This course material is now made available for public usage. Special acknowledgement to School of Computing, National University of Singapore for allowing Steven to prepare and distribute these teaching materials.

CS3233

Competitive Programming

Dr. Steven Halim
Outline

• Mini Contest #6 + Break + Discussion + Admins
• Graph Matching
 – Overview
 – Unweighted MCBM: Max Flow, Augmenting Path, Hopcroft Karp’s
 • Relevant Applications: Bipartite Matching (with Capacity),
 Max Independent Set, Min Vertex Cover, Min Path Cover on DAG
 – Weighted MCBM: Min Cost Max Flow (overview only)
 – Unweighted MCM: Edmonds’s Matching
 – Weighted MCM: DP with Bitmask (only for small graph)
Graph Matching

• A matching (marriage) in a graph G (real life) is a subset of edges in G (special relationships) such that no two of which meet at a common vertex (that is, no affair!)

• Thus a. b. c. are matchings (red thick edge),

• But d. is not since there is an overlapping vertex
Max Cardinality Matching (MCM)

- Usually, the problem asked in graph matching is the size (cardinality) of a maximum matching.
- A maximum matching is a matching that contains the largest possible number of edges.
Examples

• is a maximum matching (0 matching) (no edge to be matched)
• is also a maximum matching (1 matching) (no other edges to be matched)
• But is not a maximum matching as we can change it to (2 matchings)
Types of Graph Matching

EASIER

- Bipartite?
 - Yes: Perfect Matching
 - Other Attribute: Weighted?
 - Yes
 - Weighted MCM
 - DP with Bitmask (small graph)
 - No
 - Unweighted MCM
 - Edmonds's Matching
 - No: Unweighted MCBM
 - Weighted?
 - Yes
 - Weighted MCBM
 - Min Cost Max Flow
 - No
 - Unweighted MCBM
 - Max Flow
 - Augmenting Path
 - Hopcroft Karp’s

EASIER

CS3233 - Competitive Programming, Steven Halim, SoC, NUS
Types of Graph Matching

- Bipartite?
 - Yes: Weighted?
 - No: Unweighted MCBM
 - Max Flow
 - Augmenting Path
 - Hopcroft Karp’s
 - Yes: Weighted MCBM
 - Min Cost Max Flow
- No: Weighted?
 - Yes: Unweighted MCM
 - Edmonds’s Matching
 - No: Weighted MCM
 - DP with Bitmask (small graph)

CS3233 - Competitive Programming,
Steven Halim, SoC, NUS
Solutions:
Max Flow
Augmenting Path Algorithm
Hopcroft Karp’s Algorithm

UNWEIGHTED MCBM
Augmenting Path

- In this graph, the path colored orange (unmatched) → red (matched) → orange is an augmenting path.
- We can flip the edge status to red-orange-red and the number of edges in the matching set increases by 1.
MC Bipartite Matching (MCBM)

- A Bipartite graph is a graph whose vertices can be divided into two disjoint sets X and Y such that every edge can only connect a vertex in X to one in Y.
- Matching in this kind of graph is a lot easier than matching in general graph.
Finding MCBM by reducing this problem into MAX FLOW
Max Flow Solution for MCBM

All edge weight = 1

All edge weight = 1

All edge weight = 1

Time Complexity: Depends on the chosen Max Flow algorithm
Finding MCBM via

AUGMENTING PATH ALGORITHM
Augmenting Path Algorithm

• Lemma (Claude Berge 1957):

 A matching M in G is maximum iff there is no more augmenting path in G

• Augmenting Path Algorithm is a simple $O(V^*(V+E)) = O(V^2 + VE) \sim O(VE)$ implementation of that lemma
vi match, vis; // global variables

int Aug(int l) { // return 1 if \exists an augmenting path
 if (vis[l]) return 0; // return 0 otherwise
 vis[l] = 1;
 for (int j = 0; j < (int)AdjList[l].size(); j++) {
 int r = AdjList[l][j].first;
 if (match[r] == -1 || Aug(match[r])) {
 match[r] = l;
 return 1; // found 1 matching
 }
 }
 return 0; // no matching
}
The Code (2) 😊

// in int main(), build the bipartite graph
// only directed edge from left set to right set is needed

int MCBM = 0;
match.assign(V, -1);

for (int l = 0; l < Vleft; l++) {
 vis.assign(Vleft, 0);
 MCBM += Aug(l);
}

printf("Found %d matchings\n", MCBM);
Augmenting Path Algorithm

A

Easy Assignment
1 matching (dotted line)

B

Augmenting Path
2-3-1-4

D

After Flip
2 matchings (dotted lines)

C

An augmenting path
F=Free, M=Matched

Flip to increase matching from 1 to 2 matchings

Finding MCBM via

HOPCROFT KARP’S ALGORITHM
An Extreme Test Case...

- A Complete Bipartite Graph $K_{n,m}$, $V=n+m$ & $E=n*m$
- Augmenting Path algorithm $\rightarrow O((n+m)*n*m)$
 - If $m=n$, we have an $O(n^3)$ solution, OK for $n \leq 200$
- Example with $n = m = 5$

![Complete Bipartite Graph $K_{5,5}$](image)
Hopcroft Karp’s Algorithm (1973)

• Key Idea:
 – Find the shortest augmenting paths first from all free vertices (with BFS)
 – Run similar algorithm as the Augmenting Path Algorithm earlier (DFS), but now using this BFS information
Hopcroft Karp’s Algorithm (1973)

- Hopcroft Karp’s runs in $O(E\sqrt{V})$, proof omitted
 - For the extreme test case in previous slide, this is $O(n^2m^2\sqrt{n+m})$
 - With $m = n$, this is about $O(n^{5/2})$, OK for $n \leq 600$
- Question: Is this algorithm **must be learned** in order to do well in programming contest?
EXAMPLES OF MCBM IN PROGRAMMING CONTESTS
Popular Variants
Max Independent Set / Min Vertex Cover

A. MCBM

B. Max Independent Set
MIS: V – MCBM

C. Min Vertex Cover
MVC: MCBM

(König's theorem)
Min Path Cover
in DAG

• Illustration:
 – Imagine that vertices are passengers, and draw edge between two vertices if a single taxi can satisfy the demand of both passengers on time...
 – What is the minimum number of taxis that must be deployed to serve all passengers?

• This problem is called: Min Path Cover
 – Set of directed paths s.t. every vertex in the graph belong to at least one path (including path of length 0, i.e. a single vertex)

Answer: 2 Taxis!
Types of Graph Matching

- Bipartite?
 - Yes
 - Weighted?
 - Yes: Weighted MCBM
 - Min Cost Max Flow
 - Edmonds’s Matching
 - No: Unweighted MCM
 - DP with Bitmask (small graph)
 - No: Unweighted MCBM
 - Max Flow
 - Augmenting Path
 - Hopcroft Karp’s
Solution:
Min Cost Max Flow (Overview Only)

WEIGHTED MCBM
Min Cost so far =
0 + 5.0 + 0 +
0 + 10.0 - 5.0 + 10.0 + 0 +
0 + 20.0 + 0 = 40.0

Complete Bipartite Graph $K_{n,m}$
Capacity = 1
Cost (as shown in edge labels)

Time Complexity: Depends on the chosen MCMF algorithm
Types of Graph Matching

- **Bipartite?**
 - No
 - **Weighted?**
 - No
 - Unweighted MCBM
 - Max Flow
 - Augmenting Path
 - Hopcroft Karp’s
 - Yes
 - Weighted MCBM
 - Min Cost Max Flow
 - Hopcroft Karp’s
 - Yes
 - Unweighted MCM
 - Edmonds’s Matching
 - Weighted MCM
 - DP with bitmask (small graph)
Solution:
Edmonds’s Matching Algorithm

UNWEIGHTED MCM
Blossom

• A graph is not bipartite if it has at least one odd-length cycle (blossom)
• What is the MCM of this non-bipartite graph?

MCM = 2

• Harder to find augmenting path in such graph
Blossom Shrinking/Expansion

- Shrinking these blossoms (recursively) will make this problem “easy” again

CS3233 - Competitive Programming,
Steven Halim, SoC, NUS
Types of Graph Matching

Bipartite?

Yes

Weighted?

No

Yes

Weighted?

No

Yes

Weighted?

Unweighted MCBM
- Max Flow
- Augmenting Path
- Hopcroft Karp’s

Weighted MCBM
- Min Cost Max Flow

Unweighted MCM
- Edmonds’s Matching

Weighted MCM
- DP with Bitmask (small graph)
Solution:
DP with Bitmask (only for small graph)

WEIGHTED MCM
Graph Matching in ICPC

• Graph matching problem is quite popular in ICPC
 – Sometimes 0 problem but likely 1 problem in the set
 – Perhaps disguised as other problems, e.g. Vertex Cover, Independent Set, Path Cover, etc → reducible to matching

• If such problem appear and your team can solve it, very good 😊
 – Your team will have +1 point advantage over significant # of other teams who are not trained with this topic yet...

• For IOI trainees... all these Graph Matching stuffs...
 – THEY ARE NOT IN THE SYLLABUS TOO :O:O:O...
References

• CP2.9, Section 4.7.4, 9.15 😊
• New write up about Graph Matching