
CS4234
Optimiz(s)ation Algorithms

L5 – Max-Flow/Min-Cut + Analysis
They are Primal-Dual LPs

Please read all e-Lecture slides at
https://visualgo.net/en/maxflow?slide=1 to end

before attending this class

v1.0: Seth Gilbert (2 parts)
v1.6: Steven Halim (merged into 1+live demo)



0. Connectivity: How is my network connected?
– P: (Strongly) Connected Component , https://visualgo.net/en/dfsbfs

1. Distances: How to get from here to there?
– P: Single-Source Shortest Paths, https://visualgo.net/en/sssp
– P: All-Pairs Shortest Paths

2. Spanning Trees: How do I design a network?
– P: Min-Spanning-Tree, https://visualgo.net/en/mst
– NP-hard: Steiner-Tree, https://visualgo.net/en/steinertree
– NP-hard: Travelling-Salesman, https://visualgo.net/en/tsp

3. Network Flows: How is my network connected?
– Our topic today

Types of Graph Problems (so far)

Not all graph problems are in P
Not all graph problems are NP-hard/complete

Not all optimization problems are graph problems

(A TSP cycle – an edge = A Spanning Tree)

not just Floyd-Warshall :O



Network Flows
a. Definition (with VA, quick recap)
b. Ford-Fulkerson Algorithm (with VA)
c. Max-Flow/Min-Cut Theorem
d. Ford-Fulkerson (FF) Analysis

a. Analysis of Basic Ford-Fulkerson: O(m2 U)
b. FF with Shortest-Path v1/Edmonds-Karp: O(m2 n)
c. FF with Shortest-Path v2/Dinic’s: O(m n2)

e. Live solve a (simple) Max Flow problem

Roadmap (Flipped Classroom)
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Initially:
All flows are 0.

Ford-Fulkerson (1)
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Idea: Find an augmenting path (path from s to t 
that goes through edges with positive weight 
residual capacity (c(e)-f(e)) left) along which we 
can increase the flow.

Ford-Fulkerson (2)
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Watch the animation live in VisuAlgo
(chosen augmenting paths may be 

slightly different but the final answer is 
the same, max flow = 28)

(you can also try other flow graphs)



Ford-Fulkerson Algorithm

Start with 0 flow.
While there exists an augmenting path: // iterative algorithm

• Find an augmenting path.
• Compute bottleneck capacity.
• Increase flow on the path by the bottleneck capacity.

Ford-Fulkerson (Basic Idea)

There are still a few missing details:
– How to find an augmenting path?
– If it terminates, does it always find a max-flow?

– Does Ford-Fulkerson always terminate?  How fast?



For now, any O(V+E) graph traversal 
algorithm will do (BFS, DFS, ‘fattest path 
first’, etc.)

Any path from st in the residual graph 
is an augmenting path.

We will learn more about this later

How best to find an augmenting path in 
the residual graph?



Ford-Fulkerson Algorithm

Start with 0 flow.
Build residual graph:

• For every edge (u,v) add edge (u,v) with w(u,v) = capacity.
• For every edge (u,v) add (a new) edge (v,u) with w(v,u) = 0.

While there exists an augmenting path:
• Find an augmenting path via DFS (the ‘wrong one first’) in residual graph.
• Compute bottleneck capacity.
• Increase flow on the path by the bottleneck capacity:

• For every edge (u,v) on the path, subtract the flow from w(u,v).
• For every edge (u,v) on the path, add the flow to w(v,u).

Compute final flow by inverting residual flows.

Ford-Fulkerson (More Complete)

Be careful 
of potential 
bug(s) here



Ford-Fulkerson Algorithm

Start with 0 flow.
While there exists an augmenting path:

• Find an augmenting path.
• Compute bottleneck capacity.
• Increase flow on the path by the bottleneck capacity.

Ford-Fulkerson

Details:
 How to find an augmenting path?
– If it terminates, does it always find a max-flow?

– Does Ford-Fulkerson always terminate?  How fast?



Network Flows
a. Definition (with VA)
b. Ford-Fulkerson Algorithm (with VA)
c. Max-Flow/Min-Cut Theorem
d. Ford-Fulkerson (FF) Analysis

a. Analysis of Basic Ford-Fulkerson: O(m2 U)
b. FF with Shortest-Path v1/Edmonds-Karp: O(m2 n)
c. FF with Shortest-Path v2/Dinic’s: O(m n2)

e. Live solve a (simple) Max Flow problem

Roadmap (Flipped Classroom)



Definition:
An st-cut partitions the vertices of a graph into           
two disjoint sets S and T where source s  S and 
sink t  T.

Cuts and Flows – Definition (1/4)
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One possible st-cut, set S = blue, set T = green



Definition:
An st-cut partitions the vertices of a graph into           
two disjoint sets S and T where source s  S and 
sink t  T.

Cuts and Flows – Definition (2/4)
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Another possible st-cut, set S = blue, set T = green



Definition:
The capacity of an st-cut is the sum of the capacities 
of the edges that cross the cut from S to T.

Cuts and Flows – Definition (3/4)
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Definition:
The net flow across an st-cut is the sum of the flows 
on edges from ST minus the flows from TS.

Cuts and Flows – Definition (4/4)
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Proposition:
Let f be a flow, and let (S,T) be an st-cut.
Then the net flow across (S,T) equals the value of f.

Cuts and Flows – Equal (1/4)
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Proposition:
Let f be a flow, and let (S,T) be an st-cut.
Then the net flow across (S,T) equals the value of f.

Cuts and Flows – Equal (2/4)
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Proposition:
Let f be a flow, and let (S,T) be an st-cut.
Then the net flow across (S,T) equals the value of f.

Cuts and Flows – Equal (4/4)
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Proof: (by induction)
Start with S = {source s}, T = V \ S.
Define F = flow across cut.

Cuts and Flows – Equal Proof (1/5)
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Inductive step: 
Take one node X that is reachable from S and add it to S.

• Add new outgoing edges that cross new cut.
• Subtract new incoming edges that cross new cut.
• Subtract/add edges from X to S.
• See example with X = A

Cuts and Flows – Equal Proof (2/5)
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Inductive step: 
Conservation of flow:   (Equilibrium constraint)

• See example with X = A
• Flow into A equals flow out of A
• Flow that crossed (old set S)A == A(old set T)
• So F remains unchanged

Cuts and Flows – Equal Proof (3/5)

F + (3 + 2 + 2) - 7 - 0 = F
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Proof: (by induction)
Start with S = {source s}, T = V \ S.
Define F = flow across cut.
Move vertices one at a time from T to S.
At every step, F remains unchanged.
Thus for all cuts, flow is F.

Cuts and Flows – Equal Proof (4/5)
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Proof: (by induction)
How to easily compute F?

• Consider cut S = V \ {sink t}, T = {sink t}.
– One other easy way exist, S = {source s}, T = V \ {source s}.

• All edges crossing the cut go to sink t.
• Value of flow = flow across cut = F.

Cuts and Flows – Equal Proof (5/5)
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Weak duality:
Let f be a flow, and let (S,T) be an st-cut.
Then value(f)  capacity(S,T).

Cuts and Flows – Weak Duality (1/2)
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Weak duality:
Let f be a flow, and let (S,T) be an st-cut.
Then value(f)  capacity(S,T).

Proof:
value(f) = flow across cut (S,T)  capacity(S,T).

Cuts and Flows – Weak Duality (2/2)

flow value proposition flow is bounded by the capacity



MaxFlow-MinCut Theorem:
Let f be a maximum flow.
Let (S,T) be an st-cut with minimum capacity.
Then value(f) = capacity(S,T).

MaxFlow-MinCut Theorem
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Augmenting Path Theorem:
Flow f is a maximum flow if and only if there are no 
augmenting paths in the residual graph.

Augmenting Path Theorem
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Proof:
The following three statements are equivalent for flow f:
1. There exists a cut whose capacity equals the value of f.
2. f is a maximum flow.
3. There is no augmenting path with respect to f.

Cuts and Flows – 3 Statements



1  2: There exists an f-capacity cut  f is maximum
Assume (S,T) is an st-cut with minimum capacity equal to f.
– We will change this “assumption” into a

constructive proof in Step 3  1
– For all flows g: value(g)  capacity(S,T)
– For all flows g: value(g)  value(f)
– f is a maximum flow

Cuts and Flows – Statement 12

weak duality



2  3: f is maximum flow  no augmenting paths
Assume there IS at least 1 more augmenting path:
– Improve flow by sending flow on augmenting path.
– Augmenting path has bottleneck capacity > 0.
– f was NOT a maximum flow.
– Contradiction
Conclusion: after we find f (max flow),
there is no more augmenting path

Cuts and Flows – Statement 23



3  1: no augmenting paths  exists f-capacity cut
Assume there is no augmenting path:
– Let S be the vertices reachable from the source in the 

residual graph.
– Let T be the remaining vertices, i.e. T = V \ S.

Cuts and Flows – Statement 31 (1/4)
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3  1: no augmenting paths  exists f-capacity cut
Assume there is no augmenting path:
– Let S = reachable vertices. T = remaining vertices.
– S contains the source s and T contains the target/sink t.
– source s cannot reach sink t anymore

Otherwise, if sink t was                                                       
reachable from source s
in the residual graph,                                                          
there would be another                                                       
augmenting path.

Cuts and Flows – Statement 31 (2/4)
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3  1: no augmenting paths  exists f-capacity cut
Assume there is no augmenting path:
– Let S = reachable vertices. T = remaining vertices.
– (S,T) is an st-cut.
– All edges from TS are empty.
– All edges from ST are saturated.

Cuts and Flows – Statement 31 (3/4)

A

s

C F

EB t

D

10/10

5/5

13/15 0/4

0/4

9/9

3/6

1/15 0/15

0/15

9/10

9/10

10/10

13/16

8/8



3  1: no augmenting paths  exists f-capacity cut
Assume there is no augmenting path:
– Let S = reachable vertices. T = remaining vertices.
– (S,T) is an st-cut.
– All edges from TS are empty.
– All edges from ST are saturated.
– value(f) = net flow across (S,T) = capacity of cut

Cuts and Flows – Statement 31 (4/4)

flow value proposition
Notice  changed to =
ST saturation
TS empty



1  2: There exists an f-capacity cut  f is maximum
We can now constructively show how to get (S,T),
an st-cut with minimum capacity equal to f.
– For all flows g: value(g)  capacity(S,T)
– For all flows g: value(g)  value(f)
– f is a maximum flow

Cuts and Flows – Statement 12 (again)



Augmenting Path Theorem:
Flow f is a maximum flow if and only if there are no 
augmenting paths in the residual graph.

If Ford-Fulkerson terminates,
then there is no augmenting path (left).
 Thus, the resulting flow is maximum.

Summary



Ford-Fulkerson Algorithm

Start with 0 flow.
While there exists an augmenting path:

• Find an augmenting path.
• Compute bottleneck capacity.
• Increase flow on the path by the bottleneck capacity.

Ford-Fulkerson (Yet More Details 1/3)

We have just seen that if FF terminates, it has found max flow
 How to find an augmenting path?
 If it terminates, does it always find a max-flow?
• Does Ford-Fulkerson always terminate?  How fast?



Ford-Fulkerson Algorithm

Start with 0 flow.
While there exists an augmenting path:

• Find an augmenting path.
• Compute bottleneck capacity.
• Increase flow on the path by the bottleneck capacity.

Ford-Fulkerson (Yet More Details 2/3)

Termination: FF always terminates if the capacities are integers.
– Every iteration finds a new augmenting path.
– Each augmenting path has bottleneck capacity at least 1.
– So each iteration increases the flow of at least one edge by at least 1.
– Finite number of edges, finite max capacity per edge  termination.



Ford-Fulkerson Algorithm

Start with 0 flow.
While there exists an augmenting path:

• Find an augmenting path.
• Compute bottleneck capacity.
• Increase flow on the path by the bottleneck capacity.

Ford-Fulkerson (Yet More Details 3/3)

Termination: Ford-Fulkerson always terminates.
 How to find an augmenting path?
 If it terminates, does it always find a max-flow?
• How fast does Ford-Fulkerson terminate? Can we do better?

• After the break…



Network Flows
a. Definition (with VA)
b. Ford-Fulkerson Algorithm (with VA)
c. Max-Flow/Min-Cut Theorem
d. Ford-Fulkerson (FF) Analysis

a. Analysis of Basic Ford-Fulkerson: O(m2 U)

b. FF with Shortest-Path v1/Edmonds-Karp: O(m2 n)
c. FF with Shortest-Path v2/Dinic’s: O(m n2)

e. Live solve a (simple) Max Flow problem

Roadmap (Flipped Classroom)



The basic algorithm runtime:
– Each iteration: O(m) for running DFS to find p in R

• And O(n) to update capacities in R along p, but m > n in R

– So, the main question is: How many iterations will FF run?
• Important assumption for the next line: Capacities are integers
• Bottleneck edge = min capacity edge on P, it has min capacity of 1
• So each iteration will increase flow value by ≥ 1 unit
• Let U = max capacity of outgoing edge connected to source s
• Max flow MF ≤ m*U, assuming that all m edges have capacity U
• # iterations ≤ m*U, as each iteration increase flow by ≥ 1

–  Total cost: O(m*U * m) = O(m2 U)

Ford-Fulkerson Analysis

Yes, this is a gross upperbound, see T04



Is it really so bad?
YES

What went wrong?
Why did FF choose such a bad augmenting path?

Ford-Fulkerson Worst Case Input

Example of a simple Flow Network that causes bad performance of simple FF
To exaggerate the effect, assume 8 = 8B(illion) unit capacity

Assume FF takes augmenting paths 0213 and then 0123 alternatingly
It will only stop until ~16B steps

This example is available 
at VisuAlgo maxflow

visualization,
try Example Graphs:
Ford-Fulkerson Killer

and run Ford-Fulkerson

PS: In practice, 
it is not like this, 

see PS3+4



Network Flows
a. Definition (with VA)
b. Ford-Fulkerson Algorithm (with VA)
c. Max-Flow/Min-Cut Theorem
d. Ford-Fulkerson (FF) Analysis

a. Analysis of Basic Ford-Fulkerson: O(m2 U)
b. FF with Shortest-Path v1/Edmonds-Karp: O(m2 n)

c. FF with Shortest-Path v2/Dinic’s: O(m n2)
e. Live solve a (simple) Max Flow problem

Roadmap (Flipped Classroom)



Idea: What if we don’t consider any augmenting paths
but consider augmenting paths
with the smallest number of edges involved first
(so we don’t put flow on more edges than necessary)

Implementation: We first ignore capacity of the edges first 
(assume all edges in R have weight 1), and we run O(E) BFS to 
find the shortest (in terms of # of edges used) augmenting path

VA link

Edmonds-Karp (EK) Algorithm

4

3



1. Distance from source vertex s to any other vertices 
(including to sink vertex t) never decreases

– Augmenting path(s) push s and t further apart in R
2. EK will use at most m*n iterations

If we can show this, it means that
EK runs at most in O(mn * m) = O(m2 n) time

– Yey, our max flow algorithm is no longer dependant
on U (or F)  this is called: strongly polynomial algorithm

– Max-Flow is NOT an NP-hard optimization problem

This AY, the proof is skipped so that we can do live-demo
(but they are left in the slides)

– Instead, we see the works done by your seniors

EK – Claims



Distance from source vertex s (to t) never decreases

On augment, we have two possible outcomes:
1. We "delete" at least 1 (or more) bottleneck edge(s) in R

– No problem, this outcome cannot shorten st path
2. We may add backward/reverse edges in R

– Those from initial capacity 0 to +f upon pushing flow f on the 
opposite forward edges along augmenting path

– Notice that such addition of backward edges can only happen along 
the shortest st augmenting path in R that we are processing

– Will it cause problem?

Proof of Claim no 1 (1/2)



2. We may add backward/
reverse edges in R

– Will it cause problem?
– Every step on shortest path

st increases distance
– Thus, a shorter path st,

if exist, must cross the
newly created edge; Suppose we have new backward edge BA

– We see that d(s, B) cannot get shorter
– So d(s, A) over new edge = d(s, B) + 1 ≥ (l+1) + 1 = l+2 > l

• Shortest path sA cannot cross new edge, i.e., d(s, A) doesn’t decrease

– So d(s, C) cannot cross edge BA as it won’t make it shorter
– AC~t could not be shorter than AB~t previously
– So s~BAC~t cannot shorten st path

Proof of Claim no 1 (2/2)



After finding an augmenting path p, every bottleneck 
edge (A, B) along path p will be “deleted” from R

There is  1 bottleneck edge at each augmenting path

We will show that each of the m edges in R can 
become bottleneck edge at most n/2 times

Let A and B be two vertices that are connected by an 
edge in R and since any augmenting path p in EK is 
shortest path, when (A, B) becomes bottleneck edge 
for the first time, we have dist(s, B) = dist(s, A) + 1

After augmentation of p, edge (A, B) is deleted from R

Proof of Claim no 2 (1/3)



Can edge (A, B) reappear in R again?

Yes, it can… if the flow from A to B is decreased,
which occurs only if the reverse/backward edge (B, A) 
appears on some other shortest augmenting path in 
latter iteration

When it happens, we have dist(s, A) = dist(s, B) + 1

As each augmentation can never decrease shortest 
path from s (from earlier proof)

Proof of Claim no 2 (2/3)



dist(s, A) = dist(s, B)+1
≥ old-dist(s, B)+1 = old-dist(s, A)+2

So, from the time edge (A, B) is the bottleneck edge, 
deleted due to an augmenting path, and reappears 
later, dist(s, A) must have increased by at least 2

As shortest path from s to t in R is at most n, this 
arbitrary edge (A, B) can only be bottleneck n/2 times

l+2

Proof of Claim no 2 (2/3)



Conclusions:
An arbitrary edge (A, B) can be a bottleneck edge
up to n/2 times
As there are at most 2m edges in R, there can be at 
most O(2m*n/2) = O(mn) bottleneck edges
So EK will run at most O(mn) iterations
Total time of EK is O(mn * m) = O(m2 n)
A polynomial time algorithm

EK – Analysis



How to enforce EK to run up to O(mn) iterations?
In the first 5 AYs, 5 batches of your seniors tried hard to do this

PS: Possible flow graph structure hidden in the event
I still want to reuse this exercise

Record holders:
• Bui Do Hiep (AY 2016/17, 5 years ago) test case,

– n = 102, m = 1975, nm = 201,450, AP = 16,250 (~1/12 of nm, or 8.06%)
• Gan Wei Liang (AY 2017/18, 4 years ago), ~8.3%
• Sidhant Bansal (AY 2019/20, 2 years ago), ~8.91%
• Teo Wei Zheng (AY 2020/21, last AY) = 8.967%... (~1/11 of nm)

Edmonds-Karp “Worst Case” Input



Network Flows
a. Definition (with VA)
b. Ford-Fulkerson Algorithm (with VA)
c. Max-Flow/Min-Cut Theorem
d. Ford-Fulkerson (FF) Analysis

a. Analysis of Basic Ford-Fulkerson: O(m2 U)
b. FF with Shortest-Path v1/Edmonds-Karp: O(m2 n)
c. FF with Shortest-Path v2/Dinic’s: O(m n2)

e. Live solve a (simple) Max Flow problem

Roadmap (Flipped Classroom)



Dinic’s algorithm is “90%” identical as Edmonds-Karp
Just that Dinic’s uses BFS (shortest path) information
in a “better way”

For now, a quick explanation using 
https://visualgo.net/en/maxflow
with a follow-up later in T04

Dinic’s (Preview)



Network Flows
a. Definition (with VA)
b. Ford-Fulkerson Algorithm (with VA)
c. Max-Flow/Min-Cut Theorem
d. Ford-Fulkerson (FF) Analysis

a. Analysis of Basic Ford-Fulkerson: O(m2 U)
b. FF with Shortest-Path v1/Edmonds-Karp: O(m2 n)
c. FF with Shortest-Path v2/Dinic’s: O(m n2)

e. Live solve a (simple) Max Flow problem

Roadmap (Flipped Classroom)



Let’s cap off this lecture with a live demonstration on how to 
solve a (simple) max flow problem:

https://nus.kattis.com/problems/mazemovement

Steps:
1. Realizes that the given problem is really a max flow problem
2. Copy paste something…
3. Construct the required flow graph
4. Run the efficient-enough max flow algorithm (Dinic’s)
5. Done

Live Solve


