we 
know that E*  E, we have: d(T)  d(T*)

Finally, since C is constructed by a DFS traversal of T and C
includes each edge in T exactly twice (we used this in Metric-
Steiner-Tree analysis too), we have d(C) = 2 * d(T),
notice that we haven’t drop repeats (hence the R in G-R-TSP)

Combining everything, we have:
d(C) = 2 * d(T)

 2 * d(T*)
 2 * d(C*)
 2 * OPT

2-Approx for G-R-TSP, Continued

Btw, do you “feel” that this analysis is “not tight”?



Preliminary 1: Eulerian Cycle:
a Cycle that crosses each edge exactly once

Illustration: Bridges of Konigsberg

A (multi)graph G = (V, E) has an Eulerian Cycle iff it is 
connected (ignoring vertices with degree 0) and every 
vertex has even degree (details in PDF)

Can we do better? (1)



Preliminary 2: (Perfect) Matching
Get subset M of edges in graph so that no two edges 
in M share an endpoint; it is perfect if |M| = |V|/2

PS: How to get a perfect matching on general graph
(is still) out of scope for this module (we can use weighted 

form of Edmonds’ matching (Blossom) algorithm as a black box – Wk07)

Can we do better? (2)



Christofides’s Algorithm:
1. T = Min-Spanning-Tree(G) and let E be all the edges in T
2. Let O be set of vertices in T that has odd degree

– O has even number of vertices (Handshaking lemma)

3. Find M = Min-Weight-Perfect-Matching on subgraph of G 
induced by O

4. Combine T+M to get a multigraph H whereby all vertices 
have even degree

5. Get the Eulerian circuit in H
6. Output the vertices in Eulerian cycle (no repeat in VA)

https://en.wikipedia.org/wiki/Christofides_algorithm#Example
Or see https://visualgo.net/en/tsp (the Eulerian circuit in H is a bit buggy; so use manual tracing)

1.5-Approx for M-NR-TSP



The cost has two components

Cost(E) = eE d(e) + eM d(e)
(all edges in MST) + (all edges in

Min-Weight-Perfect-Matching)

We already know that

eE d(e)  OPT
using the now-classic technique: OPT is a TSP cycle of graph G 
= (V, E), if we remove any edge from this cycle, we will get a 
spanning tree and the MST of the graph G must have cost no 
greater than this cycle (usually smaller, as we delete at least one 
positive weighted edge)

1.5-Approx for M-NR-TSP (Analysis1)



1.5-Approx for M-NR-TSP (Analysis2)



Combining them, we have:

Cost(E) = eE d(e) + eM d(e)
 cost(T) + cost(M)
 OPT + OPT/2
 1.5 OPT

1.5-Approx for M-NR-TSP (Analysis3)

Remember that the 1.5-Approx at https://visualgo.net/en/tsp has bug involving
the Eulerian circuit in H… Use manual tracing for that 1.5-Approx animation
until I have time to fix it…



We will revisit TSP again in the second half of 
the course…

Even better?
and in T03



1. Min-Vertex-Cover (+weighted version, Lec1+Lec2)

2. Max-Clique (mentioned briefly and in Tut01)

3. Graph-Coloring (mentioned briefly in Tut01)

4. Min-Set-Cover (+weighted version, Lec3)

5. Steiner-Tree (3 variants, Lec3)

6. Min-Feedback-Edge-Set (+weighted version, Tut02)

7. Partition (+weighted version, Tut02)

8. Travelling-Salesman-Problem (4 variants, Lec4)

9. Max-Independent-Set (Tut03)

• A few more in latter tutorials and/or in PS3+PS4+Mini Project

List of NP-hard COPs so far…
(in order of appearance)



• Revisit the Travelling-Salesman-Problem

– One of the most popular COP

• Four variants: Metric and/or Repeats
– All NP-hard, focus on 3, ignore G-NR-TSP for now

– The other 3 variants are equivalent

• MST+DFS, 2-Approximation Algorithm
– Simpler

• Christofides’s 1.5-Approximation Algorithm
– Eulerian Cycle, General Weighted Matching, Harder

• Next week: Back into P problem: Maximum Flow…

Summary


