= .

o DD
acm International Collegiate
Programming Contest

T=E5 event
il TE sponsor

CS3233
Competitive Programming

Dr. Steven Halim
Week 01 — Introduction

Illlld” O
-
-
Li_

|

:._'_.. i
-
MBI,
| I8l
J i |
-
E=
o
I
|
\

f

| 1l il
‘iII|EE “-.:.
. | ..I'
e 121 AJ{ I

|

d lo) oSl EabF lade B T FhJEdl 1%s g FMibd-T%0 &AI1CA 0

Outline

e Course Administration
— Break 1, Clicker, CP2.9 order (~6.30-6.45pm)

e Competitive Programming Book (2.9th Ed), Ch 1
— Competitive Programming: Live Demo
— Tips to be Competitive: Hands on ©, join me
— Break 2 (~7.50-8.00pm)

e Mooshak: First Mock Contest & Discussion

— 45 minutes contest: 2 “easy” + 1 “medium” problems

Course Administration (1)

 Teaching Staffs:

— Lecturer:

e Dr. Steven Halim: stevenhalim at gmail

— Add me in Facebook if you haven’t done so
— www.facebook.com/groups/236210576509653
— uhunt.felix-halim.net/id/32900

 Email subject format: “[CS3233]-MESSAGE”
e Office & Phone: COM2-3-37 & 6516-7361

— Teaching Assistant:
e Huang Da: 20091847 at nus edu sg

CS3233 - Competitive Programming,
Steven Halim, SoC, NUS

Course Administration (2)

e Modular Credit: 4
e Not a hard module (to score)*

— No Final Exam (yippie)
— “No” bell curve grading system

— Grade History:

S2 of AY
2008/09
2009/10
2010/11
2011/12

Stu

21
12
17
24

#AHA/A L B B 58/74 = 78% students
139 1 1 got A- or above ©
11 1 0
13) 2 68/74 = 92% students
15 5 3 got B+ or above ©

CS3233 - Competitive Programming,
Steven Halim, SoC, NUS

Course Administration (3)

e Class timetable:
— Wednesday, 6-9 (or 10*) pm @ COM1-B-PL2
— Week01 to Week13, minus recess week

e Course Website:
— |IVLE, search CS3233 (of S2 AY 2012/13)

e http://www.comp.nus.edu.sg/~cs3233 is not used

— Details about Syllabus/Lesson Plan/Workload/
Assessment are all there

CS3233 vs CS1010/CS1101S

* In CS1010 (or CG1101)/CS1101S

— You learn how to create programs

* In CS3233

— | assume that you are good at that

* You can use C++ or Java for contests/homework
— C++ is the main language in CS3233
— Java is the second language in CS3233
— However, mastering both is an advantage in CS3233
— Scheme (CS1101S) and Pascal are NOT supported!

e Please reconsider if you do not like coding!

CS3233 vs CS1020/CS2020 1st half

* In CS1020/CS2020 1st half

— You learn some well-known linear
data structures and algorithms

* In CS3233

— We only revisit them in the first two weeks++

e Then, we show how those DSes and algorithms can be
coded into computer programs quickly and effectively

e Please reconsider if you passed this module
with difficulty (although you scored A- or above)!

CS3233 vs CS2010/CS2020 2nd half

In C52010/CS2020 2nd half

— You learn one-fifth of CS3233 materials

e Graph (~4 weeks/lectures)
e Dynamic Programming (~3 weeks/lectures)

In C53233

— We revisit them in just one and half weeks
(Week04 + Help session of Week05)
 With emphasis on implementation speed...

e Then we will learn much more ©...

— The pre-req of CS3233 is A-in C52010/CS2020;
CS$3233 is now designed with this assumption (verbal details)

CS3233 versus CS3230

* |n CS3230

— You learn more well-known algorithms
(mostly analysis/proofs)

* |n CS3233

— We learn how to implement them plus several (lots?)
additional topics outside CS3230 (hands-on)
 We do not discuss their theoretical background in depth!
e Please reconsider if you are not prepared
to learn many new things
— Side note: It may be good to take both
CS3230/CS3233 in the same sem (verbal explanation)

CS3233 versus Other Modules

e Obtaining ~“52%* (verbal explanation) from total
marks is already enough to get a good grade (B+)
— In normal module, this is usually a ‘C+’ grade... ®
— | repeat, in the last four years:
o ~78% got at least A- © and ~92% got at least B+ ©
 Higher chance™* to represent NUS
in the Annual ACM International
Inter-Collegiate Programming Contest (ICPC)
— Free trip(s) to a few Asian countries™ — Regionals 2013
— And perhaps to World Finals 2014

In CS3233
but not in other SoC CS modules

e This information is true for S2 AY 2013/2014 version:

— Heavy usage of bitmask operations (for backtracking, DP, etc)
— Binary Indexed (Fenwick) Tree

— State-Space Search

— Meet in the Middle (Bidirectional Search)

— Various DP tricks (much more than C$3230/2020/2010)

— Network Flow and Graph Matching (not in CS2020/2010
but maybe in C55234 — Comb and Graph Algorithms)

— Various Mathematics algorithms and tricks

— Suffix Array (CS5238 — Adv Comb Methods in Biolnfo)
— Convex Hull, Cut Polygon (CS5237 — Comp Geo & Apps)
— And some mysterious stuffs...

CS3233 Lecturer History

Initiated by Prof Andrew Lim (CUHK): 1999-2001
— Vacuum in AY 2002/03... ®

Between 2004-2006, CS3233 was taught by
A/P Leong Hon Wai and A/P Ooi Wei Tsang

— Another vacuum in AY 2007/08... ®
Revived again* on semester 2, 2008/09 ©
Note: Each lecturer has different style...

— Mine is geared towards ICPC (and also 10l) preparation

— But have now been calibrated to match the level of
typical second upper/first class students in NUS

SoC Teams Performance History (1)

e ACM ICPC World Finals

1999: Joint-18

2000: Joint-22

2001: Joint-29

2003: Joint-13

2005: Melvin, Junbin, Yunsong: Hon. Mention

2009/Stockholm, Sweden: Duc, Tien, Phong: Hon. Mention
2010/Harbin, China: Duc, Tien, Phong: Hon. Mention

2011: Miss out by 2 ranks ®

2012/Warsaw, Poland: Zi Chun*, Harta*, Phuong*: Hon. Mention
2013/St Petersburg, Russia: Harta*, Phuong*, Sy Nguyen*

SoC Teams Performance History (2)

e Recent ACM ICPC Regional Contests
— 2008: 6% in Amritapuri; 3" in Kanpur; Joint-15t & Joint-16t in KL
— 2009: 7th & 10t in Jakarta; 3 in Manila; 29 and 10t in Phuket
— 2010: 10t in Daejeon; 6* in Kuala Lumpur; 10t in Tokyo
— 2011: 7™* in Phuket; 5t"* in Kuala Lumpur
— 2012: 3% in Jakarta; not so lucky in Hat Yai
— 2013: YOUR TURN for World Finals 2014 (or 2015)!

e More history in:
— http://algorithmics.comp.nus.edu.sg/wiki/

CS3233 - Competitive Programming,
Steven Halim, SoC, NUS

SoC Current Strengths

e Teaching Staffs and Seniors:

— A/P Tan, Dr Steven, Suhendry, Zi Chun*, Harta Wijaya*,
Tuan Phuong®*, Sy Nguyen*, etc
e * ex/current-World Finalists currently in SoC
— Singapore 10l Teams 2010-2012
* 2 Golds, 4 Silvers, and 5 Bronzes by this team over the past 3 years
— Leaving/already left/not in SG:
e Minh Duc (@ FB), Duc Phong, Hoanh Tien, Victor Loh (@ FB),
Felix Halim (@ Google), Su Zhan (@ Google)

e Current Students:
— Many potential students (YOU ALL)...

Text b O O k Competltlve Progwl:irmr:mu:? 2 9

Competitive Programming 2.9
— It will be CP3 by May 2013, with your inputs

COMPULSORY!!

30 SGD/copy (for fresh purchase)
(15 SGD discount if you can show me
that you already have CP2.5/CP2/CP1)

Steven Halim
Felix Halim

ND IOl CONTESTANTS

W !! p b\l I\Ionkﬂ')

VV oGO INV

=
c—+

Yy
— Chl.pdf has been sent to you on 1 Jan 2013

Public version (simplified form), is in:
http://sites.google.com/site/stevenhalim/home/material

CS3233 - Competitive Programming,
Steven Halim, SoC, NUS

Clicker Distribution + CP2.9 Order
(15 Minutes Break)

* During the break:

— | will distribute clickers

 |n this small class, each of you must take one clicker

— You can discuss administrative issues with me
(i.e. should | take this module or not?, etc)

o Il NLIC AwvrAn vaz i+l \A// or

v \A/J Iy NDI
HiINUO, UTUPY WILHTL VYV & | .

vveeKk us

— Order “Competitive Programming 2.9” textbook

Time Check:
6.30pm

This is the new standard.

COMPETITIVE PROGRAMMING 2.9

CS3233 - Competitive Programming,
Steven Halim, SoC, NUS

Who have read CP2.5/2/17

| have only pre-order
CP2.9, so 0 page so far...

Most of chapter 4 and a bit

of chapter 3 due to
CS2020/CS2010 (CP2.5)

| have read and understand
most of it, but | want to
know what are the new
stuffs in CP2.9 ©

TS3233 JCompetitive Prograinming, 2 3

O of 120 Steyen Halim, SoC, NUS

Competitive Programming

e Given well-known Computer Science problems,
solve them as fast as possible!

— Not about “software engineering”

— Solve judge’s test data correctly

— Run fast enough

— Well-known = not research problems!

— Problems in our target contests
(ACM ICPC & 101)
have this characteristic!

CS3233 - Competitive Programming,
Steven Halim, SoC, NUS

Demo (UVa 10684 — The jackpot)

 This exaggerated demo illustrate contestant’s type:
— The blurry one
— Give up
— Slow
— Competitive programmer
— Very competitive programmer

CP2.9, Chapter 1
(if you have read ahead, good ©,
help the rest by answering the pop-quizzes)

TIPS TO BE COMPETITIVE

CS3233 - Competitive Programming,
Steven Halim, SoC, NUS

Tip 1: Type Fast & Correct

 No kidding, this can be important!

o Let'stry
— http://www.typingtest.com
 ZEBRA — Africa’s Striped Horse kl_
— Mine: ~¥85-90 wpm
— Felix’s: ~55-65 wpm
e Familiarize yourself with the positions
of the following keyboard keys:

o (I)I{I}I[]1<;>;’;”;& |,!,etC

Tip 2: Identify Problem Types

Ad Hoc

Complete Search
Divide and Conquer
Greedy

Dynamic Programming

Graph
Mathematics
String Processing
Comp. Geometry
Some Harder Ones

Quick Test — Identification

 What is the type of this problem?

— And how many minutes that you think
you will need to solve this problem?

 Given an M*N integer matrix Q (1 <= M, N <= 50),
check if there exists a sub-matrix of Q of size A*B
(1 <=A<=M, 1<=B<=N)where mean(Q) =77

Tip 3: Do Algorithm Analysis

e This is taught in more details in CS3230!

* In this module, we will just learn the basics
required for dealing with ICPC/IOI problems

— See the constraints in the problem statement
— Conjure the simplest algorithm that works!

— Do some basic analysis to convince that it will
work before we start coding...

Tip 4: Master Prog Languages

* You should master at least one
(preferably more) programming languages
— Reduce the amount of time looking at references
— Use shortcuts, macros, avoid comments
— Use libraries whenever possible

e |dea: Once you figure out a solution for a problem,
you are able to translate it into a bug-free code,
and do it fast!

Tip 5: The Art of Testing Code

e Ultimately, we want “Accepted (AC)” verdict ©

— i.e. Our code passes the judge’s secret test data

* However, we may instead be given: ®
— Presentation Error (PE)
— Wrong Answer (WA)
— Time Limit Exceeded (TLE)
— Memory Limit Exceeded (MLE)
— Runtime Error (RTE)

Tip 6: Practice...

 Relevant Online Judges uva Online Judge

— MAIN: University of Valladolid (UVa) Online Judge
e http://uva.onlinejudge.org (Open with Firefox!)

— MISC: ACM ICPC Live Archive

e https://icpcarchive.ecs.baylor.edu

— MISC: TopCoder

e http://www.topcoder.com
— MISC: USACO COMPUTING

ACM-ICPC Live Archive

OLYMPIAD

e http://train.usaco.org

CS3233 - Competitive Programming,
Steven Halim, SoC, NUS

| have...

Registered a free Uva
account but have not
solve anything

Have solved = 1 UVa
problems

Have solved = 10 UVa
problems

Have solved > 40 UVa
problems 0

TS3233 -]Competitive Programming, 2 3 4
O of 120 Steyen Halim, SoC, NUS

Tip 7: Team Work (ICPC Only)

Practice coding on a blank paper
Submit and print strategy
Prepare test data challenges
The X-factor

You will experience such team work in mid
semester and final team contests ©

LET’S START OUR JOURNEY

Anatomy of a Problem

Background story/problem description
— Can be deceiving...

Input and Output description

— Usually written in formal manner
— Most new problems are multiple test cases problems

Sample Input and Sample Output

— Usually very trivial, you need to come up with
stronger/trickier test cases by yourself

Hints or Footnotes

Quick Note: Ad Hoc Problems

e Read CP2.9 Chapter 1 by yourself

 We will spend our remaining time discussing
more interesting stuffs...

Linear Algorithms (1)

What is an O(n) solution for a certain problem?

Really just one pass through all n elements
* e.g. find the min/max element of an array with size n

k passes through all n elements, e.g. O(kn), k is ‘small’

e e.g. Find the second (k = 2) smallest element of an array

One (or ‘a few’) pass(es) through all elements with operations that
runs in O(n) in amortized sense

One (or ‘a few’) pass(es) through all elements, with a help of a
logarithmic cost Data Structure/extra component, e.g. O(n log n)
e Adding a O(log n) component to an O(n)-loop usually does NOT
significantly increase the runtime under contest settings!

— You can treat this as “bonus”... (important for 10l)

Linear Algorithms (2)

e Several “rare” topics solvable with O(n) algorithms:
Bracket Matching

Postfix Calculator and Conversion (Shunting yard)
(Static) Selection Problem

Sorting in Linear Time

Sliding Window

e | will present these problems briefly

e For more details about the solutions,
please read Chapter 9 of CP2.9 on your own ©

Al S

Bracket Matching

0, ‘1), ‘O3] are correctly matched braces
), (¥, ‘)(’ are NOT correct

Can we detect if a given expression of braces are
correctly matched in O(n)?

Postfix Calculator

 There are three well-known types of algebraic
expressions:
— Infix (our default setting), e.g. 2+6 *3,(2+6) * 3
— Prefix (Polish), e.g. +2*63,*+263
— Postfix (Reverse Polish),e.g. 263 *+,26+3 *

e Can we evaluate a Postfix expression in O(n)?

Postfix Conversion

e Given an infix expression (that may contain
parentheses), e.g. (2 + 6) * 3,
can we compute the equivalent postfix expression,
e.g.26+3*in0O(n)?

Static Selection Problem

e Given a static (unchanged) array A of n elements,
can we find the k-th smallest element of A in O(n)?
—e.g.forA={2,8,7,1,5,4,6, 3}, n=8,
the 4-th smallest element is 4,
the 8-th smallest element is 8, etc

Special-Purpose Sorting

Given an array A of n small integers (each integer is
between [0..100]), can we sort them in O(n)?

—eg.A={0,3,0,0,1,1}->1{0,0,0,1, 1, 3}

What if the given array A has a range of 32-bit
unsigned integers, e.g. from [0..232-1]?

— e.g. A={1, 1000000000, 2} = {1, 2, 1000000000}

Isn’t the lower bound of sorting is Q(n log n)?

Sliding Window

e Given an array of n elements, can we find a smallest
sub-array size so that the sum of the sub-array is
greater than or equal to a certain constant S in O(n)?

—e.g.forA={1,5,1,3,[5,10],7,4,9, 2,8} and S =15,
the answer is 2 as highlighted

e Given an array of n elements, find the minimum of
each possible sub-arrays with size K in O(n)!

—e.g.forA={0,5,5,3,10,0,4},n=7,and K= 3, we have 5
possible sub-arrays: {0, 5, 5}, {5, 5, 3}, {5, 3, 10}, {3, 10, 0},

and {10, 0, 4}. The minimum of each sub-array is O, 3, 3, 0, O,
respectively

Next Week

e CH2: Data Structures and Libraries

— Focus on bit manipulation and
Binary Indexed (Fenwick) Tree

* No homework yet, but please try UVa!

skillset.xls Survey

e | want to measure your skillset (NUS students only)

— But this is an optional task

e Download the file from:
— https://sites.google.com/site/stevenhalim/home/material
— See Week01
— Fill it, rename it to “skillset-yourname.xl|s”
— Upload to IVLE Workbin

e To save time, let’s do this at home

— | will send a reminder ©

10 Minutes Break

* |n the last part of our first introductory class,
you will familiarize yourself with Linux controlled
environment in this PL2 and the Mooshak system,
the internal online judge used for CS3233 this sem
— Mock contest with 2 “easy” + 1 “medium” problems

— Not graded yet ©, enjoy it for fun
(and to help you decide if you should take CS3233)

Time Check:
7.50pm

Mooshak

e Let’s try this system

— Open with Firefox
(does not work well with most other browsers ®):

e http://algorithmics.comp.nus.edu.sg
— Click “Online Judge (Login)” at the top left corner
— Try “MiniO (16 Jan 2013)”

— Use user ids that have been emailed to you

e For new participants use dummy IDs where pwd = uid
— teamO1, team02, teamO03, ...
— | will tell who use which id

