
Engineering Stochastic Local Search for the

Low Autocorrelation Binary Sequence Problem

Steven Halim, Roland H.C. Yap, and Felix Halim

School of Computing, National University of Singapore
{stevenha,ryap,halim}@comp.nus.edu.sg

Abstract. This paper engineers a new state-of-the-art Stochastic Lo-
cal Search (SLS) for the Low Autocorrelation Binary Sequence (LABS)
problem. The new SLS solver is obtained with white-box visualization to
get insights on how an SLS can be effective for LABS; implementation
improvements; and black-box parameter tuning.

1 Introduction

Low Autocorrelation Binary Sequence (LABS) problem is a hard problem with
simple formulation: find a binary sequence s = {s0, s1, . . . , sn−1}, si ∈ {−1, 1} of
length n that minimizes the objective function E(s) – the quadratic sum of the
autocorrelation function Ck, or equivalently, maximizes the merit factor F (s):

Ck(s) =
∑n−k−1

i=0 sisi+k E(s) =
∑n−1

k=1 (Ck(s))2 F (s) = n2

2E(s)

The LABS problem dates from 1960s and was first posed in the Physics com-
munity. It has applications in many communication and electrical engineering
problems. More recently, LABS has been investigated by the optimization com-
munity using both exact and incomplete solvers [1–5].

In 2006, Dotú and van Hentenryck [4] proposed a simple SLS: Tabu Search
(TS) with frequent restarts. This could find optimal LABS solutions for n ≤ 48
much quicker than the exact Branch & Bound [2]. It was roughly on par with
another good SLS solver for LABS problem: Kernighan-Lin [3].

In 2007, Gallardo et al. [5] proposed an SLS: MATS , combining a Memetic
Algorithm with a similar TS. MATS was shown to be “one order of magnitude”
faster than the pure TS [4] and was the fastest LABS solver in 2007.

In this paper, we show how an integrated white+black box approach [6]
using an SLS engineering tool Viz [7, 8] can be used to successfully engineer a
new state-of-the-art LABS SLS starting from [4]. For more details, please visit
http://sls.visualization.googlepages.com.

2 In-Depth Analysis of LABS Fitness Landscape

Previous researchers, e.g. [1, 2, 5] have shown several features of LABS fitness
landscape. As LABS is unconstrained, each LABS instance n has 2n valid so-
lutions with several Global Optima (GO) (≥ 4) (an approximation of |GO| for

2

Fig. 1. FLST visualization for LABS n = 27 with 4 GO (dark blue circles). LO are
deep and isolated, shown by black dots (poor solutions) around each LO in part A&B.

3 ≤ n ≤ 64 is in [3]). These GO are spread like ‘golf holes’ (deep and isolated)
in irregular LABS fitness landscape. The fitness landscape of LABS causes dif-
ficulties for standard SLS algorithms to work well especially with large n.

In order to get more insights about LABS fitness landscape, we use the
Fitness Landscape Search Trajectory (FLST) visualization in Viz [7, 8]. To obtain
this FLST visualization, we run our initial implementation (called TSv1) of
the TS algorithm from [4] to sample diverse and high quality Local Optima
(LO) from the fitness landscape of medium-sized LABS instances (n ≤ 40).
Our sampling strategy exploits the symmetries in LABS: when TSv1 reaches a
solution with Objective Value (OV) equals with the known optimal value (a GO)
for that particular medium-sized LABS instance, we can immediately generate
all the symmetries of this GO solution. This sampling strategy is used to get a
clearer picture of the LABS fitness landscape (compare Fig. 1.A with 1.B).

In Fig. 1.A, we see that without symmetry in GO/LO sampling, we are not
immediately aware of the existence of other GO and the Hamming Distance (HD)
from the current LO to the nearest GO found seems to be large, HD > n/2.

By exploiting symmetry, all 4 GO are also ‘found’ when TSv1 hits a GO. In
Fig. 1.B, we can now see that the positions of GO (dark blue circles) are spread
out. This suggests that wherever the current solution is, it should be nearer to
one GO (the nearest GO) than to other GOs. Further observations reveal that
LO (light colored non-blue circles) are usually not too close to the nearest GO.
By using exact enumeration for LABS 3 ≤ n ≤ 24, we have checked that around
85% of the 2nd best solution (which is an LO) have HD around [n/4 . . .2n/5]
bits away from the nearest GO. We exploit this insight.

3 Improving the Tabu Search Algorithm of [4]

In [4], a rather simple yet successful TS algorithm for LABS is presented. We are
grateful to the TS code (we call this TSv0) from the authors. We benchmarked
TSv0 on our test machine, a 2 GHz Centrino Duo laptop (see the scattered
black circles around magenta line in Fig. 2). Benchmarking shows that our
test machine has similar performance to the 3 GHz P4 PC used in [4].

Before obtaining the TSv0 code, we implemented the TS algorithm using
our own understanding of the pseudo-code in the paper. We call our original

3

implementation, TSv1. TSv1 is already much faster by about one order of
magnitude than TSv0 (see the red line with upward triangle in Fig. 2).

Visualization in Viz shows clearly the speed difference as the search trajec-
tory in TSv1 animates much faster than TSv0. Analysis of the source codes
reveals the following two major differences. First, while both codes use a form
of “incremental computation” to speed up the näıve O(n2) E(s) computation,
the actual sub-algorithms for this part turns out to be different. Since this part
is not described in [4], we implemented TSv1 with the incremental O(n) Val-
ueFlip technique used by MATS [5]. It turns out that although there is some
incremental calculation in TSv0, the computation of E(s) is still O(n2).

Second, though both codes use an O(1) tabu table mechanism, they have
different TABU_TENURE settings. We know that TABU_TENURE cannot be ≈ n as
it will quickly forbid (almost) all 1-bit flip moves. Black-box tuning on several
constant values [0.1, 0.2, 0.3]n on training instances n = {27, 30, 41, 42} helps us
to set small TABU_TENURE = 0.2n for TSv1. But, TSv0 use TABU_TENURE = n.
Thus TSv0 does more frequent random restart (every n+1 iterations) than the
pre-determined MAX_STABLE parameter as no more valid moves are available.

We can see that TSv1 runtimes are already comparable to the recent state-
of-the-art MATS (TSv1 on 3 GHz P4 PC is about 1.7 to 5.6 times faster than
MATS [5] for LABS 40 ≤ n ≤ 55 and the 3 GHz P4 PC is (probably) at most
1.25 times faster than the 2.4 GHz P4 PC in [5]). We remark that this shows
that the random restart strategy in TSv0/TSv1 is good and better than the
benchmarking in [5] would indicate.

4 A State-of-the-Art Tabu Search for LABS

We wanted to get better results. We analyzed TSv1 search trajectory using the
same FLST visualization. During visualization, a circle is drawn on the nearest
sampled GO/LO if the current solution is “near” (near is HD ≤ 20% ∗ n).

Using this feature, we observe the following behavior, shown in Fig. 1.C and
Fig. 1.D: TSv1 happens to be near a GO in the earlier phase of the search (1.C),
but TSv1 does not immediately navigate there. TSv1 then wanders to another
region near to another GO, perhaps due to random restart strategy. Thousands
of iterations later, TSv1 gets near to the first GO again (1.D) and this time
TSv1 manages to find the GO.

Such observations and insights about the LABS fitness landscape in Sec. 2
lead us to engineer a better SLS strategy. The resulting TS variant is called
TSv7. (We experimented with other variants also using the white+black box
approach described here but TSv7 had the best performance). Upon experienc-
ing stagnation, TSv7 restarts to a region around HD n/4 bits away from the
current LO. Basically, TSv7 searches for the nearest GO. Only if the current
LO region is saturated, TSv7 does a diversification.

The implementation improvements using faster incremental calculation, im-
proved TABU_TENURE settings and the new strategy engineered from white-box
analysis using visualization gives a new SLS, TSv7. However, we are not done.

4

Fig. 2. Comparison of average runtimes (20 runs) between {TS [4], TSv0 O}, {MATS

[5] ♦}, and {TSv1 �, TSv7 ∇} for LABS with known optimal OVs (40 ≤ n ≤ 60).

To obtain a state-of-the-art result, we configured the parameter values for TSv7
using black-box tuning. We ran a full factorial design of logical parameter values
on a set of training instance and picked the best one. Due to space constraints,
we are unable to show the algorithm and its parameters. More details and the
source code for TSv7 can be found on the webpage.

Fig. 2 shows the performance of TS (timings from [4]), MATS (timings from
[5]), and TSv0/TSv1/TSv7 (2 GHz Centrino Duo laptop). We see that TSv7
strategy is better than the original random restart strategy used in TSv0/TSv1.
The performance gap is easily noticeable on larger n = {50, 55, 57, 60}.

To analyze the results, we used the Wilcoxon signed-ranks test. It detected a
significant difference between the average runtimes of TSv1 and TSv7 on LABS
40 ≤ n ≤ 60 (21 pairs, T = 27.5, p < .01). Since both TS variants use the same
incremental OV computation and run on the same hardware, this difference in
average runtimes can be attributed to the new stochastic strategy.

The least square fit on the logarithm of the average runtimes gives an es-
timated running time of O(5.03e-6 ∗ 1.37n) and O(1.03e-5 ∗ 1.34n) seconds for
TSv1 and TSv7, respectively. We believe TSv7 to be the current state-of-the-
art SLS algorithm for LABS. Due to lack of space, we do not show the error bars
but the experiments show that TSv7 is more robust than MATS and TSv1.

Table 1 explores the frontier of LABS instances, 61 ≤ n ≤ 77, where optimal
values have yet to be proven. For 61 ≤ n ≤ 70, we use a runtime limit roughly
based on the estimated runtime from Fig. 2. For n > 70, we use a runtime limit of
10 hours. We see that TSv7 manages to obtain relatively good LABS solutions
(by the merit factor) in reasonable running time.

5 Conclusion

The contributions of this paper are twofold. First, we show that one has to
analyse the search trajectory and not just the timings for a SLS. Our implemen-
tation (TSv1) of the pseudo-code in [4] shows that it is actually a good strategy.
The conclusion in [5] that MATS is faster than the original TS by ‘one order of
magnitude’ is in part due to the less incremental implementation.

Second, we have shown how to engineer a new state-of-the-art LABS solver.
Though the changes from TSv1 to the final TSv7 may seem small, it is often

5

Table 1. Best found LABS solutions using TSv7: 61 ≤ n ≤ 77. These runs are
performed on a 2.33 GHz Core2 Duo PC.

n E(s) F(s) Runtime Limit Best Found LABS in Run Length Notation [2]

61 226 8.23 3 m 1.1 h 33211112111235183121221111311311
62 235 8.18 8 m 1.5 h 112212212711111511121143111422321
63 207 9.59 4 m 2.0 h 2212221151211451117111112323231
64 208 9.85 47 m 2.7 h 223224111341121115111117212212212
65 240 8.80 2.2 h 3.7 h 132323211111711154112151122212211
66 265 8.22 3.1 h 4.9 h 24321123123112112124123181111111311
67 241 9.31 4.1 h 6.6 h 12112111211222B2221111111112224542
68 250 9.25 6.6 h 8.8 h 11111111141147232123251412112221212
69 274 8.69 8.2 h 11.8 h 111111111141147232123251412112221212
70 295 8.31 12.4 h 15.8 h 232441211722214161125212311111111

71 275 9.17 7.8 h 10.0 h 241244124172222111113112311211231121
72 300 8.64 2.4 h 10.0 h 1111114111444171151122142122224222
73 308 8.65 1.2 h 10.0 h 1111112311231122113111212114171322374
74 349 7.85 0.2 h 10.0 h 11321321612333125111412121122511131111
75 341 8.25 8.0 h 10.0 h 12122132121211211111131111618433213232
76 338 8.54 4.6 h 10.0 h 111211112234322111134114212211221311B11
77 366 8.10 3.9 h 10.0 h 111111191342222431123312213411212112112

that small changes to an SLS causes big differences. Our changes are derived from
reasoning on the LABS fitness landscape structure and TS trajectory behavior
and thus serve as a rationale supported by empirical experiments. The resulting
TSv7 is also simpler than the hybrid MATS code.

Acknowledgements
We thank Iván Dotú and Pascal van Hentenryck for sharing their source code.

References

1. CSPLIB: A Problem Library for Constraints. http://www.csplib.org
2. Mertens, S.: Exhaustive search for low-autocorrelation binary sequences. Journal

of Physics A: Mathematical and General 29 (1996) 473–481
3. Brglez, F., Xiao, Y.L., Stallmann, M.F., Militzer, B.: Reliable Cost Predictions

for Finding Optimal Solutions to LABS Problem: Evolutionary and Alternative
Algorithms. In: Intl. Workshop on Frontiers in Evolutionary Algorithms. (2003)

4. Dotú, I., van Hentenryck, P.: A Note on Low Autocorrelation Binary Sequences.
In: Constraint Programming. (2006) 685–689

5. Gallardo, J.E., Cotta, C., Fernández, A.J.: A Memetic Algorithm for the Low
Autocorrelation Binary Sequence Problem. In: GECCO. (2007) 1226–1233

6. Halim, S., Yap, R.H.C., Lau, H.C.: An Integrated White+Black Box Approach for
Designing and Tuning SLS. In: Constraint Programming. (2007) 332–347

7. Halim, S., Yap, R.H.C., Lau, H.C.: Viz: A Visual Analysis Suite for Explaining Local
Search Behavior. In: ACM User Interface Software & Technology. (2006) 57–66

8. Halim, S., Yap, R.H.C.: Designing and Tuning SLS through Animation and Graph-
ics: an Extended Walk-through. In: Engineering SLS Algorithms. (2007) 16–30

