
CS4234
Optimiz(s)ation Algorithms

v0.05: Seth Gilbert
v0.5: Steven Halim

Optimiz(s)ation Algorithms

L10 – Meta-heuristicsL10 – Meta-heuristics
& Its Performance

Many parts of the material is based on slides provided with the book 
'Stochastic Local Search: Foundations and Applications' 

by Holger H. Hoos and Thomas Stützle (Morgan Kaufmann, 2004) –
see http://www.sls-book.net for further information.



• Prologue: Randomization

• Meta-heuristics

Outline

• Meta-heuristics

1. Simulated Annealing (SA) – simpler one

2. Tabu Search (TS) – simpler one

3. Iterated Local Search (ILS) – hybrid SLS

4. Evolutionary Algorithms (EA) – population based

• Performance and Tuning of Meta-heuristics



Review of Hill Climbing a.k.a. Steepest Descent
a.k.a. Iterative Improvement (II):

Start from a candidate solution, locally optimize it 

Review & Limitation of Hill Climbing

• Start from a candidate solution, locally optimize it 
based on some neighbourhood relation, stop after 
reaching a Local Optima w.r.t that neighbourhood

• Problems:

– Too easy to get stuck in a Local Optima (LO)– Too easy to get stuck in a Local Optima (LO)

– Terminates too fast even if we have more time resource

• Restarting from random candidate solution
(the easiest LO escape mechanism) may not be a 
good way for all cases as all search history is 'lost'



Key idea: In each search step, with a fixed probability, 
perform an uninformed random walk step instead of
an iterative improvement step

Randomized Iterative Improvement

an iterative improvement step



• With such simplistic RII, we do not need to terminate 
search when a Local Optima is encountered

Notes about RII

– Instead: Bound number of search steps or CPU time from 
beginning of search or after last improvement

• Probabilistic/stochastic mechanism permits arbitrary 
long sequences of random walk steps

– Therefore: When run sufficiently long (e.g. infinitely :O),
RII is guaranteed :O to find (optimal) solution to any RII is guaranteed :O to find (optimal) solution to any 
problem instance with arbitrarily high probability

• A variant of RII has successfully been applied to a 
certain COP, but generally, RII is very often 
outperformed by more complex SLS methods



Key idea of PII: Accept worsening steps with probability that 
depends on respective deterioration in evaluation function value: 
bigger deterioration ∼ smaller probability

Probabilistic Iterative Improvement

bigger deterioration ∼ smaller probability

Implementation:

• Create function p(g, s) that determines probability distribution 
over neighbors of s based on their values under evaluation 
function g and let step(s)(s') := p(g, s)(s')

Note:

• Behavior of PII crucially depends on choice of p

– Design and Tuning Problem that we will discuss soon

• II and RII are special cases of PII (think about it)



• Search space: Set of all TSP tours

• Solution set: TSP tours with the minimum length

PII for TSP (1)

• Neighborhood relation: 2-exchange neighborhood

• Initialization: Pick a random TSP tour

• Step function: Next slide

• Termination: When exceeding Run Time Limit



• Step function: Implemented as 2-stage process:

1. Select neighbor s' ∈ N(s) uniformly at random

PII for TSP (2) Nicholas Metropolis

∈

2. Accept as new search position with probability:

p(s, s', T) := 1, if f(s') ≤ f(s) or // i.e. improve, always take

:= exp((f(s)−f(s')) / T), otherwise, throw coin

// note that f(s)-f(s') is negative

This is called "Metropolis condition", where temperature This is called "Metropolis condition", where temperature 
parameter T controls likelihood of accepting worsening steps

PS: Every occurrence of bold red text indicates a tune-able 
parameter that will somewhat influence the SLS performance



Definition: Generic technique or approach or algorithm 
that is used to guide or control an underlying
problem-specific heuristic method (e.g. a basic Local 

Meta-heuristics

problem-specific heuristic method (e.g. a basic Local 
Search/Hill Climbing algorithm) in order to improve its 
performance and/or robustness

The next few algorithms that we will discuss fall into 
this category: Simulated Annealing (SA, early 1980),this category: Simulated Annealing (SA, early 1980),
Tabu Search (TS, mid 1980), Iterated Local Search
(ILS, 1990ies), Evolutionary/Genetic/Memetic
Algorithm (EA/GA/MA, early 1990ies), etc



Key idea: We vary the temperature parameter T
(the probability of accepting worsening moves) in 
Probabilistic Iterative Improvement (PII) according

Simulated Annealing (SA)

Probabilistic Iterative Improvement (PII) according
to annealing schedule (a.k.a. cooling schedule)

Inspired by physical annealing process:

– Candidate solutions ∼= states of physical system

– Evaluation function ∼= thermodynamic energy

∼

∼

– Evaluation function ∼= thermodynamic energy

– Globally optimal solutions ∼= ground states

– Parameter T ∼= physical temperature

Note: In physical process (e.g., annealing of metals), perfect ground states 
are achieved by very (or extremely) slow lowering of temperature



SA Pseudocode

Popularized by Scott Kirkpatrick 
in early 1980ies



• 2-stage step function based on

– Proposal mechanism (often uniform random choice from N(s))

Notes about SA

– Acceptance criterion (often Metropolis condition, see previous slides)

• Annealing schedule is a function that maps
run-time t onto temperature T(t):

– Initial temperature T0

• May depend on properties of given problem instance

– Temperature update scheme– Temperature update scheme
• e.g., geometric cooling: T := *T

– Number of search steps to be performed at each temperature
• Often multiple of neighborhood size

• Termination predicate is often based on acceptance ratio,
i.e., ratio of proposed vs accepted steps



Extension of previous PII algorithm for TSP, with:

– Proposal mechanism: Uniform random choice from
2-exchange neighborhood

SA for TSP

2-exchange neighborhood

– Acceptance criterion: Metropolis condition (always 
accept improving steps, accept worsening steps with 
probability exp[(f(s)-f(s'))/T], as in previous few slides)

– Annealing schedule: Geometric cooling T := 0.95 * T 
with n * (n-1) steps at each temperature (n = number of with n * (n-1) steps at each temperature (n = number of 
vertices in given graph), T0 chosen such that 0.97 of 
proposed steps are accepted

– Termination: After 5 successive temperature values,
no improvement in solution quality & acceptance ratio < 2%



• Neighborhood pruning (e.g., candidate lists for TSP)

• Greedy initialization (e.g., by using NNH for the TSP)

Implementation Details

• Low temperature starts (to prevent good initial 
candidate solutions from being too easily destroyed 
by worsening steps)

• Look-up tables for acceptance probabilities: Instead 
of computing exponential function exp(∆/T) for of computing exponential function exp(∆/T) for 
each step with ∆ := f(s)-f(s') (expensive!), use 
precomputed table for range of argument values ∆/T



'Convergence' result: Under certain conditions 
(extremely slow cooling), any sufficiently long 
trajectory of SA is guaranteed to end in an optimal 

Results of SA

trajectory of SA is guaranteed to end in an optimal 
solution… [Geman and Geman, 1984; Hajek, 1998]

But… important notes:

– Practical relevance of SA for combinatorial problem solving is very 
limited (impractical nature of necessary conditions and it has too 
many parameters that have to be configured properly… )many parameters that have to be configured properly… )

– In combinatorial problem solving, ending in optimal solution is 
typically unimportant, but finding reasonably good solution quickly is

– PS: Not tried on https://open.kattis.com/problems/tsp yet, any taker?
• Note that we ONLY have 2s for that problem so we can’t wait for 'too long'…



Key idea: Use aspects of search history (memory M)
to escape from local minima

Tabu Search (TS)

The name Tabu is really from word 'Taboo'

– Inventor: Fred Glover, around mid 1980ies,
the one who coined the term 'Meta-heuristics'

Simple Tabu Search:

– Associate tabu attributes with candidate solutions
or usually the solution components

– Forbid steps to search positions (or the reuse of solution 
components) recently visited (used) by underlying iterative 
best improvement procedure based on tabu attributes



TS Pseudocode



• Non-tabu search positions in N(s) are called 
admissible neighbors of s

After a search step, the current search position or 

Notes about TS

• After a search step, the current search position or 
usually, the solution components just added/removed 
from it are declared tabu for a fixed number of 
subsequent search steps (parameter tabu tenure)

• Often, an additional aspiration criterion is used: 
this specifies conditions under which tabu status may this specifies conditions under which tabu status may 
be overridden (e.g., if considered step leads to 
improvement in incumbent solution)



Performance of Tabu Search depends crucially on the 
setting of one important parameter tabu tenure TT:

⇒

Note about Tabu Tenure

– TT too low ⇒ search stagnates
• due to inability to escape from local minima (back to square one…)

– TT too high ⇒ search becomes ineffective
• due to overly restricted search path (admissible neighborhood is too small)

Advanced TS methods:

– Robust Tabu Search [Taillard, 1991]:– Robust Tabu Search [Taillard, 1991]:

• Repeatedly (but randomly) choose TT from a given interval [lo..hi]

• Also: Force specific steps that have not been made for a long time

– Reactive Tabu Search [Battiti and Tecchiolli, 1994]:

• Dynamically adjust TT during search

• Also: Use escape mechanism to overcome stagnation (randomization)



Further improvements can be achieved by using 
intermediate-term or long-term memory to achieve 
additional intensification or diversification

More TS-related Strategies

additional intensification or diversification

Examples:

– Occasionally backtrack to elite candidate solutions, i.e., high-quality 
search positions encountered earlier in the search and clear all 
associated tabu attributes

– Freeze certain solution components and keep them fixed for long(er) – Freeze certain solution components and keep them fixed for long(er) 
periods of the search

– Occasionally force rarely used solution components to be introduced 
into current candidate solution

– Extend evaluation function to capture frequency of use of candidate 
solutions or solution components



Tabu Search-related algorithms are state of the art for 
solving several Combinatorial Optimization Problems, 
including Steven’s version for LABS Problem

Result of TS

including Steven’s version for LABS Problem
[Halim et al., 2008] – hopefully still state of the art?

– Yes, Tabu Search is Steven’s old favorite SLS algorithm

Crucial factors for successful TS applications:

– Choice of neighborhood relation (standard)– Choice of neighborhood relation (standard)

– Super important: Efficient evaluation of candidate solutions
(caching and incremental updating mechanisms)

– Specific for TS: Setup of Tabu Tenure, what to be set as 
Tabu (and also the setting of Aspiration Criteria)



Combination of 'simpler' SLS methods (discussed 
earlier) often, but not always, yields substantial 
performance improvements

Hybrid SLS Methods

performance improvements

Simple examples:

– Commonly used restart mechanisms can be seen as 
hybridizations with Uninformed Random Picking

– Iterative Improvement (II/Hill Climbing) + Uninformed – Iterative Improvement (II/Hill Climbing) + Uninformed 
Random Walk = Randomized Iterative Improvement (RII)



Key Idea: Use two types of SLS steps:

– Subsidiary local search steps for reaching local optima 
as efficiently as possible (intensification)

Iterated Local Search (ILS)

as efficiently as possible (intensification)

– Perturbation steps for effectively escaping from local 
optima (diversification)

Also: Use acceptance criterion to control 
diversification vs intensification behaviordiversification vs intensification behavior



ILS Pseudocode



• Subsidiary local search results in a Local Optima

• ILS trajectories can be seen as walks in the space of 
Local Optima of the given evaluation function

Notes about ILS

Local Optima of the given evaluation function

– We will visualize this in the next lecture…

• Perturbation mechanism and acceptance 
criterion may use aspects of search history
(i.e., access some form of limited memory M)(i.e., access some form of limited memory M)

• In a high-performance ILS algorithm, subsidiary 
local search, perturbation mechanism, and 
acceptance criterion need to complement each 
other well



• More effective subsidiary local search procedures
(usually) lead to better ILS performance

Subsidiary local search

– Example: 2-opt vs 3-opt vs LK for TSP

– At the expense of longer run time (per iteration)
• Problematic if we only have limited run time

• Often, subsidiary local search used is the simple 
Iterative Improvement algorithm (i.e. Hill Climbing), 
but more sophisticated (and slower per iteration)but more sophisticated (and slower per iteration)
SLS methods can be used (e.g., Tabu Search)



• Needs to be chosen such that its effect cannot be 
easily undone by subsequent local search phase

Perturbation Mechanism (1)

– Often achieved by search steps in larger neighborhood

– Example: local search = 2-exchange,
perturbation = 4-exchange steps in ILS for TSP

• The perturbation mechanism may consist of one 
or more perturbation steps



• Weak perturbation ⇒ short subsequent subsidiary 
local search phase but incurs risk of revisiting 
current Local Optima (back to square one)

Perturbation Mechanism (2)

⇒

current Local Optima (back to square one)

• Strong perturbation (the strongest being total random 
restart) ⇒ more effective escape from Local Optima 
but may have similar drawbacks as random restart

• Advanced ILS algorithms may change nature and/or 
perturbation strength adaptively during searchperturbation strength adaptively during search



• Always accept the better of the two candidate 
solutions ⇒ ILS performs Iterative Improvement in 
the space of LO reached by subsidiary local search

Acceptance Criteria

⇒
the space of LO reached by subsidiary local search

• Always accept the more recent of the two
candidate solutions ⇒ ILS performs random walk in 
the space of LO reached by subsidiary local search

• Intermediate: Select between the two candidate 
solutions based on the Metropolis criterionsolutions based on the Metropolis criterion

• Advanced acceptance criteria take into account 
search history, e.g., by occasionally reverting to 
incumbent solution



• Given: TSP instance G of size N points

• Search space: (N-1)! TSP tours in G

ILS for TSP (1)

• Perturbation mechanism: Use 4-exchange 
neighborhood (details in the next slide)

• Subsidiary local search: 2-exchange Hill Climbing 
as discussed in previous Lecture 9

• Acceptance criterion: Always return the better of • Acceptance criterion: Always return the better of 
the two given candidate tours



• Perturbation mechanism: 'double-bridge move' = 
particular 4-exchange step:

ILS for TSP (2)

• Note:

– Cannot be directly reversed by a sequence of 2-exchange steps

– Empirically shown to be effective independent of instance size



• ILS algorithms are typically rather easy to implement 
(especially if existing implementation of subsidiary 
simple SLS algorithms are already done)

Results of ILS

simple SLS algorithms are already done)

– But not so easy to get the pieces right, as ILS involves 
(much more) design decisions and parameters than the 
simpler SLS algorithms

• ILS algorithms achieve state-of-the-art performance 
on several Combinatorial Optimization Problems, on several Combinatorial Optimization Problems, 
including the TSP :O…

– Yes, ILS is Steven’s second favorite SLS algorithm…



SLS methods/algorithms (or Meta-heuristics) discussed 
so far manipulate one candidate solution of given 
problem instance in each search step

Population-based SLS Methods

problem instance in each search step

Straightforward extension: Use population
(i.e., a set) of candidate solutions instead

Note:

– The use of populations provides a generic way to achieve 
search diversification

– Population-based SLS methods fit into the general 
definition from earlier Lecture 9 by treating sets of 
candidate solutions as search positions



Also known as Genetic Algorithm (GA)

Key idea: Iteratively apply genetic operators 

Evolutionary Algorithm (EA)

Key idea: Iteratively apply genetic operators 
mutation, recombination, selection
to a population of candidate solutions

Inspired by simple model of biological evolution:

– Mutation introduces random variation in the genetic material of individuals

– Recombination of genetic material during sexual reproduction produces 
offspring that combines features inherited from both parents

– Differences in evolutionary fitness lead selection of genetic traits 
('survival of the fittest')

– It 'works' in nature :O…



EA Pseudocode



"Small" Problem: Pure Evolutionary Algorithms (EA) 
often lack capability of sufficient search intensification

Memetic Algorithm (MA)

– Very annoying to see a member of population 'near' local optima
(of a simple neighborhood) but pure EA cannot find it easily

Solution: Apply subsidiary local search
(similar idea as ILS) after initialization, mutation, 
and recombination

Such variants of Evolutionary Algorithms are called 
Memetic Algorithms (MA) or Genetic Local Search

– Popularized by Pablo Moscato
in late 1980/early 1990



MA Pseudocode



• Initialisation

– Often: Independent, uninformed random picking
from given search space, e.g. set of random TSP tours

Initialization and Recombination

from given search space, e.g. set of random TSP tours
• But can also use multiple runs of construction heuristic,

e.g. variations of Greedy Nearest Neighbors for TSP

• Recombination

– Typically repeatedly selects a set of parents from current 
population and generates offspring candidate solutions population and generates offspring candidate solutions 
from these by means of recombination operator

– Recombination operators are generally based on linear 
representation of candidate solutions and piece together 
offspring from fragments of parents, lots of options for TSP
• Question: Can delta evaluations be applied here?



• Mutation

– Goal: Introduce relatively small perturbations in candidate 
solutions in current population + offspring obtained from 

Mutation

solutions in current population + offspring obtained from 
recombination

– Typically, perturbations are applied stochastically and 
independently to each candidate solution; amount of 
perturbation is controlled by mutation rate

– Can also use subsidiary selection function to determine – Can also use subsidiary selection function to determine 
subset of candidate solutions to which mutation is applied

– In the past, the role of mutation (as compared to 
recombination) in high-performance evolutionary 
algorithms has been often underestimated [Back, 1996]



• Selection

– Determines population for next cycle (generation) of the 
algorithm by selecting individual candidate solutions from 

Selection (I)

algorithm by selecting individual candidate solutions from 
current population + new candidate solutions obtained 
from recombination, mutation (+ subsidiary local search)

– Goal: Obtain population of high-quality solutions while 
maintaining population diversity

– Selection is based on evaluation function (fitness) of – Selection is based on evaluation function (fitness) of 
candidate solutions such that better candidate solutions 
have a higher chance of 'surviving' the selection process



• Selection (continued)

– Many selection schemes involve probabilistic choices, 
e.g., roulette wheel selection, where the probability of 

Selection (II)

e.g., roulette wheel selection, where the probability of 
selecting any candidate solution s is proportional to its 
fitness value, g(s)

– It is often beneficial to use elitist selection strategies,
which ensure that the best candidate solutions are always 
selected (that is, keep the alpha male in the population…)selected (that is, keep the alpha male in the population…)



• Often useful and necessary for obtaining high-quality 
candidate solutions

Subsidiary Local Search

– We will see one later in T09: MA for LABS Problem…

• Typically consists of selecting some or all individuals 
in the given population and applying an iterative 
improvement procedure (or another more 
sophisticated SLS algorithm) to each element of this 
set independentlyset independently

– Again, at the cost of runtime…



• Simpler ones:

– Greedy Randomized Adaptive Search Procedure (GRASP)

Other Meta-heuristics

– Variable Neighborhood Search
• Hansen et al, late 1990ies

• Population-based:

– Ant Colony Optimization (ACO)
• Dorigo et al

• Have good result for TSP :O

– Particle Swarm Optimization (PSO)– Particle Swarm Optimization (PSO)

– But read https://en.wikipedia.org/wiki/List_of_metaphor-
based_metaheuristics#Criticism



• Throughout the lecture, you must have encountered 
many bold red text that indicates customized 
components and/or parameter values

Parameter/Design Settings

components and/or parameter values

– Setting them correctly (or wrongly) influences the SLS 
algorithm performance

– You cannot just pick a textbook (or a paper) settings and 
apply them blindly towards your new (NP-)hard COP…



• You need to customize them towards your needs

– Do you have limited runtime or do you aim for the best 
possible result (runtime is not really a problem)?

What should you do?

possible result (runtime is not really a problem)?
• e.g. for Mini Project part 1… you don’t have that much time (2s)

– Do you chase peak performance (repeat the experiments 
many time) or SLS with low variability (i.e. more robust)?
• e.g. for Mini Project part 2 (66 ≤ N ≤ 100)…

you are chasing for peak performance and report only that peak…

– Do you have to solve ALL instances of (NP-)hard COP or 
you are given a set of specific instances (still proven to be 
NP-hard, so there is no polynomial time solution yet…)?
• You can analyze that set of instances, who know they have 

exploitable properties?



• The previous slide was the motivation of my 5 years 
of research (2004-2009) that gave me my PhD…

SLS Design and Tuning Problem

http://matt.might.net/articles/phd-school-in-pictures/



• My (current) answer: It depends…

• Usually the answer is based on what one has been 
exposed to (and now familiar with…)

Which Meta-heuristic to use?

exposed to (and now familiar with…)

• Usually one will only switch or experiment with other 
Meta-heuristics when one have tried his/her favorite 
(for quite some time) but it cannot get his/her 
desired objective…



• I have introduced a few well known Meta-heuristics
(or advanced SLS algorithms): Simulated Annealing (SA),
Tabu Search (TS), Iterated Local Search (ILS), and 

Summary

Tabu Search (TS), Iterated Local Search (ILS), and 
Evolutionary/Genetic/Memetic Algorithm (EA/GA/MA)

• Each of them have their own strengths and weaknesses and 
there is no clear winner on what to use for a given, new,
non textbook (NP-)hard COP

– Some Meta-heuristics are easier to tune than the others (next lecture)

– Some are inherently faster (to get good solutions) than the others

– Usually the choice of certain Meta-heuristic is down to the expertise 
and familiarity of the problem solver :O…

• Up next: Summary of 5 years of Steven’s PhD research

– SLS Design and Tuning Problem (and Steven’s thesis on how to deal with it)


