v0.1: Seth Gilbert
v0.5: Steven Halim

CS4234
Optimiz(s)ation Algorithms

é
Steven’s
external
PhD thesis
evaluator

tocastic Local Search

Many parts of the material is based on slides provided with the book
Stochastic Local Search: Foundations and Applications’
by Holger H. Hoos and Thomas Stiitzle (Morgan Kaufmann, 2004) —
see http.//www.sls-book.net for further information.

Outline

« A New Search Paradigm

 SLS Definitions

» Basic Hill Climbing (example on M/G-NR-TSP)
» Various SLS Ideas (all on TSP)

« Small Experiments throughout the Lecture

Back to NP-hard COP

Recall: Lecture 1
* COP = Combinatorial Optimization Problem
« Many of them are NP-hard

» Still remember the ;C, reality?

 This time, we will also sacrifice optimality

— But unlike Approximation Algorithms,
this time we will NOT have
any guarantee of the solution quality...

— Theoretical Computer Scientists won't like this...

Optimal

Search Paradigm

Solving NP-hard Combinatorial Optimization Problems
(COPs) through Complete Search that sacrifices
speed is usually by iteratively (or recursively) generate
and evaluate (all) candidate solutions

— e.g. Try all (N-1)! possible TSP tours one by one, evaluate
them, and report the best (minimal one)

— Note: Evaluating one candidate solution (e.g. compute the
cost of a given TSP tour) is typically computationally much
cheaper than finding one (out of possibly many) optimal
solutions (e.g. find the optimal TSP tour)

A New Search Paradigm

What you already know: Systematic Search:

— Traverse search space for given problem instance
In a systematic manner

— Complete: Guaranteed to eventually find (optimal)
solution, or to determine that no solution exists

A New Paradigm: Local Search:
— Start at a (random) position in search space

— Iteratively move from a position to its neighbouring
position, usually (but not always) perturbative (next slide)

— Typically incomplete: Not guaranteed to find (optimal)
solutions, cannot determine insolubility with certainty...

A New Search Paradigm, Continued

 Perturbative Search
— search space = complete candidate solutions
— search step = modification of one/more sol. components
— e.g. swap two edges (2-exchange) in a TSP tour
 Constructive Search (aka construction heuristics)
— search space = partial candidate solutions
— search step = extension with one/more sol. components

— e.g. from one vertex, go to nearest neighbor vertex,
the Greedy Nearest Neighbor heuristic

Systematic versus Local Search

« Completeness: Advantage of systematic search,
but not always relevant, e.g., when existence of
solutions is guaranteed by construction or in real-time
situations (e.g. TSP when input is a complete graph).

- Any-time property: Positive correlation between
run-time and solution quality or probability;
typically more readily achieved by Local Search.

 Complementarity: Local and Systematic Search can
be fruitfully combined, e.g., by using Local Search for
finding solutions whose optimality is proven using
Systematic Search.

When to use?

« Systematic search is often better suited when ...
— proofs of insolubility or optimality are required;
— time constraints are not critical;
 Local search is often better suited when ...
— reasonably good solutions are required within a short time;
— parallel processing is used;

The term Stochastic in SLS

« Many prominent local search algorithms use
randomised (stochastic) choices in generating and
modifying candidate solutions.

» These Stochastic Local Search (SLS) algorithms are
one of the most successful and widely used
approaches for solving hard combinatorial problems.

« Some well-known SLS methods and algorithms:
— Evolutionary (Genetic) Algorithms
— Simulated Annealing
— Tabu Search (Steven’s old favourite due to his PhD)

SLS — global versus local view

« S = solution, C = current search position

Improvin;gcal move(s)
®

. _o.
C / -
ﬁL %’ Plateau
move(s)

Non-improving local move(s)

Definitions (1/6)

For a given problem instance n of a COP:

search space S(r)
e e.g., for TSP: set of all possible TSP tours

solution set S'(w) € S(=x)
e e.g., for TSP: TSP tours of minimum length

neighbourhood relation N(=) € S(r) X S(r)
e e.g., for TSP: 2-exchange neighbourhood

set of memory states M(r)
e May be not used in some memoryless SLS algorithms
e e.g., tabu list in Tabu Search algorithm (next lecture)

Definitions (2/6)

Continued:

(init)ialization function: @ — D(S(=) X M(x))
e Specifies probability distribution over initial search positions
and memory states

step function: S(n) X M(n) — D(S(r) X M(~r))

e Maps each search position and memory state onto probability
distribution over subsequent, neighbouring search positions and
memory states

termination function: S(r) X M(n) — D({T, F})
e Determines the termination probability for each search position
and memory state

Generic SLS Algorithm

procedure SLS-Minimisation(")
input: problem instance 7w’ € [l
output: solution s € S'(7’) or ()
(5 m) := init(7");
=
Whl'E not terminate(n’, s, m) do
(s, m) := step(7’, s, m);
if f(7',s) < f(n',s) then
B =K
end
end
if 5 € S'(n') then
return s
else
return ()
end
end SLS-Minimisation

Definitions (3/6)

Continued:

— neighborhood (set) of candidate solution s:
N(s):={s' €S | N(s, s')}

— neighborhood graph of problem instance r:

Gn(n) := (S(n), N(n))

e We will discuss more of “Fitness Landscape” in next two lectures

— k-exchange neighbourhood: candidate solutions s and
s' are called neighbours iff s differs from s' in at most k
solution components

e 2-exchange neighbourhood for TSP
(solution components = edges in given graph)

Search steps in the 2-exchange neighbourhood for the TSP

U, Uy

u, u

U, U
2-exchange
—> n
up U

Definitions (4/6)

Continued:

— search step (or move): Pair of search positions s, s' for
which s' can be reached from s in one step, i.e., N(s, s')
and step(s, m)(s', m') > 0 for some memory states
m, m' e M.

— search trajectory: Finite sequence of search positions
(Sor Sys ==+ Si) SUCh that (s;_4, S;) is a search step for any
ie{1, ..., k}.

e We will see more about animation of search trajectory that I did
during my PhD days in the next two lectures

— search strategy: Specified by init and step function;
to some extent independent of problem instance and
other components of SLS algorithm.

Definitions (5/6)

Continued:

— Evaluation function g(r) : S(x) — R that maps candidate
solutions of a given problem instance = onto real numbers,
such that global optima correspond to solutions of =;

e used for ranking or assessing neighbors of current search position to
provide guidance to search process.

— Evaluation versus objective functions:
e Evaluation function: Part of SLS algorithm.
e Objective function: Integral part of optimization problem.

Hill-Climbing for (M/G-NR-)TSP

Also known as Iterative Improvement/Descent
— search space S: set of all possible TSP tours
— solution set S': set of TSP tours of minimum length
— neighbourhood relation N: 2-exchange neighbourhood
— set of memory states M: {0}, not used
— init: classic greedy nearest neighbour heuristic

— step: uniform random choice from improving neighbors,
l.e., step(s)(s') := 1/#I(s) if s' € I(s), and 0 otherwise,
where I(s) :={s'€S | N(s, s') and g(s') < g(s)}

— terminates when no improving neighbor available

Intermezzo: Experiments (1/2)

SLS Ideas: Delta Evaluations (1/2)

Incremental updates (aka delta evaluations)

— Key idea: Calculate effects of differences between the
current search position s and its neighbours s' on
evaluation function value.

— Evaluation function values often consist of /independent
contributions of solution components, hence, g(s) can be
efficiently calculated from g(s') by differences between s
and s' in terms of solution components.

e That is, we do not re-compute everything from scratch

— Typically crucial for the efficient implementation of various
SLS algorithms.

SLS Ideas: Delta Evaluations (2/2)

Example: Incremental updates for TSP
— solution components = edges of a given graph G

— standard 2-exchange neighbourhood, i.e., neighbouring
round trips p and p' differ only in two edges

- w(p’) = w(p)
— 2 edgesin p butnotinp
+ 2 edges in p' but not in p

This can be done in Constant time (i.e. 4 arithmetic
operations), compared to Linear time (i.e. n arithmetic
operations for graph with n vertices) for computing w(p")
from scratch.

Definitions (6/6)

Continued:

Local minimum: Search position without improving
neighbours w.r.t. given evaluation function g and
neighbourhood N, i.e., position s € S such that

g(s) = g(s') for all s' € N(s).

Strict local minimum: Search position s € S such that
g(s) < g(s') for all s' € N(s).

Local maximum and strict local maximum
are defined analogously

Local minimum/maximum is also called as
local optima

What we want: Global optima

SLS Ideas: Escaping Local Optima

Main Problem of simple Hill-Climbing:
— (Quick) stagnation in local optima of evaluation function g.
So, some simple mechanisms to improve it:

— Restart: Re-initialize search whenever a local optima is encountered.
o Often rather ineffective due to cost of initialization.

— Non-improving steps: In local optima, allow selection of candidate
solutions with egual or worse evaluation function value, e.g., using
minimally worsening steps.

e Can lead to long walks in plateaus,
i.e., regions of search positions with identical evaluation function.

— Neither of these mechanisms is guaranteed to always escape
effectively from local optima.

SLS Ideas: Search Strategy

Diversification vs Intensification

Goal-directed and randomized components of SLS strategy
need to be balanced carefully.

Intensification: Aims to greedily increase solution quality
or probability, e.g., by exploiting the evaluation function.

Diversification: Aims to prevent search stagnation by
preventing search from getting trapped in confined regions.

Examples:

e Iterative Improvement (II): intensification strategy.
e Uninformed Random Walk (URW): diversification strategy.

Balanced combination of intensification and diversification
mechanisms forms the basis for advanced SLS methods.

Note about Local Optima

Note:
— Local minima depend on g and neighborhood relation N.

— Larger neighborhoods N(s) induce:
e Neighborhood graphs with smaller diameter,
e Fewer local minima.

— Ideal case is the exact neighborhood, i.e., neighborhood
relation for which any local optimum is also guaranteed to
be a global optimum.

e Typically, exact neighborhoods are too large to be searched
effectively (exponential in size of problem instance).

SLS Ideas: Neighborhood Size

We face a trade-off situation here:

— Using larger neighborhoods can improve performance of
Hill-Climbing (and other SLS methods).

e Example: 2-exchange neighborhood to 3-exchange neighborhood :O

— But the time required for determining improving search
steps increases (sometimes significantly) with
neighborhood size.

— So we have to decide if the effectiveness of larger
neighborhoods worth the additional time complexity of
search steps.

SLS Ideas: Neighborhood Pruning

Neighborhood Pruning:

— Idea: Reduce size of neighborhoods by excluding neighbors
that are likely/guaranteed not to yield improvements in g.

— Note: Crucial for large neighborhoods, but can be also very
useful for small neighborhoods.

— Example: Candidate /ists for the TSP

e Problem intuition: High-quality solutions likely include short edges.

e Candidate list of vertex v: list of v's nearest neighbours (limited
number), sorted according to increasing edge weights.

e Search steps (e.g., 2-exchange moves) always involve edges to
elements of candidate lists.

e Significant impact on performance of SLS algorithms for the TSP.

SLS Ideas: Pivoting Rules

How to choose improving neighbor in each step?

— Best Improvement (a.k.a. gradient descent, greedy Hill-
Climbing): Choose maximally improving neighbor, i.e.,
randomly select from I*(s) := {s' € N(s) | g(s') = g*},
where g* := min{g(s') | s' € N(s)}.

e Notice that this requires evaluation of all neighbors in each step.

— Alternative: First Improvement: Evaluate neighbors in
fixed order, choose the first improving step encountered.
e Note: Can be much faster than Best Improvement,

e Overall quality may be weaker overall (but can also be better due to
faster evaluation time per iteration on fixed time limit),

e Order of evaluation can have significant impact on performance.

SLS Ideas: Variable Neighborhood

Recall: Local minima are relative to neighborhood.

— Key idea: To escape from local minima of a given
neighborhood relation, we can switch to a different
neighborhood relation.

— Use k neighborhood relations Ny, N, ..., N,, (typically)
ordered according to increasing neighborhood size.

— Always use smallest neighborhood that facilitates
Improving steps.

— Upon termination, candidate solution is locally optimal
w.r.t. all neighborhoods

SLS Time Complexity

* (Very) hard to analyze
« Usually O(#iterations*polynomial_cost_per_iteration)

— But if we use techniques like variable neighborhood,
the cost per iteration can be different :S...

 Others just set execution time limit and just run the
SLS until the execution time limit has elapsed

— Like in our experiment so far...

Some More Experiments (2/2)

Summary

 Introducing a new search paradigm:
Stochastic Local Search (SLS)

* SLS Definitions

* Hill-Climbing SLS on an example NP-hard COP:
The M/G-NR-TSP

 Various SLS Ideas
— No proof, all “heuristics” :0...

* (Most) ideas are experimented directly on a
certain M/G-NR-TSP problem

