
National University of Singapore

School of Computing

CS4234 - Optimisation Algorithms

(Semester 1: AY2021/22)

Date and Time: Thursday, 07 October 2021, 12.02-13.42 (100m)

INSTRUCTIONS TO CANDIDATES:

1. Do NOT open this midterm test assessment paper until you are told to do so.

2. This assessment paper contains THREE (3) sections.

It comprises FOURTEEN (14) printed pages, including this page.

However, only page 2 to 8 (7 pages) contain questions.

Page 9-14 (6 pages) are the empty boxes (the answer sheet).

3. This is an Open Book/Open Laptop Assessment.

You are allowed to use your laptop (with Wi-Fi off) as you see fit.

But you are NOT allowed to use the Internet.

4. Answer ALL questions within the boxed space of the answer sheet.

Only if you need more space, then you can use the empty last page 14.

You can use either pen or pencil. Just make sure that you write legibly!

5. Important tips: Pace yourself! Do not spend too much time on one (hard) question.

Read all the questions first! Some (subtask) questions might be easier than they appear.

6. You can use pseudo-code in your answer but beware of penalty marks for ambiguous answer.

You can use standard, non-modified classic algorithm in your answer by just mentioning its

name, e.g. run Dijkstra’s on graph 𝐺, run Kruskal’s on graph 𝐺′, etc.

7. All the best :)

1



CS4234

A The Simpler Questions (7x5 = 35 marks)

A.1 Create Min-Vertex-Cover test case with large |MVC| (5 marks)

In Lecture 01, we learn about the 𝑂(2𝑘×𝑚) ParameterizedVertexCover algorithm which is still

an exponential time algorithm but takes advantage that many Vertex-Cover instances have small

|MVC|, i.e., 𝑘 = |MVC| is closer to 0 than to |𝑉 |.
But this small |MVC| is not always the case. So here is the challenge: Draw or describe any simple

and small undirected unweighted graph with exactly |𝑉 | = 7 vertices so that |MVC| > |𝑉 |/2, i.e., at

least ⌈7/2⌉ = 4 vertices. Give a short explanation of why your answer satisfies the requirements.

A.2 Dealing with Min-Vertex-Cover with large |MVC| (5 marks)

If you are presented with Min-Vertex-Cover instances with large 𝑘 = |MVC| > |𝑉 |/2 and you are

asked to solve all instances optimally and universally (on any general graph), what will you do?

A.3 Can we do Set-Cover ≤𝑝 Vertex-Cover? (5 marks)

In Lecture 03a, we have seen a simple 𝑂(𝑉 + 𝐸) polynomial time reduction: Reduce any instance of

the proven to be NP-complete problem decision problem of Vertex-Cover (from Lecture 01) into

an instance of decision problem of Set-Cover by setting 𝑋 = 𝐸, 𝑆 = 𝑉 , and set edges from vertex

𝑢 ∈ 𝑆 to all edges ∈ 𝑋 that are covered by 𝑢. The subset(s) taken in the Set-Cover is/are the

vert(ices) taken in the Vertex-Cover. This Vertex-Cover ≤𝑝 Set-Cover reduction establishes

that Set-Cover is also NP-hard.

Now, can we do the reverse, i.e., reduce any instance of Set-Cover into an instance of Vertex-

Cover (Set-Cover ≤𝑝 Vertex-Cover)? If we can, just give a simple argument. If we cannot, also

just give a simple argument.

A.4 Can we do 2-Set-Cover ≤𝑝 Vertex-Cover? (5 marks)

Let 2-Set-Cover be Set-Cover problem where we are restricted to instances where each item

appears in exactly two sets, e.g., 𝑋 = {1, 2, 3, 4}, 𝑆 = {𝐴 : {1, 2}, 𝐵 : {1, 3, 4}, 𝐶 : {3}, 𝐷 : {2, 4}}.

Now, can we do 2-Set-Cover≤𝑝 Vertex-Cover? If we can, please show the required polynomial

time reduction. If we cannot, please show a counter example/explanation.

A.5 Partition written as Integer-Linear-Program (ILP) (5 marks)

In PS1+PS2+Tutorial 02, we are introduced with the Partition problem. The NP-complete decision

version is to decide whether a given multiset 𝑆 of 𝑛 positive integers {𝑠1, 𝑠2, . . . , 𝑠𝑛} can be partitioned

into two subsets 𝑆1 and 𝑆2 such that the sum of the numbers in 𝑆1 equals the sum of the numbers in

𝑆2. The NP-hard optimization version is to partition the multiset 𝑆 into two subsets 𝑆1, 𝑆2 such that

the difference between the sum of elements in 𝑆1 and the sum of elements in 𝑆2 is minimized.

Now, express the optimization version of Partition as an Integer-Linear-Program (ILP)!

2



CS4234

A.6 Partition Puzzle (5 marks)

You are given a multiset 𝑆 = {167, 247, 323, 387, 331, 132, 222} with 𝑛 = 7 non-negative integers and

you are told that the sum of 𝑆, denoted as 𝑠𝑢𝑚(𝑆) = 1809. With this information, answer:

a. Can we partition 𝑆 into two disjoint sets 𝑆1 and 𝑆2 so that their sums are equal? (1 mark)

b. If your answer is true, then show the content of 𝑆1 and 𝑆2 such that 𝑠𝑢𝑚(𝑆1) == 𝑠𝑢𝑚(𝑆2).

If your answer is false, then show the content of 𝑆1 and 𝑆2 below so that the absolute differences of

their sums |𝑠𝑢𝑚(𝑆1) − 𝑠𝑢𝑚(𝑆2)| is the minimum possible.

Grading scheme:

3 marks for the 𝑠𝑢𝑚(𝑆1) and 𝑠𝑢𝑚(𝑆2) values 𝑠𝑢𝑚(𝑆1) ≥ 𝑠𝑢𝑚(𝑆2), and

1 mark for the actual content of 𝑆1 and 𝑆2...

A.7 Max-TSP... (5 marks)

In Lecture 04, we learn about the famous TSP problem: Find the mINImum cost cycle that visits

all the vertices of a given complete (positive) weighted graph exactly once. We then exposed to a

few known variants of this famous TSP problem.

Now let’s explore yet another variant, called the Max-TSP: Find the mAXImum cost cycle that

visits all the vertices of a given complete (positive) weighted graph exactly once. Give a quick

thought and write a short argument on whether Max-TSP is still an NP-hard optimization problem

or whether it actually turns into a special case with a polynomial solution.

Note that due to the small marking scheme, there is no need to write a full proof/full polynomial

solution (either route) for this question.

3



CS4234

B Multiprocessor-Scheduling (30 marks)

Consider the following Multiprocessor-Scheduling problem: We have 𝑚 (identical) processors

𝑝1, 𝑝2, . . . , 𝑝𝑚 and 𝑛 tasks 𝑡1, 𝑡2, . . . , 𝑡𝑛. Each task 𝑡𝑖 has a positive length 𝑙(𝑡𝑖). The goal is to assign

tasks to processors so as to minimize the maximum load on any processor.

More formally, an assignment is a function 𝑓 : {1, 2, . . . 𝑛} → {1, 2, . . .𝑚} which specifies which

task is assigned to which processor. The load on a processor is defined to be:

load(𝑖) =
∑︁

𝑗:𝑓(𝑗)=𝑖

𝑙(𝑡𝑗) .

The maximum load is defined as:

max-load = max
𝑖∈{1,2,...,𝑚}

load(𝑖)

The goal is to find an assignment that minimizes the max-load.

B.1 Sample Test Cases (1+2+2 = 5 marks)

You are given three small sample test cases below. Please find the assignments that result in the

minimum max-load for each test case.

1. We have 𝑚 = 2 processors and 𝑛 = 6 tasks with length {1, 4, 3, 12, 13, 1} (1 mark).

2. We have 𝑚 = 3 processors and 𝑛 = 7 tasks with length {5, 7, 2, 1, 2, 1, 2} (2 marks).

3. We have 𝑚 = 4 processors and 𝑛 = 8 tasks with length {6, 5, 5, 3, 2, 1, 1, 1} (2 marks).

B.2 NP-hardness Proof (5 marks)

Prove the NP-hardness of this optimization problem: Multiprocessor-Scheduling by reducing an

NP-hard problem Partition (see Subsection A.5) into an instance of Multiprocessor-Scheduling

with 𝑚 = 2. PS: There is a more rigorous proof but it is not needed for this subsection.

Hint: Look at sample test case 1 above to help you do this.

B.3 Greedy Algorithm Part 1 (8 marks)

Now consider the following greedy algorithm:

� Consider the tasks in any order.

� Assign a task 𝑡𝑖 to the processor 𝑝𝑗 that currently has the minimum load.

That is, when assigning task 𝑡𝑖, we calculate the current load on all 𝑚 processors and choose the

processor 𝑝𝑗 with the smallest load; then we assign 𝑡𝑖 to that processor 𝑝𝑗 . Now show that this greedy

algorithm is a 2-approximation of the optimal (i.e., the minimum max-load).

Hint: Consider the processor with the maximum load and the last task assigned to that processor.

4



CS4234

B.4 Special Case (2 marks)

If we process the tasks in any order as in Subsection B.3, what do you think will happen if 𝑛 ≤ 𝑚?

B.5 Greedy Algorithm Part 2 (7 marks)

Now, consider an alternate greedy algorithm where the tasks are not processed in any order, but

in non-increasing order (we can do this with an initial 𝑂(𝑛 log 𝑛) sorting of the 𝑛 tasks). Now

show that this alternate greedy algorithm is a 1.5-approximation of the optimal (i.e., the minimum

max-load).

Hint: If we process the tasks in non-increasing order and 𝑛 > 𝑚 — think about the (𝑚 + 1)-th

task added in this scenario.

B.6 Create Test Case (3 marks)

The alternate greedy algorithm in Subsection B.5 happen to get optimal answers for all three sample

test cases in Subsection B.1. Create a small test case with any 𝑚 ≥ 2 processors and 𝑛 > 𝑚 tasks

with lengths of your choosing so that the alternate greedy algorithm in Subsection B.5 does not get

an optimal answer (but should be within 1.5 of max-load). Explain your test case.

5



CS4234

C M(W)IS on Grid Graph — the Next Level(s) (35 marks)

In Tutorial 03, we have learned about the Max-Independent-Set (MIS) problem: Given a graph

𝐺 = (𝑉,𝐸), pick the maximum-size set 𝐼 ⊂ 𝑉 so that no two vertices in 𝐼 share an edge. You are told

that MIS is also an NP-hard optimization problem. In Tutorial 03, we discussed a ‘toy’ approximation

algorithm on a graph that is arranged as an unweighted square grid of size 𝑛× 𝑛 and the vertices are

labeled top-to-down and left-to-right using 1-based indexing.

In this question, we will consider two variants of this problem. First, a variant where the grid can

be rectangular of size 𝑛 ×𝑚 and contain 𝑘 holes (0 ≤ 𝑘 ≤ 𝑛 ×𝑚), as in Figure 1 (notice the vertex

numbering, especially involving the holes):

C.1 Sample Test Case (2 marks)

Figure 1: A Grid Graph of size 4×5 with 3 holes (vertex 1, 15, and 19 are gone), so |𝑉 | = 17 vertices.

What is the MIS (and its size |MIS|) of Figure 1 above?

C.2 Greedy Algorithm Part 1 (6 marks)

Consider the following greedy algorithm for graph 𝐺 = (𝑉,𝐸) that we have discussed in Tutorial 03:

� Set 𝐼 = ∅;

� Repeat until 𝑉 is empty:

– Choose any arbitrary vertex 𝑢 ∈ 𝑉 ,

– Add 𝑢 to 𝐼,

– Delete 𝑢 and all the neighbors of 𝑢 ∈ 𝑉 .

Is this ‘toy’ greedy algorithm that we discussed in Tutorial 03 still a 2.5-approximation of the optimal

MIS solution on the rectangular grid graph with some holes like in Figure 1 above? If yes,

argue why it is still a 2.5-approximation. If no, give a counter example and then provide the correct

approximation bound.

6



CS4234

C.3 Max-Weight-Independent-Set on Grid Graph (6 marks)

Now, consider the weighted variant: You are also given rectangular grid of size 𝑛 ×𝑚 and contain

𝑘 holes but now with positive weight 𝑤(𝑢) for each vertex 𝑢 ∈ 𝑉 . Our task now is to find the

Max-Weight-Independent-Set (MWIS). First, draw a test case (a small rectangular grid graph

with at least one hole but this time the vertices are weighted; you are allowed to assign any positive

vertex weight as you see fit) and argue that the ‘toy’ greedy approximation algorithm from Subsection

C.2 above does not work, i.e., it does not have a proven approximation ratio.

C.4 Greedy Algorithm Part 2 (6 marks)

Now, consider the following ‘upgraded’ greedy algorithm part 2:

� Set 𝐼 = ∅;

� Repeat until 𝑉 is empty:

– Choose a vertex 𝑢 ∈ 𝑉 with the maximum weight // compare this with C.2,

– Add 𝑢 to 𝐼,

– Delete 𝑢 and all the neighbors of 𝑢 ∈ 𝑉 .

Now argue that this algorithm is a 4-approximation of the optimal MWIS solution on the rectangular

grid graph with some holes like in the unweighted (all vertex weights are 1) Figure 1 and the test case

that you draw in Subsection C.3 above.

C.5 Optimal and ‘Universal’ Part 1 (8 marks)

An ex senior CS4234 student remarked to Steven that the ‘toy’ greedy approximation algorithm in

Subsection C.2 (for MIS - the unweighted one) is useless. This student claims to be able to optimally

solve any instance of MIS on 𝑛×𝑚 rectangular grid graph with 𝑘 holes in polynomial time when all

vertices have unit weight 1.

If you think that you also support this claim, provide that polynomial time algorithm that can

both show the optimal MIS size and the actual vertices selected in the MIS, and analyze its polynomial

time complexity.

If you think that this senior student’s remarks is wrong, argue that MIS is actually still an NP-hard

optimization problem on such 𝑛×𝑚 rectangular grid graph with 𝑘 holes.

C.6 Optimal and ‘Universal’ Part 2 (7 marks)

Yet another ex senior CS4234 student remarked to Steven that both the ‘toy’ greedy approximation

algorithms in Subsection C.2 and Subsection C.4 (for MIS and then MWIS) are useless. This other

student claims to be able to optimally solve any instance of MWIS - the weighted one (so that means

the solution will also works for MIS where all vertex weight is set to 1) on 𝑛 × 𝑚 rectangular grid

graph with 𝑘 holes in polynomial time and each vertex has its own individual positive weight...

7



CS4234

If you think that you also support this claim, provide that polynomial time algorithm that can

both show the optimal MWIS size and the actual vertices selected in the MWIS, and analyze its

polynomial time complexity.

If you think that this senior student’s remarks is wrong, argue that MWIS is still an NP-hard

optimization problem on such 𝑛×𝑚 rectangular grid graph with 𝑘 holes.

– End of this Paper, All the Best –

8



CS4234

D Answer Sheets

Write your Student Number in the box below:

A 0

This portion is for examiner’s use only

Section Maximum Marks Your Marks Remarks

A 35

B 30

C 35

Total 100

Box A-1.

Box A-2.

Box A-3.

9



CS4234

Box A-4.

Box A-5.

Box A-6 a+b.

Box A-7.

Section A Marks = + + + + + + =

10



CS4234

Box B-1.

Box B-2.

Box B-3.

Box B-4.

11



CS4234

Box B-5.

Box B-6.

Section B Marks = + + + + + =

Box C-1.

Box C-2.

Box C-3.

12



CS4234

Box C-4.

Box C-5.

Box C-6.

Section C Marks = + + + + + =

13



CS4234

End of this Paper, All the Best, You can use this Page 14 for extra writing space.

14


	The Simpler Questions (7x5 = 35 marks)
	Create Min-Vertex-Cover test case with large |MVC| (5 marks)
	Dealing with Min-Vertex-Cover with large |MVC| (5 marks)
	Can we do Set-Cover p Vertex-Cover? (5 marks)
	Can we do 2-Set-Cover p Vertex-Cover? (5 marks)
	Partition written as Integer-Linear-Program (ILP) (5 marks)
	Partition Puzzle (5 marks)
	Max-TSP... (5 marks)

	Multiprocessor-Scheduling (30 marks)
	Sample Test Cases (1+2+2 = 5 marks)
	NP-hardness Proof (5 marks)
	Greedy Algorithm Part 1 (8 marks)
	Special Case (2 marks)
	Greedy Algorithm Part 2 (7 marks)
	Create Test Case (3 marks)

	M(W)IS on Grid Graph — the Next Level(s) (35 marks)
	Sample Test Case (2 marks)
	Greedy Algorithm Part 1 (6 marks)
	Max-Weight-Independent-Set on Grid Graph (6 marks)
	Greedy Algorithm Part 2 (6 marks)
	Optimal and `Universal' Part 1 (8 marks)
	Optimal and `Universal' Part 2 (7 marks)

	Answer Sheets

