
CS4234: Optimisation Algorithms Tutorial 3

TSP, Max-Independent-Set, PS3
V1.7: A/Prof Steven Halim September 11, 2023

Discussion Points

Q1: In Lecture 04, Prof Halim did not show any approximation algorithm for the G-NR-TSP variant of
TSP (that is, the general, non-metric version and without repeated vertex). He says that ‘it is (NP-)hard
even to approximate’. Why?

Q2: In class, we formulated the TSP (4 variants) in terms of a set of points V and a distance function d
that gives the distance between any two points in V (thus, a complete graph with V 2 edges that surely has
(V − 1)! Hamiltonian Cycles). What if the input to the problem is a graph G = (V,E) with E weighted
edges and 0 ≤ |E| ≤ V ∗ (V − 1)/2?

Define a version of TSP for graphs, and explain whether or not it remains approximate-able using the
techniques discussed in class. (Consider these: What if there is no Hamiltonian Cycle in the input to begin
with? What if the input graph is actually disconnected?)

Q3: Think about the Euclidean TSP where each point has (x, y)-coordinates to identify it (for simplicity,
let’s assume that all x-coordinates of the n points are different). Imagine that Prof Halim only wants “cycles”
that proceed in one direction, e.g., left-to-right. For example, a legal output is a cycle (v1, v2, v3, v4, v1) where
for each i < n, we know that vi.x < vi+1.x. (Only in the last step of the cycle, going back from vn to v1,
we are allowed to go to the left.) Is there an efficient algorithm to solve this non-standard version of TSP
problem? Next, give an example where the cycle that is found in this case is very bad compared to the
optimal TSP cycle.

Q4: Prof Halim needs to continually increase the number of (NP-)hard problems that has been exposed to
CS4234 students so far (to have more interesting Midterm Test and Final Assessment). So let’s study this
yet other problem Max-Independent-Set (MIS). It is very similar to MVC and defined as follows: Given
a graph G = (V,E), pick the maximum-size set I ⊂ V so that no two vertices in I share an edge.

You are told that MIS is also an NP-hard optimization problem (proof omitted, but you can reduce
NP-hard VC to IS easily), but here you are given a network that is arranged as a grid, as in Figure 1:

Part 1. The grid has n vertices, and each of the vertices (except for those on the edges) has four neighbors.
The goal of this question is to develop an algorithm for finding a maximum-sized Max-Independent-Set
(MIS) for this graph (or an approximation). What is the MIS (and its size) of Figure 1 above?

Part 2. Consider the following greedy algorithm for graph G = (V,E):

� Set I = ∅;

� Repeat until V is empty:

– Choose any arbitrary vertex u ∈ V ,

– Add u to I,

Figure 1: A Grid Graph of size 5× 5.

– Delete u all the neighbors of u ∈ V .

Now argue that this algorithm is a 2.5-approximation of optimal on grid graph like in Figure 1 above.
(But first, show that it is a correct algorithm that produces an independent set!)

Part 3. (Optional to save time, just read the modal answer): Write down MIS as an ILP!

Q5: One of the PS3 problems involves another new NP-hard problem that has not been discussed earlier (in
lecture and/or previous tutorial). Which PS3 problem is it? What is the underlying NP-complete decision
problem? What is the general idea to tackle this problem?

