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Abstract. Stochastic Local Search (SLS) is a simple and effective para-
digm for attacking a variety of Combinatorial (Optimization) Problems
(COP). However, it is often non-trivial to get good results from an SLS;
the designer of an SLS needs to undertake a laborious and ad-hoc algo-
rithm tuning and re-design process for a particular COP. There are two
general approaches. Black-box approach treats the SLS as a black-box
in tuning the SLS parameters. White-box approach takes advantage of
humans to observe the SLS in the tuning and SLS re-design. In this pa-
per, we develop an integrated white+black box approach with extensive
use of visualization (white-box) and factorial design (black-box) for tun-
ing, and more importantly, for designing arbitrary SLS algorithms. Our
integrated approach combines the strengths of white-box and black-box
approaches and produces better results than either alone. We demon-
strate an effective tool using the integrated white+black box approach
to design and tune variants of Robust Tabu Search (Ro-TS) for Quadratic
Assignment Problem (QAP).

1 Introduction

Stochastic Local Search (SLS) algorithms, also called Metaheuristics (e.g. Tabu
Search, Iterated Local Search, etc) [1], have been extensively used to tackle
large-scale NP-hard Combinatorial (Optimization) Problems (COP), often with
impressive results. However, algorithm designers usually need to spend substan-
tial effort to design and tune the SLS implementations to get good results.

Real world COPs are often new problems or variants of classic COPs but
may not be well studied or no algorithm is known. It is frustrating that even
if the COP C′ resembles a classic COP C for which a good SLS S is known, a
direct application of SLS S on COP C′ will usually not immediately yield good
performance. Thus, it is necessary to adapt an existing or create a new SLS for
COP C′. It is often said that it is easy to create a working SLS for a COP, but
hard to tune the SLS to achieve good performance on problem instances [1–5].

Most research has only focused on the problem of fine-tuning the parameter
values for SLS. Pure tuning assumes that the appropriate SLS components and
search strategies are already known and we just need to find the appropriate



parameters for those components and strategies. In this paper, we consider the
SLS design and tuning problem as a holistic problem of finding a suitable config-
uration including parameter values, choice of components, and search strategies
for an SLS in order to give good results for the class of COP instances.

There are two general approaches for this SLS design and tuning problem [5]:

1. The black-box approach uses automatic fine-tuning. It aims to develop spe-
cial ‘tuning algorithms’ to explore the SLS configuration space systemati-
cally and as efficient as possible. The human designs the SLS and specifies
an initial configuration space to be explored by the automated tuning algo-
rithm. The tuning algorithm finds the best configuration within the given
configuration space and computational resource requirements. Examples of
the black-box approaches are F-Race [3], CALIBRA [4], Search Parameter
Optimization [6], and iMDF [7].

2. The white-box approach leverages the use of human intelligence and/or visual
perception. It aims to create tools or methods to help analyze the perfor-
mance of the SLS so that the algorithm designer has a basis for tweaking
the SLS implementation. Thus, the SLS may be redesigned to extend beyond
the initial configuration space. Examples of the white-box approaches are:
Statistical Analysis (Fitness Distance Correlation, Run Time Distribution,
etc) [1, 8], Sequential Parameter Optimization [9], Viz [10], etc.

Neither approach addresses all aspects of the SLS design and tuning. Black-box
approaches are simple to apply, but will not help if the best configuration hap-
pens to be ‘outside the box’ of the initial configuration space (e.g. instance A with
size 30 requires configuration 1, instance B with size 50 requires configuration
2 but the best configuration is a function of the instance size rather choosing
between configuration 1 or 2). White-box approaches can give the algorithm
designer insights into the search process, but are less effective for fine-tuning.

In this paper, we propose an integrated white+black box approach to address
the SLS design and tuning problem. The fitness landscape and search trajectory
visualization [10, 11] opens the SLS ‘box’ to allow better understanding of the
current ‘problem(s)’ being faced by the SLS trajectory when searching in the
fitness landscape of the COP instance. This allows the algorithm designer to
narrow down the potentially huge set of SLS configuration space into a much
smaller and focused configuration space. Black-box tuning then further fine-
tunes the SLS on this focused configuration space using factorial design [12].
This process is iterated: use the visualization to verify the new SLS behavior,
obtain more complete picture of the fitness landscape, generate new hypothesis
or redesign the SLS if necessary, fine-tune the SLS with black-box tuning, and
so on until the performance criteria are met.

Ideally our approach is valuable when facing new or not well understood
problems. However, it would be more difficult to evaluate our approach on such
problems since not enough may be known. As such, we evaluate our approach
on classic COPs: the Traveling Salesman Problem (TSP) for illustration and the
Quadratic Assignment Problem (QAP). We demonstrate that one can combine
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the strengths of both white+black box approaches to get better results than
either alone. Furthermore, we take into account the practical effort and resource
requirements for industrial problems: we want to design and tune SLS for good
results within limited development time and limited running time.

We have developed a tool Viz for our integrated white+black box approach.
Viz can visualize the COP fitness landscape and the SLS trajectory on the
fitness landscape. Black-box tuning is supported using factorial design on the
given configuration space. The details of the tools are outside the scope of this
paper, see [10, 11]. The website http://sls.visualization.googlepages.com
contains further details and also a video which complements the presentation
here. The online PDF version of this paper is in color and can be magnified.

We remark that systematic search algorithms usually also employ heuristics.
As an example, Multi-Tac [13] configures search heuristics for backtracking
search by learning configuration rules which are applied on backtracking search
algorithm schemas. While our approach is not directly relevant to configure
exact algorithms, combining human intelligence and searching in the algorithm
configuration space is a promising avenue for further research.

2 The Basic Ideas

2.1. White-box: Fitness Landscape and Search Trajectory Analysis
The notion of fitness landscape has been shown to be useful for understanding
the behavior (search trajectory) of SLS algorithms [1, 8, 14].

Given a COP instance π, the fitness landscape of π, FL(π), is defined as the
tuple 〈S(π), d(s1, s2), g(π)〉 [8], where S(π) is the set of solutions of the COP
instance (the search space); d(s1, s2) : S × S → � is a distance metric which is
natural for the COP in question (e.g. bond distance for TSP, Hamming distance
for QAP, etc); and g(π) : S → � is the objective function. One can think of
the fitness landscape as a surface with solutions as points on the surface, points
are separated according to their distance, and the height reflects the fitness
(objective value) of that solution.

The search trajectory of an SLS algorithm on this FL(π) is defined as a
finite sequence (s0, s1, . . . , sk) where si ∈ S(π) and ∀i ∈ {1, 2, . . . , k}, (si−1, si)
is either a local move done by the SLS according to its neighborhood N(π) or
a stronger diversification move beyond N(π) [1]. Note that in this definition, a
solution si can be satisfiable or not.

Understanding the characteristics of the fitness landscape empowers the al-
gorithm designer to tailor the SLS implementation so that the search performs
a better trajectory on the fitness landscape [1, 8, 14]. However, matching an SLS
algorithm to the fitness landscape(s) of an instance or class of instances of a
COP is not easy:

1. Different problem instances of the same COP may have quite different fitness
landscapes [1].

2. The SLS behavior depends on the fitness landscape [1, 8, 14]. SLS with the
same configuration may behave differently on different fitness landscapes.
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3. The selected configuration (parameters [3, 4], heuristics components [2], and
search strategies [5]), the implementation details, and any unexpected pro-
gramming bugs, determine the actual SLS behavior. This behavior may be
wrong, e.g. doing diversification when we expect the SLS to do intensification
on the fitness landscape — the metaheuristic failure modes [15]).

4. Stochastic elements mean the SLS can take different search trajectories in
replicated runs.

White-box techniques such as Fitness Distance Correlation (FDC) [1, 8] for ana-
lyzing fitness landscape properties and Run Time Distribution (RTD) [1, 16] for
analyzing potential search stagnation, are commonly used to assist matching an
SLS with the fitness landscape. However, while FDC and RTD are useful, they
do not explain the details of the SLS behavior on the COP fitness landscape.

In [10, 11], we show how the abstract fitness landscape and search trajectory
visualization in Viz can enhance the understanding of the SLS behavior on the
COP fitness landscape. The main visualization ideas embedded inside Viz are
briefly explained below.

Viz uses a notion of Anchor Point (AP) set which is a fixed set of local optima
found by SLS runs on a COP instance. The AP set are diverse, high quality, and
important solutions in the search runs (e.g. best found, frequently visited). The
visualization layouts the AP points in an abstract 2-D space according to their
distance metric w.r.t other APs. This forms the landscape visualization. Next,
for each SLS run, we plot the positions of every solution or point in the search
trajectory w.r.t its distance to AP points in the fitness landscape visualization.
However, points that are too far from known APs are not visualized. See Fig 1
for the illustration of this visualization.

Our integrated white+black box approach uses Viz to first understand the
characteristics of the fitness landscape of the COP (e.g. the fitness landscape is
rugged). This helps the algorithm designer in predicting which search strategies
will likely work well on the fitness landscape of the COP instance. The prediction
can then be verified via visualization to see whether the SLS encounters any
‘problem(s)’ (e.g. stuck in a local optima as in Fig 1, Run 1). The algorithm
designer uses these insights to think outside the box, make informed changes
(e.g. adding a strong diversification strategy), and also narrow down the possible
configuration space (e.g. avoid SLS configurations that make the SLS harder to
escape from local optima such as lowering the tabu tenure in Tabu Search).

The white-box component leverages on the strengths of humans to analyze
and learn from the visualizations. Although this is subjective and visualization
is limited to points that have been visited, the process can be made intuitive
and fruitful insights can be gained.

2.2. Black-box Tuning: Factorial Design
Ideally, given an initial SLS configuration space, black-box tuning algorithms
can be used to systematically find the most suitable configuration in the given
configuration space to attack the COP at hand. However in practice, the size of
the SLS configuration space size may be huge. As such, the algorithm designer
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Fig. 1. An example of abstract fitness landscape and search trajectory visualization in
Viz. The fitness landscape is represented by 5 APs {A,B,C,D,E} with quality labels
shown in sub-figure ‘Legend’. There are 4 SLS runs. Run 1→SLS starts from a very bad
AP A, walks to a medium quality AP E, and then cycles around AP C. Run 2→SLS
starts from a bad AP B, walks to a point near AP C (larger circle: assume blue point F
in Run 2 is near AP C), then moves to a very bad AP A – a poor intensification. Run
3→SLS starts from a very bad AP A, gradually walks to a medium AP C, escapes
from it, then arrives at a good AP D – a good intensification, better than Run 1 in
escaping AP C. Run 4→The SLS trajectory bypasses a very bad AP A and is not
near any other known APs – failure to navigate to promising region.

must give a ‘sufficiently narrow’ configuration space for the black-box tuning
algorithm to work with since tuning time would otherwise take too long. Fur-
thermore, if the best configuration happens to be ‘outside the box’ (the initial
configuration space), then it cannot be found by fine-tuning alone.

Our integrated white+black box approach combines the strengths of both ap-
proaches to complement their weaknesses. After gaining insights into the fitness
landscape and the SLS behaviors on the fitness landscape via visualization, the
algorithm designers can use the insights to tweak the design of SLS, either by us-
ing known or new heuristic tweaks (e.g. adding a strong diversification strategy).
This narrows down the configuration space substantially. The new algorithm can
then be more easily fine-tuned (e.g. precisely how much diversification).

While a white-box approach may be usable for designing good SLS algo-
rithm, it is still tedious for humans to explore the narrowed configuration space
manually. Automatic black-box tuning algorithms are best for this situation.
We have chosen to implement a full factorial design [12] in Viz system since
we can obtain smaller configuration spaces through the white-box visualization
process. However, other black-box tuning tools such as F-Race [3], CALIBRA
[4], or iMDF [7] can be used in this phase.

3 An Integrated White+Black Approach

The methodology of the integrated white+black box approach is summarized in
Fig 2. While the general approach is not new (compared with [9]), what is novel
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Fig. 2. Flow chart of the integrated white+black box approach.

here is how visualization has been integrated in the white-box steps 3–6, 8, and
black-box tuning algorithm in the black-box step 7. As we will show, the use
of automatic visualizations in Viz3 makes it much easier to analyze the fitness
landscapes and SLS behaviors. Viz also has integrated support for black-box
tuning in step 7 and some other handy automation for running SLS experiments
and computing statistical analysis in step 9.

We first briefly illustrate some aspects of our integrated approach on the
Traveling Salesman Problem (TSP). The chosen SLS is Iterated Local Search
(TSP-ILS). It performs a 4-Opt perturbation, then the move operator swaps
several pair of tour edges to reach a 2-Opt TSP local optimum. If the new local
optimum is better, TSP-ILS will move to the new local optimum [16].

In Fig 3, we see that good quality (blue circle) and medium quality (green
triangle) APs form one big cluster in the middle of the visualization (shown by
the solid black arrows) and are close to each other when compared with the di-
ameter of the fitness landscape (partially shown by the dashed red arrows). This
shows a well known phenomenon called ‘Big Valley’. We observe that outside
this Big Valley region, we mostly see very bad (tiny black dot) APs. For such
fitness landscape, it is suggested that the SLS should simply concentrate on the
Big Valley region rather than wandering too far from it [1, 8, 16].

TSP-ILS already uses this strategy. However, visualization shows that some-
times it is stuck in a local optimum and unable to escape. Animation reveals
that TSP-ILS is stuck in a place shown in Fig 3, label ‘A’. This phenomenon is

3 Viz includes visualizations such as the fitness landscape and search trajectory (see
Fig 1), objective value over time, FDC scatter plot visualization, etc.
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Fig. 3. Visualization of TSP fitness landscape and ILS behavior. See text for details.

also observable with RTD analysis by [16]. In [16], the authors suggested to use
a stronger diversification than 4-Opt: ‘FDD-diversification’ after a cut-off time
has elapsed without any improvement. Without going into details, the improved
behavior is observable in Fig 3, label ‘B’ where the tweaked TSP-ILS-T is now
able to escape from several local optima attractors and progresses closer towards
the center of the screen (the best-known solution). With white-box analysis, one
can derive reasonable variants of FDD-diversification. The range of the cut-off
time can be predicted using white-box approaches like the RTD or visualization
analysis above but the exact value is best determined with black-box tuning.

4 An Extended Case Study with Ro-TS for QAP

We use an extended case study where we apply our approach in Fig 2 to a realistic
problem. It explains in more detail the individual steps in our approach.

We remark that in order to fit within the page constraints, we have taken
the liberty of presenting this case study from the final step viewpoint. Most of
the visualizations make use of the final AP set from good and bad runs from
the entire development process. In the actual development process, we learn the
fitness landscape structure and the search trajectory behavior incrementally via
some pilot runs. For a discussion of incremental learning of fitness landscape and
search trajectory with visualization, see [11].

4.1 Experiment Set-Up: QAP instances and baseline algorithm
The COP used is the Quadratic Assignment Problem (QAP) with benchmark
instances from QAPLIB [17]. We have picked tai30a/30b/35a/35b/50a/50b as
training instances and tai40a/40b/60a/60b/sko42/ste36b as test instances.

We have intentionally chosen a classic COP for this experiment so that the
reader can more easily appreciate the problem and results. The best known (BK)
objective values for each QAP instance are in the benchmark library. We have
defined the following solution quality measures: good (< 1%-off BK), medium
(1% − 2%-off BK), bad (2% − 3%-off BK), and very bad (> 3%-off BK).

The initial baseline SLS for QAP in this case study is Robust Tabu Search
(Ro-TS) [18] which has been shown to give good performance on QAP. We
implemented a variant of Ro-TS called Ro-TS-I (Initial) which replicates the
neighborhood and tabu mechanism in [18]. The details are in Table 1.

We do not expect to outperform the state-of-the-art algorithms on well stud-
ied and classic problems as they have been reached after extensive development
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Component Choice Remark

Neighborhood O(n2) 2-Opt Natural (swap) move operation for QAP.
Objective Function O(1) delta Measure delta as shown in [18]
Tabu Tenure (TT ) n The default tabu tenure length
Tabu ‘Table’ [18] pair i − j Item i cannot be swapped with item j for TT steps
Aspiration Criteria Better Override tabu if move leads to a better solution
Search Strategy ‘Ro-TS’ [18] Change TT within [90%∗n, 110%∗n] after 2n steps

Table 1. Initial Ro-TS-I Configuration.

efforts over a long period of time. For QAP, many good SLS algorithms, including
Ro-TS, can find the BK objective value of many QAP instances in QAPLIB with
long runs. Thus, to prevent the ceiling effect, we have fixed the number of itera-
tions of every SLS run to be quite ‘small’: 5n2 iterations where n is the instance
size. The experiment goal is to design and tune the best SLS+configuration for
attacking the selected QAP instances within that limited 5n2 iteration bound.

4.2. Preliminary Analysis
The initial results of Ro-TS-I on training instances are shown in Table 2. We
observe that within the limited iteration bound, the initial results are reasonably
good for tai30a/35a/35b/50a but not for tai30b/50b (underlined). We want to
investigate why we get these results and redesign an improved SLS.

We apply fitness landscape visualization on the QAP training instances. We
observe a possible difference between tai35a (and tai30a/50a) with tai35b (and
tai30b/50b). See Fig 4 text for details.

A working hypothesis from this observation is that there are at least two
classes of QAP instances. By looking at the fitness landscape visualizations
and/or data matrices of the QAP instances, we classify tai30a/35a/50a (train-
ing), tai40a/60a/sko42 (test) as QAP (type A) instances and tai30b/35b/50b
(training), tai40b/60b/ste36b (test) as QAP (type B) instances. This is con-
sistent with the characteristics of these classes which differ in the smoothness
(type A) or ruggedness (type B) in the fitness landscape visualization and in the
uniformity (type A) and non-uniformity (type B) of their data matrices.

In Table 2, we observe that Ro-TS-I already has reasonable performance on
the type A instances. This may be because the gap among local optima is small
— the quality of most APs are medium (green triangle). The animations of
search trajectories of Ro-TS-I do not indicate any obvious sign of Ro-TS-I being
stuck in a local optimum.

Since the QAP (type A) landscape is smoother, it is hard to decide where to
navigate as ‘everything’ looks good. Diversifying too much may not be effective
since the search will likely end up in another region with similar quality. We thus
formulate the hypothesis that it is better to reduce the possibility of missing the
best solution within a close region where the SLS is currently in. Fig 4 (left)
illustrates our hypothesis and shows the ideal desired trajectory (blue dashed
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Fig. 4. Fitness landscape overview of tai35a and tai35b automatically generated from
Viz. See Fig 1 sub-figure ‘Legend’ for the meaning of the shapes and colors. The best
found solution is always in the center. APs in tai35a and tai35b are spread throughout
the fitness landscape. However, the quality of the APs in tai35a seems to be more
‘uniform’ (most are green triangles) than tai35b (all types of AP quality exist). The
actual Ro-TS-I behaviors on QAP (type A/B) instances are shown with red dotted
lines. Our hypotheses on ideal good trajectories are shown with blue dashed lines.

lines) searches around nearby good local optima rather than Ro-TS-I trajectory
(red dotted lines) which moves away from the good local optima region.

On the other hand, the performance of the same Ro-TS-I on the type B
instances is very bad as seen in Table 2. In Fig 6 (left) we observe that Ro-TS-I
is stuck in very bad APs (textual explanation of the visualization: the search
trajectory enters a region near some APs, then until the last iteration, it is still
near the same APs). If the quality of the solutions in that region happens to be
bad, the final best found solution reported will also be bad.

The QAP (type B) landscape is more rugged, i.e. the local optima are deeper
and more spread out. We thus hypothesize that within the limited iteration
bound, rather than attempting to escape deep local optima with its own strength
(e.g. via a tabu mechanism), it is better for the SLS to perform frequent strong
diversification. Fig 4 (right) illustrates our hypothesis where the desired tra-
jectory (blue dashed lines) only makes short runs in a region before jumping
elsewhere rather than the trajectory of Ro-TS-I (red dotted lines) which strug-
gles to escape a deep local optimum.

4.3. Tweaking Ro-TS-I to Ro-TS-A for QAP (type A) instances
The search coverage4 of Ro-TS-I on QAP (type A) instances is not good (see
Fig 5, left). Visualization5 shows that Ro-TS-I sometimes gets near to known
good APs but does not in the end navigate to those APs.

Initially, we thought that in order to make Ro-TS-I focus on a particular
region, we should increase the intensification from a 2-Opt into a 3-Opt swap
move neighborhood. Although this is more costly, it might allow better results

4 APs that are near any points in search trajectory are highlighted.
5 In Viz, a circle drawn on an AP shows that the SLS trajectory pass through an area

near that AP. The diameter of the enclosing circle shows the approximate distance.

9



Fig. 5. Search coverage of Ro-TS-I (left) and Ro-TS-A (right) on QAP (type A) in-
stance. Ro-TS-I (left) is already ‘near’ the best found AP but then wanders somewhere
else (see the large red circles, animation not shown). On the other hand, a lower Tabu
Tenure Range in Ro-TS-A (right) enables it to take different search trajectory which
covers some medium and good quality APs (see the large blue circles).

from the region where the SLS is currently searching in. However, this idea
turned out to be ineffective as no significant improvement in the search behav-
ior was seen. To investigate, we added an algorithm specific visualization that
shows a spike if 3-Opt code is executed. We were surprised that we almost never
saw any spikes (only rarely when attacking tai35a). This may be because the
smooth fitness landscape causes most moves that exchange 3 facilities at once in
a QAP solution are worse than those that exchange 2 facilities at once. Also, the
larger neighborhood slows down the SLS significantly. The results do not show
significant improvement (see Table 2) so this configuration was not pursued.

We came up with another hypothesis for the SLS algorithm. During short
runs, there may be some Ro-TS-I moves which lead to known good APs that are
under tabu status and are not overridden by aspiration criteria.

The idea for robustness in Ro-TS [18] is to change tabu tenure randomly
during the search within a defined Tabu Tenure Range (TTR) every Z*n steps.
The TTR is defined as the interval [TTL, TTL+TTD] which has two parameters:
Tabu Tenure Low (TTL) and Tabu Tenure Delta (TTD). To encourage Ro-TS-I
to do more intensification, we decrease its TTR from the recommendation in
[18]: [90%*n, 110%n] into a lower range and changing the robust tabu tenure
value more often — after n steps (Z=1), not 2n steps (Z=2) as in Table 1.

We do not know the best TTR for Ro-TS-I, except that it should be lower. We
use systematic black-box tuning with full factorial design on TTL={40, 70} and
TTD={20, 40} and obtain TTR=[40%*n, 80%*n] (TTL=40, TTD=40) as the
TTR that works best on the training instances and also slightly but consistently
outperforms the original Ro-TS-I (see Table 2).

We call Ro-TS-I with lower TTR as Ro-TS-A. We observed that although
TTR is smaller, it is still enough to ensure Ro-TS-A avoids solution cycling
issues. This may be because it is quite easy to escape from any local optima
of smooth fitness landscape of type A instances. Fig 5 (right) shows the search
coverage of Ro-TS-A which seems better than the search coverage of Ro-TS-I.
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Fig. 6. Search coverage of Ro-TS-I (left) and Ro-TS-B (right) on QAP (type B) in-
stance. Ro-TS-I (left) is stuck around very bad APs (see the large red circles). On the
other hand, Ro-TS-B (right) employs frequent strong diversifications and we see that
it visits several APs of varying qualities (see the large blue circles) that are (very) far
from each other.

4.4. Tweaking Ro-TS-I to Ro-TS-B for QAP (type B) instances
Visualization reveals that Ro-TS-I is stuck near very bad APs. This leads to a
very bad performance (see Fig 6, left). With the understanding that the fitness
landscape of type B instances is rugged, we conclude that the inability of Ro-TS-I
to escape those APs is because the APs are part of deep local optima regions.

To alleviate this situation, we add a strong diversification strategy into the
Ro-TS-I. We consider Ro-TS-I to be stuck in a deep local optimum after n non-
improving moves (Z=1). To escape, we employ a strong diversification mecha-
nism which preserves max(0, n-X) items and randomly permutates the assign-
ment of the other min(n, X) items in the current solution. The value of X is
sufficiently large: close to n but not equal to n, otherwise it would be tantamount
to random restart. The rationale for this strong diversification heuristic is that
we see in the fitness landscape that good APs (blue circles) in type B instances
are located quite far apart but not as far as the problem diameter n.

How should the diversification strength X be determined? One can manually
experiment with different values of X on various training instances but it is
better to do systematic black-box tuning. We automatically tune using 1-factor
design on X={5, 10, . . . , n}. With tai30b and tai35b as training instances, we
get good results when X=15. However, X=15 is not the best configuration for
tai50b (see Table 2). We found that fixing the value of X to a constant (Fixed-
Diversification) tends to make the Ro-TS-I overfit the training instances.

After fine-tuning the fixed-diversification strategy, we realized that X should
not be fixed for all type B instances but rather be robust within a range correlated
with the instance size. The value of X is randomly changed within this range
after each diversification step. This helps maintaining the consistency of the
performance quality across various QAP (type B) instances.

As the pilot runs using a fixed-diversification strategy yield reasonably good
results when X is set around the half of the instance size n, we apply full factorial
design on Xlow={ 4

10n, 5
10n} and Xhigh={ 6

10n, 7
10n} to try various X within the
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Training Instances

Instance n Best Known Iters Time
Ro-TS-I > 3-Opt < Ro-TS-A
x̄ σ x̄ σ x̄ σ

tai30a 30 1818146 4500 3s 0.99 0.46 1.00 0.38 0.85 0.32
tai35a 35 2422002 6125 5s 1.24 0.22 1.14 0.16 0.98 0.29
tai50a 50 4938796 12500 18s 1.62 0.11 1.67 0.15 1.42 0.21

Instance n Best Known Iters Time
Ro-TS-I > X=15 < Ro-TS-B
x̄ σ x̄ σ x̄ σ

tai30b 30 637117113 4500 3s 16.18 0.00 0.14 0.11 0.17 0.17
tai35b 35 283315445 6125 5s 2.90 1.06 0.20 0.14 0.25 0.26
tai50b 50 458821517 12500 18s 7.58 0.01 0.79 0.84 0.15 0.14

Test Instances

Instance n Best Known Iters Time
Ro-TS-I Ro-TS-A Ro-TS-B
x̄ σ x̄ σ x̄ σ

tai40a 40 3139370 8000 8s 1.25 0.19 1.22 0.25 1.63 0.26
sko42 42 15812 8820 9s 0.21 0.08 0.11 0.06 0.16 0.09
tai60a 60 7205962 18000 34s 1.60 0.17 1.53 0.14 2.12 0.16

ste36b 36 15852 6480 6s 6.20 1.21 7.28 0.92 0.65 0.73
tai40b 40 637250948 8000 8s 9.01 0.00 9.04 0.09 0.01 0.02
tai60b 60 608215054 18000 35s 2.38 0.47 2.93 0.36 0.17 0.13

Table 2. The results of Ro-TS-I, Ro-TS-A, and Ro-TS-B on training and test instances
— averaged over 10 runs per instance. The instance size n, Best Known (BK) objective
value, maximum iteration bound (5n2 iterations), run times (except column ‘3-Opt’),
average percentage-off x̄ and standard deviation σ from BK are given.

interval [Xlow, Xhigh] settings systematically. We arrived at a good range for
X=[ 4

10n, 6
10n] that works best on the training instances.

We call the revised SLS as Ro-TS-B. Animation shows that Ro-TS-B visits
several far away APs of varied quality, where each AP is visited only in a brief
period. However, some APs visited by Ro-TS-B have good quality and thus the
overall performance is good. See Fig 6 (right) and Table 2.

4.5. Benchmarking on the test instances.
We now compare the initial and final SLS algorithms on the test instances using
the same iteration bound. The results are given in Table 2. We observe that
on average Ro-TS-A performs slightly better than Ro-TS-I on type A instances
while Ro-TS-B is significantly better than Ro-TS-I on type B instances. Note
that for type A instances, since the fitness landscape is more smooth, any im-
provements will be small. The results here are also comparable with the updated
Ro-TS results in [19].

We see that applying either Ro-TS-A or Ro-TS-B to its opposite instance
class mostly gives no or negative improvements (underlined). This result shows
that we have successfully tailored the SLS algorithm to match different fitness
landscape of these instances.
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Sc Training Set Configuration tai40a sko42 tai60a ste36btai40b tai60b

1.
tai30a/tai30b {3, 2, 40, 10, 20} 1.23 0.09 1.59 0.90 1.86 1.70
tai50a/tai50b (0.29) (0.08) (0.20) (0.80) (1.55) (0.24)

2.
tai30b/tai35b {3, 1, 90, 40, -} 1.26 0.28 1.55 5.12 8.93 2.09
tai50b (0.16) (0.09) (0.21) (1.30) (0.16) (0.02)

3.
tai30a/tai35a {3, 1, 40, 40, -} 1.25 0.16 1.50 7.13 9.04 2.93
tai50a (0.19) (0.06) (0.15) (1.01) (0.09) (0.33)

4.
tai30b/tai35b {1, 2, 90, 40, 20} 1.81 0.16 1.70 0.93 0.05 0.94
tai50b (0.24) (0.11) (0.16) (0.89) (0.09) (0.71)

Table 3. CALIBRA results on tuning Ro-TS-IC . The 1st column is the scenario ID.
The 3rd column gives the selected configuration when CALIBRA is trained using train-
ing instances specified in the 2nd column. The 4th-9th columns give the percentage-off
and standard deviation w.r.t BK values on the test instances — averaged over 10 runs.

5 Comparison with a Pure Black-Box Approach

We compared our integrated white+black approach with a pure black-box ap-
proach on several tuning scenarios. Note that we have not compared against a
pure white-box approach as the comparison would be subjective.

We use CALIBRA [4] as the black-box tuning algorithm. CALIBRA works
by iteratively trying different configurations from the given configuration space
(using fractional factorial design) to set-up the SLS, run the SLS on training
instances, and obtain results from the black-box SLS (e.g. best found solution
quality). CALIBRA uses the results from the SLS runs to determine which con-
figuration to try next.

For the experiments with CALIBRA, we chose the following default range
of values for the initial configuration space {Z,Str,TTL,TTD,X} with size 1152
(3*2*8*6*4). The size of this configuration space is purposely larger and includes
most of the configuration space used in Section 4. Note that this configuration
would not be necessarily obvious from the initial Ro-TS-I configuration.

1. Execute strategy after Z*n iterations without improvement, Z: {1, 2, 3},
2. Strategy (Str): {1: Lower-TTR, 2: Fixed-Diversification},
3. Tabu Tenure Low (TTL): {30, 40, . . . , 100},
4. Tabu Tenure Delta (TTD): {0, 10, . . . , 50},
5. Diversification strength X (only used when Str=2), X : {20, 25, . . . , 35}.

CALIBRA is used to configure our baseline algorithm Ro-TS-I for 20 minutes per
scenario (that is, with ≈ 30 seconds for Ro-TS-I runs on QAP instances of size
30/35/50, this roughly allows CALIBRA to examine ≈ 20 ∗ 60/30 ≈ 40 different
configurations. This is sufficient for our experiments as CALIBRA seems to hit
a local optimum of the configuration space after around 30 configurations. The
various CALIBRA configured algorithms are called Ro-TS-IC .

In scenario 1, we assume that we do not know that there are 2 different
fitness landscape characteristics in QAP instances used. We see that CALIBRA
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Fig. 7. The development of the two Ro-TS variants.

chooses a ‘balanced’ configuration {3, Fixed-Diversification, 40, 10, 20} when
trained with mixed type A and type B instances. This Ro-TS-IC yields balanced
performance on both types but poorer than the specialized Ro-TS-A or Ro-TS-B
on type A or type B instances, respectively (compare with Table 2).

In scenario 2, we deliberately omitted Fixed-Diversification as the choice for
the second parameter (Str). By doing so, CALIBRA is forced to choose the ‘best’
configuration: {3, Lower-TTR, 90, 40, -} in the smaller box with size 576 when
given type B training instances. This Ro-TS-IC produces very bad results for
type B test instances (compare with Ro-TS-B results in Table 2) and shows that
pure black-box tuning algorithm cannot find a good configuration outside the
box by itself.

Scenario 3 and scenario 4 are similar to the full factorial design using Viz in
Section 4 but now with bigger configuration space. Note that CALIBRA uses
fractional factorial design.

In scenario 3, since CALIBRA is trained with type A instances, it converges to
a configuration that works well for type A but works badly for type B instances.
Ro-TS-IC (compare with Z=1 in the configuration of Ro-TS-A) obtains better
results for tai60a but not for tai40a and sko42. However, the performance of
Ro-TS-IC is more or less similar to Ro-TS-A in this scenario.

The opposite situation from scenario 3 occurs in scenario 4 where this time
the configured Ro-TS-IC performs much better on type B instances. Note that
since a black-box tuning algorithm cannot think out of the box to correlate
X with instance size, it selects the ‘best’ X given the training instances. We
get X=20 which is good for tai40b but bad for ste36b and tai60b — a case of
over-fitting. Ro-TS-IC has worse performance than Ro-TS-B in this scenario.

6 Conclusion

In this paper, we have shown an integrated white+black box approach for de-
signing and tuning SLS algorithms. We demonstrate that starting from a good
baseline SLS, Robust Tabu Search, on a realistic problem, QAP, we are able to
derive two algorithm variants with better performance. Fig 7 summarizes the de-
velopment steps with reference to SLS algorithms devised and tuned in Section
4. The white-box steps are necessarily subjective. However, since Robust Tabu
Search is already quite good on QAP and given that each major step in the SLS
algorithm development is well supported by visualizations and tools, we believe
that this gives evidence that our approach is both valuable and effective.
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In practice, for real-life COPs, the goal is to design an SLS algorithm with
good performance under limited resources. To reduce the development time,
we would also need techniques and more importantly tools which can help in
SLS design and tuning. Our integrated white+black box approach combines
the strengths of leveraging the developer intuition by using generic automated
visualization tools with generic automatic parameter tuning. The techniques
presented here should be relevant to anyone designing a new SLS, particularly
when dealing with new COPs.
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