
A Framework for Fast Proto-typing of Meta-
heuristics Hybridization

Hoong Chuin LAU1 Wee Chong WAN2 Steven HALIM3 Kaiyang TOH2

1School of Information Systems, Singapore Management University
2The Logistics Institute – Asia Pacific, National University of Singapore
3School of Computing, National University of Singapore

Abstract: Hybrids of meta-heuristics have been shown to be more effective and adaptable than

their parents in solving various combinatorial optimization problems. However,

hybridized schemes are more tedious to implement due to their complexity. We

address this problem by proposing the Meta-heuristics Development Framework

(MDF). In addition to being a framework that promotes reuse to reduce

developmental effort, the key strength of MDF lies in its ability to model meta-

heuristics using a “Request, Sense and Response” (RSR) schema, which decomposes

algorithms into a set of well-defined modules that can be flexibly assembled through

an intelligent central controller. Under this scheme, hybrid schemes become an

event-based search that can adaptively trigger a desired parent’s behavior in response

to search events. MDF can hence be used to design and implement a wide spectrum

of hybrids with various degrees of collaboration thereby offering the algorithm

designer quick turnaround in designing and testing his meta-heuristics. This is

illustrated in this paper through the construction of hybrid schemes using Ants

Colony Optimization (ACO) and Tabu Search (TS).

Keywords: Meta-heuristics, Hybridization, Software Framework, Reusability, Combinatorial Optimization, Ant
Colony Optimization, Tabu Search.

1. INTRODUCTION

Meta-heuristics are an increasingly important in solving large-scale NP-hard

combinatorial optimization problems. Other than computational efficiency, another key factor that

leads to widespread adoption is their genericity – that meta-heuristics can be easily adapted to

solve new problems (in contrast to specialized heuristics or exact methods which are often

tailored to a specific problem). Yet another strong point of meta-heuristics is hybridization, in

which a meta-heuristic is combined with other solution approaches (such as other meta-heuristics,

constraint programming or exact methods). Hybridization has shown itself to be a promising field

of research in recent years with encouraging results demonstrating their ability to outperform

their parent heuristics (for example, [Bent and Hentenryck, 2004]; [Krasnogor and Smith, 2005];

[Resende and Riberio, 2003]; and [Vasquex and Vimont, 2005]), and the flexibility with which

they can be adapted to solve new problems (for example, hyper-heuristics [Burke et al, 2003]).

The motivation behind hybrid approaches lies in the No Free Lunch (NFL) [Wolpert and

Macready, 1997] theorem that no single meta-heuristic is superior to all other meta-heuristics in

solving all problems. Thus, every meta-heuristic has their distinct advantages and disadvantages

when applied to a given problem. As such, the goal of a hybrid meta-heuristic algorithm is to

exploit the strengths of the techniques used in the hybrid to compensate for the weaknesses of

others. For example, hybrid schemes may seek to strike a balance between diversification and

intensification as meta-heuristics are strong in one aspect, but weak in the other.

However, a major stumbling block in the development of hybrid meta-heuristics

approaches is the intensive development effort required as compared to conventional meta-

heuristics, due to the need to develop multiple solution techniques and a means for the different

techniques to work with each other. This issue is exacerbated by the fact that hybrid methods are

often developed independently by different researchers with little or no code reuse, even for

hybrid approaches sharing a common structure (e.g. memetic algorithms). Redeveloping and

validating the correctness of hybrids from scratch is often costly and time-consuming which

discourages researchers from exploring new schemes.

One means of reducing development time is by using software frameworks, defined by

[de Champeaux et al, 1993] as “medium-scale, multipurpose, reusable class hierarchies that

depend only on the abstract interfaces of various components” and which have “been proven to

be valuable tools for simplifying and accelerating further design”. Recognizing this fact, the

community has seen proposals for several frameworks for meta-heuristic development. For

example, local search frameworks like EASYLOCAL++ [Di Gaspero and Schaerf, 2003] and

Searcher [Andreatta et al, 2002] allow users to rapidly implement their desired local search meta-

heuristics by providing a generic structure which can be customized as required.

More advanced and generic frameworks like HOTFRAME [Fink and Voß, 2002], HSF

[Dorne and Voudouris, 2004] and HeuristicLab [Wanger and Affenzeller, 2004] seek to allow end

users to easily use meta-heuristics implemented by the framework to solve new problems and to

develop new meta-heuristic approaches. In particular, these frameworks are object-oriented to

allow users to easily customize framework components for their needs via inheritance. For

example, HOTFRAME supports iterated local search, variants of SA, TS and evolutionary

methods and some predefined hybrids. HOTFRAME also provides mechanisms for the end user to

extend the framework to implement new search strategies, including hybrids.

While the above frameworks excel in reducing the developmental effort in implementing

standard meta-heuristics models and their variations, they suffer from the common drawback that

they were not designed to directly support the formulation and implementation of hybrid

schemes. Thus, implementing hybrids with these frameworks would often require extensive

modification of framework codes, which in turn requires users to have an in depth knowledge of

the workings of the framework, consequently negating the black-box advantage. Hence to foster

hybridization among meta-heuristics, there is a need for a framework that reduces the conceptual

gap between the algorithmic formulation and actual implementation. Such a framework,

modeling the entire process of optimization, would form the link between disparate algorithms,

enabling the easy creation of hybrids.

For this purpose, we propose the Meta-heuristics Development Framework (MDF), a

C++ software framework that bridges the gap of hybrid modeling and software implementation.

One primary goal of MDF is to provide a methodology and platform that facilitates the rapid

prototyping of meta-heuristic hybrid schemes. This methodology is particularly effective in

algorithm prototyping of new problems when the designer needs to experiment with different

algorithm strategies quickly so as to find one that performs best.

MDF achieves this goal by its modeling schema, which formulates the search algorithm

as a “Request-Sense-Response” search (RSR schema). The schema works by decomposing the

hybrid behavior into a set of standalone components known as the Responses. These components

are then executed during the search when the framework Senses certain search events, which is

dependent on the problem instance. The Requests are a list of rules designed by the user to match

each response to an event, thus indirectly controlling the search process. In another words, MDF

models hybrids as a search with events and handlers (or responses) that can be adaptively

combined in accordance to the user’s requests.

We like to remark early in the paper that hybrid schemes offer the advantage that they are

not specific to a problem, and can hence be easily implemented and reused. The tradeoff however

lies in their run-time efficiency and solution effectiveness when compared with specialized

heuristics tailored to solve specific problems. For example, there are well-known heuristics such

as the Iterative Local Search on Lin-Kernighan heuristic for TSP, which performs very well in

terms of efficiency and effectiveness [Johnson and McGeoch, 1997]. Such specialized heuristics

often require deep domain knowledge such as the structure of the problem that takes time to

discover. In this paper, our intent is not to devise hybrid algorithms that beat the best-published

results for specific problems, but rather, we want to provide a framework that allow algorithm

designers to powerfully express hybrid schemes and perform rapid proto-typing (or debugging),

of his meta-heuristic algorithms.

This paper proceeds as follows. In Section 2, we will present an overview of the MDF

architecture. We present our proposed RSR schema for the modeling of hybrids in Section 3.

Section 4 will illustrate the use of MDF to implement a hybrid scheme of [Stuetzle and Dorigo,

1999] for solving the Traveling Salesman Problem (TSP). Section 5 explores the use of MDF to

design and implement generic hybrid schemes, particularly those categorized under [Talbi,

2002]’s hybrid taxonomy. We will illustrate with TSP again, using various hybrid schemes of

between TS and ACO. Section 6 will present the results of the experimentation on TSP, with

particular emphasis on the cost required to implement the hybrid schemes vs. the improvement in

performance attained. Finally, we present the conclusion to this paper in Section 7.

2. MDF ARCHITECTURAL OVERVIEW

The design of MDF began with the work of Tabu Search Framework (TSF) [Lau et al,

2003a], which uses abstraction and inheritance as the primary mechanism to build adaptable

components and interfaces. In [Lau et al, 2004a], the idea of a Meta-Heuristic Framework (MDF)

was proposed that supports ACO, TS, SA and GA. Architecturally, MDF is composed of 4 major

components, General Interfaces, Proprietary Interfaces, Engines and Control Mechanism, as

shown in Figure 2.1. The first three components are the essential building blocks for a standard

meta-heuristic application, while the special consideration to the design of Control Mechanism is

given to support hybridization. In this section, we will briefly explain the first three components.

Interested readers may refer to [Lau et al, 2003a] for details. For the Control Mechanism, [Lau et

al, 2004a] presented a rudimentary design, and this paper presents a refined version in Section 3.

2.1 General Interfaces

General Interfaces represent concepts (e.g. solution representation, move, etc.) which are

common to all meta-heuristic methods as abstract interfaces. These interfaces are not tied to any

specific problem, thus allowing users freedom to implement their preferred representation. For

example in TSP, the solution can be represented as an array of integers denoting the sequence of

cities in the tour or as an adjacency matrix that traces the path taken by the salesman. More

complicated solution representation such as a splay tree can also be extended from the Solution

Interface without affecting the framework. By using the principle of abstraction, the framework is

able to modify the solution object with other inherited objects without any assumption on the

solution structure. Similarly a user can implement different Move strategies and apply them to the

same Solution object. More importantly, by having a common solution interface between various

meta-heuristics, it facilitates the notion of hybridization in which various parent algorithms can

modify the same solution structure. Thus General Interfaces promote code reuse without

sacrificing flexibility.

2.2 Proprietary Interfaces

Proprietary Interfaces allow for the customization of the unique behaviors exhibited by

each meta-heuristic. For instance, ACO has two such interfaces: local heuristic and pheromone

trail and TS also has two such interfaces: tabu list and aspiration criteria and so forth for the

other meta-heuristic engines in MDF. Unlike the General Interfaces, Proprietary Interfaces are

exclusive to the meta-heuristic they belong to and hence need not be implemented unless the user

wishes to implement that meta-heuristic. An exception to this is during hybridization, in which a

proprietary behavior is crossed into the routine of another meta-heuristic.

2.3 Resource Container & Engines

The Engine classes make use of the General and Proprietary Interfaces to implement

specific standard meta-heuristic search algorithms. For example in the TS Engine, the

Neighborhood Generator object is invoked to generate the neighbors based on the Move object(s)

around the current Solution object. It then apply the Objective Function and Penalty Function

objects to evaluate each neighbor and then select the best neighbor based on the Tabu List and

Aspiration Criteria objects. The new solution is updated into the current Solution object and the

iterations continue till a terminating condition (such as 1000 iterations) is reached. In short, the

Engine can be seen as the “worker” that arrange the interfaces into execution blocks in which the

sequence modeled the behavior of the meta-heuristic.

In addition, the parameters of the search (such as tabu tenure) are stored in a data

structure class called the Setting instead of the engine itself. Multiple Settings from different

engines are stored collectively in a “Resource Container”. This centralization design allows fast

access and easy modification on the parameters, either manually or through the Control

Mechanism.

The first three components are adequate in modeling and implementing standard meta-

Figure 2.1: Architecture of Meta-heuristics Development Framework

heuristics. To facilitate hybridization, MDF is designed with a Control Mechanism that uses the

RSR schema to formulate hybrid schemes. The next section will provide a detailed description of

the design of the Control Mechanism for hybridization.

3. RSR MODELING OF HYBRIDIZATION

An observation we make is that a meta-heuristic is often hybridized with another

algorithm, such as another meta-heuristic, to improve its intensifying or diversifying capability

(e.g.: [Burke et al, 2001], [Talbi, 2002], [Bent and Hentenryck, 2004]). While intensification and

diversification may work differently, they are similar in that they are both applied to adjust the

search trajectory when specific search situations (or events) are detected during the search. As

such, we term any adjustment to search (such as any modification to the current solution or the

change of search parameters) as a Response due to a Sensed Event. A Request is then defined as

the rule that matches a particular sensed event to a response. It is not difficult to see that while the

responses are static, their actual executions are dependent on the occurring search events and thus

dynamic to each problem instance. We view this Request, Sense and Response (RSR) scheme as

an event-driven schema, which is an event loop where a response is triggered when it senses the

occurrence of an event based on requests defined by the user (as illustrated in Figure 3.1).

Search Engine Event Controller Database of
Requests

List of
Responses

Engine starts off
Engine Senses
Event

Compare event
with Requests
database

Return list of
Responses

Relay current Solution State to each triggered
responses in accordance to their priority

New Solution State returns to Event
Controller

Response
modified
Solution
State

Current Solution
State passed to the
Event Controller

New Solution
State updated
into the Engine

Figure 3.1: Sequence diagram illustrating the RSR schema.

More formally, a hybrid scheme can be represented by its present search state (Sa), a set

of events Χ={χ1, χ2, … χm}, a set of handlers Ψ={ψ1, ψ2, … ψn} and a set of requests R={r1, r2, …

rq}. A search state (S) defines the state at a time instant of the search process and consists of the

tuple (Current Solution, Best found Solution, Search parameter).

An event (χ) represents a decision point, where the occurrence of a given condition (e.g.

new best solution found) in the search process indicates that some responses (carried out by the

handlers) may be undertaken. Events can be categorized into 3 types: problem specific, algorithm

specific and general. Problem specific events are specific to the problem being considered, e.g. a

specific path being chosen for a TSP solution. Algorithm specific events occur at specific points

during the execution of a meta-heuristic algorithm. An example of such an event is the

completion of the crossover step in a GA. General events are those that do not fall under the other

2 categories, and are usually applicable to all problems and algorithms (e.g. New best solution

found or a series of 10 consecutive non-improving moves made). MDF provides support for all 3

types of events and we will illustrate an example in Section 4.

A handler (ψ) describes an action, algorithm or strategy which is to be carried out in

response to an event. It can be viewed as a function that modifies the present search state Sa to

obtain the next search state Sa+1. Handlers can implement user defined strategies (e.g. problem

specific heuristics) or make use of MDF’s built-in engines to respond to events. Each handler has

a priority level (from highest to lowest priority: instant, normal, low) which determines the order

of execution when multiple handlers are awaiting execution.

 A request (r) is defined by a pair (χ, ψ), which states that the handler ψ is the response to

be carried out when the engine senses the occurrence of event, χ. Note that a “multiple-to-

multiple” relationship where multiple events can be triggered simultaneously and multiple

handlers can be executed in response to these triggered events is allowed. Requests have to be

defined by end users in prior to the search.

A hybrid search hence begins with a set of requests R, an initial state S0 and a main meta-

heuristic ψ0 (usually the primary meta-heuristic of the hybrid). Execution proceeds by calling the

Main_Algorithm with a recursive function Execute_Handler (see Figure 3.2).

Main_Algorithm(R, S0) {
 Sa = S0;

Ψ.Initialize (ψ0); // Start off the main meta-heuristic
while (Termination_Condition_Not_Met) {

 Execute_Handler (Ψ, Sa);
 }

 }

Execute_Handler (Ψ, Sa) {
while (Handler_Termination_Condition_Not_Met) {

 for each (ψ∈Ψ) {
 Sa = ψ(Sa);
 if (Χ = Sense_Event(Sa)) {

 for each (χ ∈Χ) {
 Ψ = Event_Controller.Match_Requests(χ, R);

 Sa = Execute_Handler (Ψ, Sa);
 }
 }

 }
}
return Sa;

 }

The Handler_Termination_Condition_Not_Met is specific for each handler

and can range from instant termination after carrying out an operation (e.g. a “kick” operation

handler) to running for a few iterations (e.g. running TS as a sub meta-heuristic of GA for 10

iterations) to running until the next event occurs (e.g. switching between meta-heuristic

approaches).

The function Event_Controller.Match_Requests(χ,R) is a matching function

which determines the handlers to be executed given the event χ and the list of predefined

requests. More formally, for a given input search state Sa, a set of events Χ that correspond to Sa

is first determined. For each matching event χ ∈ Χ, the function returns the ordered set of

responses Ψ, where for each ψ∈Ψ and χ∈ Χ, there is a corresponding tuple (χ, ψ) in R. The

responses in Ψ are ordered by their priority level. If two or more responses have the same priority

Figure 3.2: A pseudo code of the RSR schema.

level, they will be arbitrarily ordered as it is assumed that the order of execution of handlers in the

same priority level is unimportant. The function also ensures that any duplicate handlers (due to

two events occurring triggering the same handler) are removed.

The motivation for the adaptation of such a scheme is that it supports hierarchical chains

of requests. A chain occurs if a handler calls upon another handler (to assist it in performing

optimization), thus forming a hierarchical level of control handling. With this design, multiple

meta-heuristics can be deployed in a single search to form highly complex hybrid schemes. This

design also allows for sequential processing of handlers avoiding the complexities involved with

multi-threaded/distributed architectures. Different handlers are able to communicate with each

other via storage of search parameters in the search state. In MDF, there are stored in Settings in

the Resource Containers.

4. ILLUSTRATION

We now illustrate how the RSR schema can be implemented with MDF. Particularly, we

consider the hybrid scheme proposed by [Stuetzle and Dorigo, 1999]. In this scheme, ACO and a

simple Local Search (LS) were hybridized to solve TSP. The approach was to apply LS to the

iteration-best solution before the ants update it into the pheromone trails. To implement this

strategy, we first define an algorithm-specific event to detect the time point in which the iteration-

best ant has found a solution. A suitable time point for this is the moment before the pheromone

update. Figure 4.1 shows the sample codes for this event. The class

BEFORE_PHEROMONE_UPDATE_Event inherits the interface Event defined in MDF. Under this

interface, the derived class must implement the function bool TriggerResponse (int

MessageID, Solution* Current_Solution), The parameter MessageID reflects the

event detected at the current time point, such as BEST_NEW_FOUND_SOLUTION,

NON_IMPROVING_SOLUTION, NON_FEASIBLE_SOLUTION, BEFORE_TABU_LIST_UPDATE,

BEFORE_PHEROMONE_UPDATE. The second parameter is the solution at the current time point and

mainly used by the user to implement problem-specific events (such as objective value above a

certain threshold). In our example, we are watching for the MessageID to be

“BEFORE_PHEROMONE_UPDATE”. We return true or false indicating whether a positive match

has been made.

 The next step is to implement the handler, which allows the LS to enhance the solution

found by the ACO’s best ants. Figure 4.2 shows the sample code for this handler. We see that the

LS procedure is embedded in a derived class LS_Handler. Under the interface Handler, the

derived class must implement void Execute(Engine* Main_Engine). This function will

be called by the Event Controller if the respective event (“BEFORE_PHEROMONE_UPDATE”) is

detected. The parameter in this function is a pointer to the main engine (which is ACO_Engine

in our example), and through this pointer, we can get a reference to the solution object. In

addition to keeping a reference to the solution object, other objects such as the pheromone

trail and penalty function are also accessible via the engine pointer, to cater for

responses that required modification these objects (such as ACO’s search parameters).

Finally we need to define a Request which matches our defined event to the

implemented handler as shown in Figure 4.3. With the two implemented classes

BEFORE_PHEROMONE_UPDATE_Event and LS_Handler, and the control codes for the event

controller (Request), the implementation of the hybrid in MDF is complete.

class BEFORE_PHEROMONE_UPDATE_Event : Event {
bool TriggerResponse (int MessageID, Solution*
Current_Solution) {

If (MessageID == BEFORE_PHEROMONE_UPDATE)
return true;

 return false;
}

 }

 Figure 4.1: An illustration of a MDF event.

class LS_Handler : Handler {
void Execute (Engine* main_engine) {

 ACOEngine* ACO = (ACOEngine) main_engine;
 Solution* current_solution = ACO->GetCurrentSolution();
 LS_PROC (current_solution);
 ACO->SetCurrentSolution (current_solution);

}
// Local Function
void LS_PROC (current_solution) {
 // LS procedure optimizing on the current_solution
 …
}

 }

#include “BEFORE_PHEROMONE_UPDATE_Event.h”
#include “LS_Handler.h”

class HYBRID_EventController : EventController {

void Initialize_Request () {
 BEFORE_PHEROMONE_UPDATE_Event evt = new

BEFORE_PHEROMONE_UPDATE_Event ();
 LS_Handler hnd = new LS_Handler ();
 ADD_REQUEST (evt, hnd, NORMAL); // Normal priority

}
 }

5. IMPLEMENTATION OF GENERIC HYBRID SCHEMES

This section demonstrates how generic hybrid schemes can be implemented using MDF.

Generic hybrid schemes are problem-independent, and they can be readily customized to solve a

given optimization problem when the corresponding General Interfaces have been implemented.

The advantage of generic hybrid schemes is that they often require little or no problem domain

knowledge from the users and can be easily implemented, in contrast with specialized approaches

that capitalize on the structure of the problem, which takes time and expertise to discover [Burke

et al, 2003]. Arguably, the tradeoffs of these schemes are slower run-time and reduced

effectiveness. These are not our concerns since the goal of MDF is to facilitate fast proto-typing

and not to devise new tailored approaches. In this section, we focus our attention on how generic

Figure 4.2: An illustration of a MDF handler.

Figure 4.3: An illustration of a Request code in MDF Event Controller.

schemes can be readily designed and implemented in MDF.

 One approach in forming generic schemes is based on the taxonomy proposed in [Talbi,

2002]. In this work, meta-heuristic hybrids were classified into four categories as illustrated in

Figure 4.1. The four categories are High Level Relay [HLR], High Level Teamwork [HLT], Low

Level Relay [LLR] and Low Level Teamwork [LLT], and they formed the fundamental in which

generic hybrid schemes can be derived. In [Lau et al, 2003b], the authors followed the same

taxonomy to derive the Hybrid Ants System Tabu Search (HASTS) schemes that represent

different hybrid schemes of ACO with TS. Four hybrid models were proposed, namely

Empowered Ants (HASTS-EA) [LLT], Intensification Exploitation (HASTS-IE) [LLT], Enhanced

Diversification (HASTS-ED) [LLR] and Collaborative Coalition (HASTS-CC) [HLR]. These

schemes were used to solve the Inventory Routing Problem with Time Windows.

In the following, we will use these generic schemes to solve TSP. Arguably, many

benchmark instances of TSP have been solved to optimality and it is unlikely for these generic

schemes to achieve better results. Our purpose is not to achieve better results, but to demonstrate

how MDF is a ready platform for implementing HASTS. What we like to measure is the cost-

efficiency of creating hybrids under the assumption that their parent algorithms have been

implemented on MDF. We argue that this measure enables us to predict the expected gain from

exploiting the RSR scheme to implement hybrid schemes on a different problem. In addition, we

Hybrids Schemes

High Level Low Level

Relay Teamwork Relay Teamwork

 N.A. e.g. HASTS-ED e.g. HASTS-EA
 HASTS-IE

e.g. HASTS-CC

Figure 5.1: HASTS schemes under Talbi’s Taxonomy of Hybrid Meta-heuristics.

also illustrate the ease of creating hyper-hybrids (i.e. hybridizing hybrids). We found that these

hyper-hybrids improve the quality of solutions for most cases and the additional development

cost is relatively insignificant. Hence, under MDF, complex hyper-hybrids can be generated

rapidly, offering the algorithm designer quick turnaround to test the effectiveness of his approach.

Strict Tabu Search (Pure TS)

We restrict our implementation of TS to the strict TS procedure described in [Glover and

Laguna, 1997]. The Move used in TS is a simple swap-edge operator that exchanges two arbitrary

edges in the tour. Unlike the “fast” two-opt operation used by many local search approaches

[Johnson and McGeoch, 1997], this operator does not restrict the generated neighbors to only

those that are improving. Rather, to facilitate the notion of accepting a bad neighbor (as described

by Glover), O(n2) neighbors are generated in each iteration. While this reduces the efficiency of

the algorithm, ironically this simple algorithm is better suited to our experiment in observing the

effect of combining naïve approaches. Two proprietary interfaces are required to elicit the essence

of TS: Tabu List and Aspiration Criteria. In our case, we tabu the swapped edges and apply a

static tenure that is equal to the instance size. The best aspiration criterion is used to over-ride the

tabu status of a solution if a better objective value is found.

Ants Colony Optimization (Pure AC)

The ACO algorithm is implemented with the settings of m = 25 ants, ρ = 0.2, α = 1.0, β =

2.0, and candidate list of size 20 as proposed in [Stuetzle and Dorigo, 1999]. While this is not

within the context of our discussion, it is interesting to mention that the actual development time

for ACO is much less than expected as it benefits from the code reuse in the TS implementation.

Solution and Objective Function for example, has the same formulation in both implementations,

and hence can be reused. In addition, as both applications (ACO and strict TS) use the same

Solution interface, hybridization can be easily performed without further alteration. This

illustrates the strengths in MDF; fast proto-typing and flexibility in hybridization. Other

proprietary interfaces include the Local Heuristic, which computes the inverse of edge length and

the Pheromone Trail is a two dimensional table that records the history of the best ants.

Empowered Ants (HASTS-EA)

To reduce the possibility of over-convergence in ACO, this hybrid scheme empowers the

ants with memory (tabu list) so as to reduce possibility of reconstructing similar solution by ants

in the same iteration. The procedure of HASTS-EA is described in Figure 5.2. The tabu list is

added to record some random edges traveled by the first ant. These edges are then “tabu-ed” to

prevent d subsequent ants in the iteration to move along them. At the end of the iteration, the tabu

list is reset. The tabu list also eliminates the need for local pheromone decay, reducing one of the

original ACO’s parameters. To implement HASTS_EA, the Neighborhood Generator object in

the ACO is modified to include a tabu list. For each ant in the iteration, when the Neighborhood

Generator generates the list of unvisited edges, the “tabu-ed” edges are removed from the list.

The aspiration criterion for the tabu list is when no other unvisited edges can be found.

Figure 5.2: Pseudo code of HASTS-EA.

HASTS-EA procedure
1) (Initialization)

Initialize Pheromone Density Table τ and Local Greedy Heuristic η

2) (Construction)
 For each ant k, do
 Choose probabilistically a new unvisited path j based on τ andη

 For each new path j, do
 Consult Tabu List and Aspiration Criterion on j
 Until a non-tabu-ed j is found
 Until ant k completed its solution

Update Tabu List with p random edges in solution found by ant k
3) (Trail Update)
 Update paths in best ant solution into τ

4) (Terminating Conditions)
 If not (end_conditions), goto step 2

Improved Exploitation (HASTS-IE)

In this scheme, the conventional ACO is hybridized with TS to improve the solution found

by each iteration best ant. The improved solution from TS is then returned to ACO to be updated

into the pheromone density table. To implement this hybrid scheme using MDF, we embed TS

into a handler object. An event is then set to detect the time when a solution is found by Iteration

Best Ant. When this event triggers, the Event Controller will pass the solution found by the

iteration best ant into the handler, in which the embedded TS will optimize the solution. The

terminating condition for the embedded TS is for it to reach 100 non-improving moves and the

best result found by TS will be returned to the ACO Engine via the Event Controller. This new

solution will replace the original solution found by the iteration best ant, and updated into the

pheromone table (illustrated in Figure 5.3).

Enhanced Diversification (HASTS-ED)

This hybrid scheme uses ACO as a diversification strategy for TS. When TS encounters a

series of non-improving moves, a random connected portion of the constructed tour are injected

into the implemented ACO for reconstruction. In a similar fashion with HASTS-IE, this hybrid

schemes embeds ACO into a handler object. An event is then setup to count 100 non-improving

moves encountered during the TS search. When the counter reaches a pre-defined value, the event

will be triggered. The triggering of this event will result in the Event Controller passing the best

found solution by TS into the handler. The handler class then randomly extracts a connected

Iterations

Recursive
Level

Handler: Embedded TS

Lvl 0

Lvl 1

Main Algorithm: ACO

1 1

2 2 2

3

Event Legend:

Solution found by
Iteration Best Ant
End of embedded TS
iterations
End of ACO iterations

1

1

2

3

HASTS-IE

Figure 5.3: Timeline illustration of HASTS-IE.

portion of the tour and relocates the portion into the embedded ACO. The portion of tour is then

re-optimized by ACO with an additional constraint that ensures that the terminating ends in the

extracted portion will remain as the terminals during the reconstruction. After 100 iterations, the

reconstructed portion of the tour is recombined back to the original tour and the newly diversified

solution is returned back to the TS Engine, via the Event Controller, to replace the current

solution in the TS Engine (illustrated in Figure 5.4).

Collaborative Coalition (HASTS-CC)

This hybrid scheme follows a 2-phase approach between ACO and TS, in which the ACO

acts as constructing phase while the TS fit into the optimizing phase. To implement this scheme,

we embedded the TS Engine into a handler object. We then set an event that detects the end of all

iteration in ACO. When this event triggers, it indicates that ACO has completed all its iterations.

The Event Controller will then pass the best found solution by the ACO Engine into the handler,

which in turn places this solution as the initial solution for the embedded TS. Subsequently, the

handler runs the TS Engine for some iterations, and returns to the Event Controller the optimized

solution (illustrated in Figure 5.5).

Iterations

Handler: Embedded ACO

Lvl 0

Lvl 1

Main Algorithm: Strict TS

Recursive
Level

1 1

2 2

3

Event Legend:
 TS encountered a series of

non-improving solutions
End of embedded ACO
iterations
End of TS iterations

HASTS-ED

1

2

3

Figure 5.4: Timeline illustration of HASTS-ED.

Two Hyper-Hybrid Models

In addition, the four hybrid schemes can be combined easily to form hyper-hybrids. We

continue to introduce two hyper-hybrid schemes, HASTS-CCED and HASTS-IEEA. In HASTS-

CCED (illustrated in Figure 5.6), we replace the embedded TS in the handler with the

implementation of HASTS-ED. This aims to enhance the optimizing phase. For HASTS-IEEA

(illustrated in Figure 5.7), the event and the TS embedded handler of HASTS-IE is added into the

implementation of HASTS-EA, thus allowing the overall design to develop a more aggressive

diversifying capability. These hyper-hybrids have illustrated to us on the ease of forming complex

hybrids from previously constructed applications. Initial experimentation of these hyper-hybrids

has shown promising results with low additional development cost.

Iterations

Handler: Embedded TS

Lvl 1

Lvl 2

Main Algorithm: ACO

Recursive
Level

1

2

Event Legend:

End of 1st phase ACO
iterations
Encountered a series of non-
improving solutions
 End of embedded ACO
iterations
End of embedded TS
iterations
End of Optimization

Lvl 0 4

Handler: Embedded ACO

3

1

2

3

4

5

5

Iterations

Handler: Embedded TS

Lvl 0

Lvl 1

Main Algorithm: ACO

Recursive
Level

1

2

Event Legend:

End of ACO iterations
End of embedded TS
iterations
End of Optimization

3

1

2

3

Figure 5.5: Timeline illustration of HASTS-CC.

HASTS-CC

HASTS-CCED

Figure 5.6: Timeline illustration of HASTS-CCED.

6. EXPERIMENTAL RESULTS

We now present experimentally the cost-effectiveness of MDF in designing and

implementing hybrids for TSP. The test problems are obtained from TSPLIB [Reinelt, 1991].

6.1 Development Cost

The most obvious incentive for using a framework is the reduction in development cost.

It is however difficult to measure development cost directly due to a myriad of factors. We noted

the work of [Park, 1992], in which the Source Lines of Code (SLOC) metric was proposed as an

estimator for approximating the required effort. While the SLOC metric may not be adequate in

predicting the factors such as differing programmer efficiencies and a lack of consideration for

the debugging validation costs, it nevertheless provides a good estimation of the overall

development cost. SLOC has been widely used in the software development industry (such as

COnstructive COst MOdel (COCOMO) [USC-CSE, 2006] and System Evaluation and Estimation

of Resources - Software Estimating Model (SEER-SEM) [Galorath, 2006]). As such, we adopt

this metric in our experimentation as an approximation on the development efforts required to

implement each of the hybrid schemes described in Section 5. The SLOC count for each

approach was obtained by using the freely available SLOCCount [Wheeler, 2006] tool.

For the pure TS and AC approaches, SLOC counts the lines of code written to customize

Iterations

Recursive
Level

Handler: Embedded HASTS-EA

Lvl 0

Lvl 1

Main Algorithm: ACO

1 1 1

2 2 2

3

Event Legend:

Solution found by
Iteration Best Ant
End of embedded
HASTS_EA iterations
End of ACO iterations

1

2

3

Figure 5.7: Timeline illustration of HASTS-IEEA.

HASTS-IEEA

the TS and AC engines in MDF for solving TSP. For the hybrid approaches, SLOC counts the

lines of codes needed to implement the additional events and handlers required for that hybrid,

under the condition that both pure TS and pure AC have already been implemented. For the

hyper-hybrid HASTS-CCED, the 2-shade bar signifies that HASTS-CCED uses the same events

and handlers as its parents (HASTS-CC and HASTS-ED) and can be implemented without

writing any additional code. This is similar for the case of HASTS-IEEA.

From Figure 6.1, we can infer that most of the development time was spent developing

the parent meta-heuristics (pure TS and AC). While MDF also offers some savings in

development effort for these pure schemes as compared to developing from scratch, the real

benefits of MDF can be seen in the effort required to implement the hybrids. The simple hybrids

(HASTS-EA, HASTS-IE, HASTS-ED and HASTS-CC) can each be implemented in under 50

lines of code (almost an order of magnitude less than the development codes of their parent

schemes). Remarkably, hybrid of hybrids (HASTS-CCED and HASTS-IEEA) can be

implemented without writing any additional code.

The results demonstrate the effectiveness of MDF as a framework for rapid prototyping

of hybrid meta-heuristics, due to the effectiveness of maximizing code reuse. What is noteworthy

is that for the hybrids implemented, the higher the level of hybridization required, the less actual

implementation work (in terms of code to be written) needs to be done. Simple hybrids require far

Figure 6.1: Approximation of development cost by SLOC

less lines of additional code than pure approaches and hybrid of hybrids require less effort than

simple hybrids to implement. Consequently, this strongly encourages developers to perform

hybridization even on existing MDF-based applications, as the amount of effort will be greatly

reduced, hence promoting the developers to experiment on their devised hybrid schemes.

6.2 Comparison of Effectiveness

All TSP test cases are run on different hybrids using an Athlon XP 3200+ processor with 512MB

of memory, and the results are taken after 90 seconds regardless of the instance size. For each

scheme, a greedy heuristic based on the nearest neighbor is used to construct the initial solution.

The results of 21 test cases from TSPLIB are recorded in Tables 6.1 and 6.2. For both

tables, we measure the improvement in performance of each hybrid scheme with respect to their

parent approaches – Table 6.1 with ACO and Table 6.2 with TS. A positive result indicates

improvement while a negative result shows that the hybrid is actually performing poorer than its

parent. We also include the comparison of the expected effectiveness of the hybrids per line of

code (which we term as Effective Gain) under the tested benchmarks.

Except for the HASTS-EA scheme, the rest of the hybrids performed better than their

parent, with most significant effective gain with the HASTS-IE scheme, thus showing the

effectiveness of this scheme. However, if we assume that HASTS-EA and HASTS-IE have been

constructed, then the additional effort to construct HASTS-IEEA will be negligible (instead of the

recorded 61 lines, which is the sum of HASTS-EA (14 lines) and HASTS-IE (47 lines)). Under

this condition, HASTS-IEEA will emerge as the hybrid scheme with the best effective gain. One

noticeable trend is that approaches like HASTS-CC and HASTS-EA that use pure AC as the

primary meta-heuristic do not do perform well for larger test cases like LIN318. This could be

due to the fact that these schemes are limited by pure AC which does not perform well for larger

TSP problems [Stuetzle and Dorigo, 1999].

Table 6.1: Comparison of hybrid schemes improvement with respect to ACO

Table 6.2: Comparison of hybrid schemes improvement with respect to TS

One point which we wish to demonstrate is the difficultly of predicting the performance

of hybrid schemes with any amount of accuracy without performing empirical testing. This point

is borne out by the example of HASTS-IEEA which gives good performance despite the poor

performance of its HASTS-EA parent. This is in contrast to HASTS-CCED which is worse than

HASTS-ED. This task of testing multiple hybrid approaches is however prohibitively time

consuming if each hybrid needs to be developed from scratch. This is where the key benefit of

MDF is evident, for it allows developers to rapidly prototype and test the effectiveness of

different hybrid approaches. While this admittedly comes at the cost of run-time efficiency, the

cost of CPU time is significantly cheaper (and decreasing at a faster rate) than the cost of the

developer’s time, making the use of MDF a cost effective proposition.

7. CONCLUSION

MDF provides a platform for the rapid prototyping of hybrid meta-heuristic schemes. The

well-structured architecture of MDF offers a strong basis for software reuse (Section 6.1), in

which each interface clearly defines its role without losing the generic aspect of the framework

(Sections 2 and 4). The savings in development time through recycling of codes can be channeled

into development and testing of more hybrid schemes, which allows more schemes to be

compared so as to choose the most appropriate one. This is especially relevant when considering

that the effectiveness of a hybrid can usually only be determined empirically (Section 6.2).

MDF has been successfully used in several applications [Lau et al, 2004b; Lau et al,

2005]. The current design of MDF relies on the users in matching an event to an appropriate

handler (with embedded actions). This procedure while good in giving absolute control, it

demands certain experiences and expertise from the users. To make MDF user-friendly, we are

currently developing a more intelligent control mechanism which makes use of adaptive learning

to match events to handlers. The improved controller will monitor the past performance of a

handler in dealing with a given event and then favors the execution of handlers which have shown

good prior performance.

REFERENCES:

Andreatta, A. A., Carvalho, SER., Ribeiro, C. C., 2002. In Optimization Software Class Libraries,
Kluwer pp. 59-80.

Bent, R., van Hentenryck., P., 2004. A Two-Stage Hybrid Local Search for the Vehicle Routing
Problem with Time Windows. Transportation Science, 38(4): 515-530.

Burke, E., Cowling, P., Landa, Silva J.D. 2001. Hybrid Population-Based Metaheuristic
Approaches for the Space Allocation Problem. Proceedings of the 2001 Congress on
Evolutionary Computation (CEC 2001), IEEE Press, pp. 232-239.

Burke, E., Hart, E., Kendall, G., Newall, J., Ross P., Schulenburg S, 2003. Hyper-Heuristics: An
Emerging Direction in Modern Search Technology. In Glover F. (ed), Handbook of Meta-
Heuristics, pp 457 – 474, Kluwer.

de Champeaux, D., Lea, D, Faure, P., 1993. Object-Oriented System Development,
Addison Wesley.

Di Gaspero, L., Schaerf, A., 2003. EASYLOCAL++: An Object-Oriented Framework for the
Flexible Design of Local Search Algorithms. Software - Practice & Experience 33(8):733-765.

Dorne, R., Voudouris, C., 2004. HSF: The iOpt’s Framework to Easily Design Metaheuristic
Methods. In Metaheuristics: Computer Decision Making, Kluwer Academic Publishers, pp 237-
256.

Fink, A., Voß, S., 2002. HotFrame: A Heuristic Optimization Framework. In: Voß, S., Woodruff,
D.L. (Eds.), Optimization Software Class Libraries, pp. 81-154, Kluwer Acad Publishers.

Glover, F., Laguna, M., 1997. Tabu Search. Readings. Kluwer Acad Publishers.

Galorath Incorporated, 2006. SEER-SEM Homepage. http://www.galorath.com/tools_sem.html.

Johnson, D.S., McGeoch, L.A., 1997. The Traveling Salesman Problem: A Case Study in Local
Optimization. In Local Search in Combinatorial Optimization, John Wiley and Sons, Ltd, pp
215-310.

Krasnogor, N., Smith, J.E., 2005. A Tutorial for Competent Memetic Algorithms: Model,
Taxonomy and Design Issues. IEEE Transactions on Evolutionary Computation 9:474-488.

Lau, H. C., Wan, W. C., Jia, X., 2003a. A Generic Object-Oriented Tabu Search Framework. In
the Proceedings of the 5th Metaheuristics International Conference. In T. Ibaraki, K. Nonobe and
M. Yagiura, (Eds.) Metaheuristics: Progress as Real Problem Solvers, Springer.

Lau, H. C., Lim, M.K. Wan, W. C., Wang, H., Wu, X., 2003b. Solving Multi-Objective Multi-
Constrained Optimization Problems using Hybrid Ants System and Tabu Search. In the
Proceedings of the 5th Metaheuristics International Conference.

Lau, H. C., Lim, M.K., Wan, W. C., Halim, S., 2004a. A Development Framework for Rapid
Meta-heuristics Hybridization. In the Proceedings of the 28th Annual International Computer
Software and Applications Conference. pp 362-367.

Lau, H.C., Ng, K.M., Wu, X., 2004b. Transport Logistics Planning with Service-Level
Constraints. In Proceedings of 19th National Conference on Artificial Intelligence. pp 519-524.

Lau, H.C., Wan, W.C., Halim, S., 2005. Tuning Tabu Search Strategies via Visual Diagnosis. In
Proceedings of the 6th Metaheuristics International Conference. pp 630-636.

Park, R.E., 1992. Software Size Measurement: A Framework for Counting Source Statements.
Technical Report CMU/SEI-92-TR-020. Carnegie Mellon University-Software Engineering
Institute.

Reinelt, G., 1991. TSPLIB - A Traveling Salesman Problem Library. ORSA Journal on Computing
3:376-384.

Resende, M.G.C., Riberiro, C.C., 2003. GRASP and Path-Relinking: Recent Advances and
Applications. Proceedings of the 5th Metaheuristics International Conference. In T. Ibaraki, K.
Nonobe and M. Yagiura, (Eds.) Metaheuristics: Progress as Real Problem Solvers, Springer.

Stuetzle, T., Dorigo, M., 1999. ACO Algorithms for the Traveling Salesman Problem. In
Evolutionary Algorithms in Engineering and Computer Science, Wiley. pp 163-183.

Talbi, E., 2002. A Taxonomy of Hybrid Metaheuristics. Journal of Heuristics 8:541-564.

USC-CSE Center for Software Engineering, 2006. COCOMO II Homepage.
http://sunset.usc.edu/research/COCOMOII/.

Vasquex, M., Vimont, Y., 2005. Improved Results on the 0-1 Multidimensional Knapsack
Problem. European Journal of Operational Research 165: 70-81.

Wagner, S., Affenzeller, M., 2004. The HeuristicLab Optimization Environment. Technical
Report, Institute of Formal Models and Verification, Johannes Kepler University Linz, Austria.

Wheeler, W.A., 2006. SLOCCount Homepage. http://www.dwheeler.com/sloccount/.

Wolpert, D.H., Macready, W.G.., 1997. No Free Lunch Theorems for Optimization.
IEEE Transactions on Evolutionary Computation 1(1): 67-82.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

