Query Optimization in Relational Database Systems

It is safer to accept any chance that offers itself, and extemporize a procedure to fit it, than to get a good plan matured, and wait for a chance of using it.

Thomas Hardy (1874) in *Far from the Madding Crowd*
Query Optimization

• Since each relational op returns a relation, ops can be composed!

• Queries that require multiple ops to be composed may be composed in different ways - thus optimization is necessary for good performance, e.g. $A \bowtie B \bowtie C \bowtie D$ can be evaluated as follows:
 • $(((A \bowtie B) \bowtie C) \bowtie D)$
 • $((A \bowtie B) \bowtie (C \bowtie D))$
 • $((B \bowtie A) \bowtie (D \bowtie C))$
 • …
Query Optimization

- Each strategy can be represented as a query evaluation plan (QEP) - Tree of R.A. ops, with choice of algorithms for each op.

- Goal of optimization: To find the “best” plan that compute the same answer (to avoid “bad” plans)
Motivating Examples

Sailors (\textit{sid}: integer, \textit{sname}: string, \textit{rating}: integer, \textit{age}: real)
Reserves (\textit{sid}: integer, \textit{bid}: integer, \textit{day}: dates, \textit{rname}: string)

- **Reserves:**
 - Each tuple is 40 bytes long, 100 tuples per page, 1000 pages.
- **Sailors:**
 - Each tuple is 50 bytes long, 80 tuples per page, 500 pages.
Example

```
SELECT  S.sname
FROM  Reserves R, Sailors S
WHERE  R.sid=S.sid AND
       R.bid=100 AND S.rating>5
```
Example (Cont)

Query Evaluation Plan:

- Cost?

Physical plan
Example (Cont)

Query Evaluation Plan:

- Cost: $500 + 500 \times 1000$ I/Os
Example (Cont)

SELECT S.sname
FROM Reserves R, Sailors S
WHERE R.sid=S.sid AND R.bid=100 AND S.rating>5

- Cost: 500+500*1000 I/Os
- Memory?

Query Evaluation Plan:

- (Page Nested Loops)
- (On-the-fly)

\[\text{Sailors} \rightarrow \text{Reserves} \]

\[\text{sname} \]

\[\text{bid=100} \uparrow \text{rating > 5} \]

\[\text{sid=sid} \]
SELECT S.sname
FROM Reserves R, Sailors S
WHERE R.sid=S.sid AND R.bid=100 AND S.rating>5

Example (Cont)

Query Evaluation Plan:

- Cost: 500+500*1000 I/Os
- Memory: 3
Alternative Plan 1 (No Indexes)

- Main difference: push selections down
- Assume 5 buffers, \(T_1 = 10 \) pages (100 boats, uniform distribution), \(T_2 = 250 \) pages (10 ratings, uniform distribution)
- Cost of plan:
 - Scan Reserves (1000) + write temp \(T_1 \) (10 pages, if we have 100 boats, uniform distribution)
 - Scan Sailors (500) + write temp \(T_2 \) (250 pages, if we have 10 ratings)
 - Sort \(T_1 \) (2*2*10), sort \(T_2 \) (2*4*250), merge (10+250)
 - Total: 4060 page I/Os
Alternative Plan 2 (With Indexes)

- **Clustered index** on bid of Reserves
 - 100,000/100 = 1000 tuples on 1000/100 = 10 pages
- Hash index on sid (format 2). Join column sid is a key for Sailors
- INL with **pipelining** (outer is not materialized)
 - Project out unnecessary fields from outer doesn’t help
- At most one matching tuple, unclustered index on sid OK
- Did not push “rating>5” before the join. Why?
- Cost?
 - Selection of Reserves tuples (10 I/Os); for each, must get matching Sailors tuple (1000*2.2); total 2210 I/Os
Overview of Query Optimization

1. SQL query
2. Parse
3. Parse tree
4. Convert
5. Logical query plan
6. Apply laws
7. "Improved" l.q.p
8. Estimate result sizes
9. L.q.p. + sizes
10. Consider physical plans
11. Estimate costs
12. Pick best
13. Execute
14. Answer

\{P1, P2, ..., \}

CS3223: Query Optimization
SELECT sname
FROM Sailors
WHERE sid IN (
 SELECT sid
 FROM Reserves
 WHERE rname LIKE ‘Tan%’
);

(Find names of sailors whose reservation is made by someone whose name begins with “Tan”)

Example: Parse Tree

```
SELECT  <SelList>    FROM    <FromList>     WHERE     <Condition>
  <Attribute>              <RelName>                 <Tuple>  IN  <Query>
    sname                       Sailors               <Attribute>      (  <Query>  )
SELECT      <SelList>    FROM     <FromList>     WHERE     <Condition>
  <Attribute>           <RelName>         <Attribute>  LIKE  <Pattern>
    sid                       Reserves               rname                  'Tan%' 
```
Example:

Logical Query Plan

\[\Pi \text{sname} \sigma_{\text{sid}=\text{sid}} \times \Pi \text{sid} \sigma_{\text{name LIKE 'Tan%'}} \text{Reserves} \]

Improved Logical Query Plan

\[\Pi \text{sname} \sigma_{\text{sid}=\text{sid}} \times \Pi \text{sid} \sigma_{\text{name LIKE 'TAN%'}} \text{Reserves} \]

Can we improve further?

e.g. Push project to Sailors?
Example: Estimate Result Sizes

\[\Pi \]
\[\sigma \]

Sailors

Need expected size

Reserves
Example: One Physical Plan

Parameters: join order, memory size, project attributes, ...

Hash join

SEQ scan
Sailors

index scan
Reserves

Parameters: Select Condition, ...
Example: Estimate Plan Cost to Find Optimal QEP

QEPs

P1 P2 Pn

C1 C2 Cn

Pick best!
Relational Algebra Equivalences

What about $\sigma_{p_1 \lor p_2 \ldots \lor p_n}(R)$?

- Cascading of selections: $\sigma_{p_1 \land p_2 \land \ldots \land p_n}(R) \equiv \sigma_{p_1}(\sigma_{p_2}(\ldots(\sigma_{p_n}(R))\ldots))$
- Commutativity of selections: $\sigma_{p_1}(\sigma_{p_2}(R)) \equiv \sigma_{p_2}(\sigma_{p_1}(R))$
- Cascading of projections: $\pi_{L_1}(R) \equiv \pi_{L_1}(\pi_{L_2}(\ldots(\pi_{L_n}(R))\ldots))$, where $L_i \subseteq L_{i+1}$ for $i \in [1, n)$
- Commutativity of cross-products: $R \times S \equiv S \times R$
- Associativity of cross-products: $R \times (S \times T) \equiv (R \times S) \times T$
- Commutativity of joins: $R \bowtie S \equiv S \bowtie R$
- Associativity of joins: $R \bowtie (S \bowtie T) \equiv (R \bowtie S) \bowtie T$
- Others: $R \cup S = S \cup R$, $R \cap S = S \cap R$, $R \cup (S \cup T) = (R \cup S) \cup T$, $R \cap (S \cap T) = (R \cap S) \cap T$, etc.
Relational Algebra Equivalences

- $\pi_L(\sigma_p(R)) \equiv \sigma_p(\pi_L(R))$ if σ involves only attributes retained by π
- $R \bowtie_p S \equiv \sigma_p(R \times S)$
- $\sigma_p(R \times S) \equiv \sigma_p(R) \times S$ if σ refers to attributes only in R but not in S
- $\sigma_p(R \bowtie S) \equiv \sigma_p(R) \bowtie S$ if σ refers to attributes only in R but not in S
- $\pi_L(R \times S) \equiv \pi_{L_1}(R) \times \pi_{L_2}(S)$ if $L_1 = L \cap \text{attr}(R)$ and $L_2 = L \cap \text{attr}(S)$
- $\pi_L(R \bowtie_p S) \equiv \pi_{L_1}(R) \bowtie_p \pi_{L_2}(S)$ if $L_1 = L \cap \text{attr}(R)$, $L_2 = L \cap \text{attr}(S)$, and every attribute in ρ also appears in L
- Others: $\sigma_p(R \cup S) = \sigma_p(S) \cup \sigma_p(R)$, etc.
Bags vs. Sets

R = \{a,a,b,b,b,c\}

S = \{b,b,c,c,d\}

R \cup S = ?

- **Option 1** SUM

 R \cup S = \{a,a,b,b,b,b,b,c,c,c,d\}

- **Option 2** MAX

 R \cup S = \{a,a,b,b,b,c,c,d\}
“SUM” is implemented

• Use “SUM” option for bag unions
• Some rules cannot be used for bags
 • e.g. \(A \cap_s (B \cup_s C) = (A \cap_s B) \cup_s (A \cap_s C) \)

Let \(A, B \) and \(C \) be \{x\}

\[
B \cup_B C = \{x, x\} \quad A \cap_B (B \cup_B C) = \{x\}
\]

\[
A \cap_B B = \{x\} \quad A \cap_B C = \{x\} \quad (A \cap_B B) \cup_B (A \cap_B C) = \{x, x\}
\]
Query Optimizer

• Find the “best” plan (more often avoid the bad plans)
• Comprises the following
 • Plan space
 • huge number of alternative, semantically equivalent plans
 • computationally expensive to examine all
 • Conventional wisdom: avoid bad plans
 • need to include plans that have low cost
 • Enumeration algorithm (Search space)
 • search strategy (optimization algorithm) that searches through the plan space
 • has to be efficient (low optimization overhead)
 • Cost model
 • facilitate comparisons of alternative plans
 • has to be “accurate”
Join Plan Notation

- Nested-Loop Join
 - Outer Relation
 - Inner Relation

- Sort-Merge Join
 - Outer Relation
 - Inner Relation

- Hash Join
 - Build Relation
 - Probe Relation
Plan Space

- Left-deep trees: right child has to be a base table
- Right-deep trees: left child has to be a base table
- Deep trees: one of the two children is a base table
- Bushy tree: unrestricted

![Bushy tree](image1)
![Left-deep tree](image2)
![Deep tree](image3)
Query Plan Space for $R \bowtie S \bowtie T$

This has not accounted for the algorithms!
Search Algorithms (and Search Space)

• Exhaustive (*Complete space*)
 • enumerate each possible plan, and pick the best

• Greedy Techniques (*Very small – polynomial*)
 • smallest relation next
 • smallest result next
 • typically polynomial time complexity

• Randomized/Transformation Techniques (*Large space – can be complete if you run the algorithms indefinitely*)

• System R approach (*Almost complete*)
 • Dynamic Programming with Pruning
Multi-Join Queries

- Focus on multi-join queries first
 - Join is the most expensive operations
 - Selections and projections can be pushed down as early as possible

- Query
 - A query graph whose nodes are relations and edges represent a join condition between the two nodes
Greedy Algorithm (Example)

- Heuristic 1: Smallest relation next
 - Suppose \(R_i < R_k \) for \(i < k \)

Join Graph

All plans must begin with \(R_1 \)

All plans beginning with \(R_2-R_5 \) have been pruned!
Greedy Algorithm (Example)

- Smallest relation next
 - What if \(R_1 < R_5 < R_3 < R_2 < R_4 \)???

Another heuristic:
Smallest result next?
Randomized Techniques

• Employ randomized/transformation techniques for query optimization

• State space -- space of plans, State -- plan

• Each state has a cost associated with it
 • determined by some cost model

• A move is a perturbation applied to a state to get to another state
 • a move set is the set of moves available to go from one state to another
 • any one move is chosen from this move set randomly
 • each move set has a probability associated to indicate the probability of selecting the move

• Two states are neighboring states if one move suffices to go from one state to the other
Randomized Algorithm (Example)
More on Randomized Techniques

• A **local minimum** in the state space is a state such that its cost is lower than that of all neighboring states.

• A **global minimum** is a state which has the lowest cost among all local minima.
 • at most one global minimum

• A move that takes one state to another state with a lower cost is called a **downward move**; otherwise it is an **upward move**.
 • in a local/global minimum, all moves are upward moves.
Local Optimization

S = initialize() // initial plan
minS = S // cost of plan S – currently the best

repeat {
 repeat {
 newS = move(S) // move to a new plan
 if (cost(newS) < cost(S))
 S = newS
 } until (“local minimum reached”)

 if (cost(S) < cost(minS))
 minS = S
 newStart(S); // iterate with a different initial plan
} until (“stopping condition satisfied”)
return (minS);

Repeat until a near-optimal minimum is reached.

By doing so repeatedly, a local minimum can be reached.

A move is accepted if it is a downward move, i.e., has a lower cost.
Issues on Local Optimization

• How is the start state obtained?
 • The state in which we start a run
 • The start state of the first run is the initial state
 • All start states should be different
 • Should be obtained quickly
 • Random
 • greedy heuristics
 • making a number of moves from the local minimum, except that this time each move is accepted irrespective of whether it increases or decreases the cost

• How is the local minimum detected?
• How is the stopping criterion detected?

Run: sequence of moves to a local minimum from the start state
Issues on Local Optimization (Cont)

• How is the local minimum detected?
 • Not practical to examine all neighbors to verify that one has reached a local minimum
 • Based on random sampling
 • examine a sufficiently large number of neighbors
 • if any one is lower, we move to that state, and repeat the process
 • if no tested neighbor is of lower cost, the current state can be considered a local minimum
 • the number of neighbors to examine can be specified as a parameter, and is called the sequence length
 • Can also be time-based
Issues in Local Optimization (Cont)

• How is the stopping criterion detected?
 • Determines the number of times that the outer loop is executed
 • Can be fixed and is given by $\text{sizeFactor} \times N$, where sizeFactor is a parameter, N is the number of relations
 • Why N? Can it be a constant?
What about the MOVEs?

Transformation Rules

• Restricted to left-deep trees
 • all possible permutations of the N relations
 • let S be the current state, S = (… i … j … k …)
 • swap
 • select two relations, say i and j at random. Swapped i and j to get the new state newS = (… j … i … k …)
 • 3Cycle
 • select three relations, say i and j and k at random. The move consists of cycling i, j and k: i is moved to the position of j, j is moved to the position of k and k is moved to the position of i. The resultant new state newS = (… k … i … j …)
 • Other methods (e.g., join methods)? Bushy trees?
Comparison between Exhaustive, Greedy and Randomized Algorithms

- Search space
- Plan quality
- Optimization overhead
Dynamic Programming (Left-Deep Trees) (System R)

- The algorithm proceeds by considering increasingly larger subsets of the set of all relations
 - Builds a plan bottom-up (beginning from 1 table, then to 2, and so on)
 - Plans for a set of cardinality i are constructed as extensions of the best plan for a set of cardinality $i-1$
 - For each set of cardinality i, we only keep ONE best plan
Dynamic Programming (Cont)
Dynamic Programming (Left-Deep Trees) (System R)

- The algorithm proceeds by considering increasingly larger subsets of the set of all relations
 - Builds a plan bottom-up (beginning from 1 table, then to 2, and so on)
 - Plans for a set of cardinality \(i \) are constructed as extensions of the best plan for a set of cardinality \(i-1 \)
 - Keep only ONE best plan for each set of cardinality \(i \)
- Search space can be pruned based on the principal of optimality
 - if two plans differ only in a subplan, then the plan with the better subplan is also the better plan
Principle of Optimality
Dynamic Programming (Left-Deep Trees) (System R)

- The algorithm proceeds by considering increasingly larger subsets of the set of all relations
 - Builds a plan bottom-up (beginning from 1 table, then to 2, and so on)
 - Plans for a set of cardinality i are constructed as extensions of the best plan for a set of cardinality $i-1$
 - Keep only ONE best plan for each set of cardinality i
- Search space can be pruned based on the principal of optimality
 - if two plans differ only in a subplan, then the plan with the better subplan is also the better plan
- Computation overhead reduced due to overlapping subproblems
 - Multiple sets of cardinality i uses same set at cardinality ($i-1$)
Dynamic Programming (Left-Deep Trees)

- accessPlan(R) produces the best plan for relation (single table) R
- joinPlan(p1,R) extends the (partial) join plan p1 into another plan p2 in which the result of p1 is joined with R in the best possible way
 - p1 = R1 JOIN R2 JOIN R3
 - p2 = joinPlan(p1, R) = (R1 JOIN R2 JOIN R3) JOIN R4
- Optimal plans for subsets are stored in optplan() array and are reused rather than recomputed
for i = 1 to N
 optPlan({Ri}) = accessPlan(Ri)
for i = 2 to N {
 forall S subset of {R₁, R₂, … Rₙ} such that |S|=i {
 bestPlan = dummy plan with infinite cost
 forall Rj, Sj, |Sj| = i-1 such that S = {Rj} U Sj {
 p = joinPlan(optPlan(Sj), Rj)
 if cost(p) < cost(bestPlan)
 bestPlan = p
 }
 }
 optPlan(S) = bestPlan
}

Pₜₐₓₜ = optPlan{R₁, R₂, … Rₙ}
Dynamic Programming: A Concrete Example

- **Schema:** $R(A,B,C,D)$, $S(X,Y)$, $T(E,F,G)$

- **Query:**

```sql
select *
from  R join S on R.A = S.X join T on R.D = T.F
where R.B > 10
and    R.C = 20
and    T.E < 100
```

- **Available B+-tree indexes:** l_B, l_C, l_E

- **Assumptions on database system**
 - Supports only one join algorithm: hash join
 - Avoids cartesian products

$$
\sigma_p(R \bowtie_{R.A=S.X} S \bowtie_{R.D=T.F} T), p = (R.B > 10) \land (R.C = 20) \land (T.E < 100)
$$
Enumeration of Single-relation Plans

\[\sigma_p(R \bowtie_{R.A=S.X} S \bowtie_{R.D=T.F} T), \ p = (R.B > 10) \land (R.C = 20) \land (T.E < 100) \]

- **Plans for \(\{ R \} \)**
 - Plan P1: Table scan with \((B > 10) \land (C = 20)\)
 - Plan P2: Index seek with \(I_B\) & RID-lookups with \(C = 20\)
 - Plan P3: Index seek with \(I_C\) & RID-lookups with \(B > 10\)
 - Plan P4: Index intersection with \(I_B\) & \(I_C\), and RID-lookups
 - Assume \(\text{cost}(P3) < \text{cost}(P4) < \text{cost}(P2) < \text{cost}(P1)\)
 - \(\text{optPlan}(\{ R \}) = P3\)

- **Plans for \(\{ S \} \)**
 - Plan P5: Table scan of S
 - \(\text{optPlan}(\{ S \}) = P5\)

- **Plans for \(\{ T \} \)**
 - Plan P6: Table scan of T with \((E < 100)\)
 - Plan P7: Index seek with \(I_E\) & RID-lookups
 - Assume \(\text{cost}(P7) < \text{cost}(P6)\)
 - \(\text{optPlan}(\{ T \}) = P7\)
Enumeration of Two-Relation Plans

\[\sigma_p(R \bowtie_{R.A=S.X} S \bowtie_{R.D=T.F} T), \ p = (R.B > 10) \land (R.C = 20) \land (T.E < 100) \]

Plans for \{ R, S \}

- Hash join
 - \text{optPlan}\{\{S\}\}
 - \text{optPlan}\{\{R\}\}

\[\text{Plan P8} \]

- Hash join
 - \text{optPlan}\{\{R\}\}
 - \text{optPlan}\{\{S\}\}

\[\text{Plan P9} \]

* Assume \(\text{cost}(P8) < \text{cost}(P9) \)

* \(\text{optPlan}\{\{R, S\}\} = P8 \)

Plans for \{ R, T \}

- Hash join
 - \text{optPlan}\{\{T\}\}
 - \text{optPlan}\{\{R\}\}

\[\text{Plan P10} \]

- Hash join
 - \text{optPlan}\{\{R\}\}
 - \text{optPlan}\{\{T\}\}

\[\text{Plan P11} \]

* Assume \(\text{cost}(P11) < \text{cost}(P10) \)

* \(\text{optPlan}\{\{R, T\}\} = P11 \)
Enumeration of Three-Relation Plans

\[\sigma_p (R \bowtie_{R.A=S.X} S \bowtie_{R.D=T.F} T), \ p = (R.B > 10) \land (R.C = 20) \land (T.E < 100) \]

- Plans for \(\{R, S, T\} \)

- Hash join
 - optPlan(\(\{R, S\}\))
 - optPlan(\(\{T\}\))
 - Plan P12

- Hash join
 - optPlan(\(\{R, T\}\))
 - optPlan(\(\{S\}\))
 - Plan P13

- Assume \(\text{cost}(P12) < \text{cost}(P13) \)
- \(\text{optPlan}(\{R, S, T\}) = P12 \)
Optimal Plan

Hash join

optPlan({R, S})
optPlan({T})

Hash join

optPlan({S})
optPlan({R})

Hash join

Index seek with I_E

Hash join

Table scan

Index seek with I_C

S

R

T
Dynamic Programming (Cont)

- Time & Space complexity
 - For k relations, for left-deep trees, $2^k - 1$ entries!
 - For bushy trees, $O(3^k)$
- Is DP (as presented) optimal?
Dynamic Programming (Cont)

- Time & Space complexity
 - For k relations, for left-deep trees, $2^k - 1$ entries!
 - For bushy trees, O(3^k)
- Is DP optimal?
- DP may maintain multiple plans per subset of relations
 - Interesting orders
Dynamic Programming (Cont)

- Time & Space complexity
 - For k relations, for left-deep trees, $2^k - 1$ entries!
 - For bushy trees, $O(3^k)$

- Is DP optimal?

- DP may maintain multiple plans per subset of relations
 - Interesting orders

- Is DP with interesting orders optimal?
Query Evaluation

Movies \((\text{title, director, year, rating})\)
Acts \((\text{title, actor, role})\)

```
SELECT actor
FROM Movies, Acts
WHERE Movies.title = Acts.title
AND Movies.rating > 8
```
Query Evaluation Approaches

• Materialization evaluation
 • An operator is evaluated only when each of its operands has been completely evaluated or materialized
 • Intermediate results are materialized to disk

• Pipelining evaluation
 • The output produced by an operator is passed directly to its parent operator
 • Execution of operators is interleaved
Materialization Evaluation

1. $\text{temp1} = \text{Table scan on Movies with rating > 8}$
2. $\text{temp2} = \text{Nested loop join of } \text{temp1} \text{ and Acts on title}$
3. $\text{result} = \text{Hash-based projection of } \text{temp2} \text{ on actor}$
Pipeline Evaluation: Iterator Model

consumer

Open() → Hash-based projection on actor

Open() → Nested Loop Join on title

Open() → Table Scan on Movies with rating > 8

Open() → Table Scan on Acts with role = villain
Pipeline Evaluation: Iterator Model

All operators are running simultaneously
Pipeline Evaluation with Partial Materialization

SELECT actor FROM Movies, Acts
WHERE Movies.title = Acts.title
AND (rating > 8) AND (role = villian)

Plan 1

Plan 2
Cost Models

- Typically, a combination of CPU and I/O costs
- Objective is to be able to rank plans
 - exact value is not necessary
- Relies on
 - statistics on relations and indexes
 - formulas to estimate CPU and I/O cost
 - formulas to estimate selectivities of operators and intermediate results
Cost Estimation

• For each plan considered, must estimate cost:
 • Must estimate cost of each operation in plan tree
 • Depends on input cardinalities
 • Depends on buffer size, availability of indexes, algorithms used, etc.
 • We’ve already discussed how to estimate the cost of operations (sequential scan, index scan, joins, etc.)
 • Must estimate size of result for each operation in tree!
 • Use information about the input relations
 • Typical assumptions like uniform distribution of data and independence of predicates can simplify size estimation but is error prone
Statistics and Catalogs

- Need information about the relations and indexes involved
 Catalogs typically contain at least:
 - # tuples of R (||R||), #bytes in each R tuple (S(R))
 - # blocks/pages to hold all R tuples (|R|)
 - # distinct values in R for attribute A (V(R,A))
 - NPages for each index
 - Index height, low/high key values (Low/High) for each tree index
- Catalogs updated periodically
 - Updating whenever data changes is too expensive; lots of approximation anyway, so slight inconsistency ok
Estimation Assumptions

• Uniformity assumption
 • Uniform distribution of attribute values

• Independence assumption
 • Independent distribution of values in different attributes

• Inclusion assumption
 • For $R \bowtie_{R.A=S.B} S$, if $V(R, A) \leq V(R, B)$, then $\pi_A(R) \subseteq \pi_B(S)$
 • $V(R, A)$ is the number of distinct values of $R.A$
Example

<table>
<thead>
<tr>
<th>R</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>cat</td>
<td>1</td>
<td>10</td>
<td>a</td>
<td></td>
</tr>
<tr>
<td>cat</td>
<td>1</td>
<td>20</td>
<td>b</td>
<td></td>
</tr>
<tr>
<td>dog</td>
<td>1</td>
<td>30</td>
<td>a</td>
<td></td>
</tr>
<tr>
<td>dog</td>
<td>1</td>
<td>40</td>
<td>c</td>
<td></td>
</tr>
<tr>
<td>bat</td>
<td>1</td>
<td>50</td>
<td>d</td>
<td></td>
</tr>
</tbody>
</table>

- \(\|R\| = 5 \)
- \(S(R) = 37 \)
- \(V(R,A) = 3 \)
- \(V(R,C) = 5 \)
- \(V(R,B) = 1 \)
- \(V(R,D) = 4 \)

- A: 20 byte string
- B: 4 byte integer
- C: 8 byte string
- D: 5 byte string
Size estimate for $W = \sigma_{Z=\text{val}} (R)$

<table>
<thead>
<tr>
<th>R</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>cat</td>
<td>1</td>
<td>10</td>
<td>a</td>
<td></td>
</tr>
<tr>
<td>cat</td>
<td>1</td>
<td>20</td>
<td>b</td>
<td></td>
</tr>
<tr>
<td>dog</td>
<td>1</td>
<td>30</td>
<td>a</td>
<td></td>
</tr>
<tr>
<td>dog</td>
<td>1</td>
<td>40</td>
<td>c</td>
<td></td>
</tr>
<tr>
<td>bat</td>
<td>1</td>
<td>50</td>
<td>d</td>
<td></td>
</tr>
</tbody>
</table>

- $V(R,A)=3$
- $V(R,B)=1$
- $V(R,C)=5$
- $V(R,D)=4$

$$||W|| = \frac{||R||}{V(R,Z)}$$

$$S(W) = S(R)$$

Assumption:

Values in select expression $Z = \text{val}$ are \textit{uniformly distributed} over possible $V(R,Z)$ values.

Alternative assumption: use $\text{DOM}(R,Z)$
What about $W = \sigma_{z \geq val} (R)$?

Solution: Estimate values in range

<table>
<thead>
<tr>
<th>R</th>
<th>Z</th>
</tr>
</thead>
<tbody>
<tr>
<td>Min=1</td>
<td>V(R,Z)=10</td>
</tr>
<tr>
<td>Max=20</td>
<td></td>
</tr>
</tbody>
</table>

$W = \sigma_{z \geq 15} (R)$

$$f \text{ (fraction of range)} = \frac{20-15+1}{20-1+1} = \frac{6}{20} \text{ \quad ||W|| = f \times ||R||}$$

Alternative: $\frac{\text{Max(Z)-value}}{\text{Max(Z)-Min(Z)}}$
\[W = R1 \bowtie R2 \]

<table>
<thead>
<tr>
<th>R1</th>
<th>A</th>
<th>B</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>R2</th>
<th>A</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Assumption:

\[V(R1,A) \leq V(R2,A) \Rightarrow \text{Every A value in R1 is in R2} \]

\[V(R2,A) \leq V(R1,A) \Rightarrow \text{Every A value in R2 is in R1} \]

“containment of value sets”
Computing $T(W)$ when $V(R1,A) \leq V(R2,A)$

<table>
<thead>
<tr>
<th>R1</th>
<th>A</th>
<th>B</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Take 1 tuple</td>
<td>Match</td>
<td></td>
<td></td>
</tr>
<tr>
<td>R2</td>
<td>A</td>
<td>D</td>
<td></td>
</tr>
</tbody>
</table>

1 tuple of R1 matches with $\frac{||R2||}{V(R2,A)}$ tuples of R2

so $||W|| = ||R1|| \times \frac{||R2||}{V(R2,A)}$

If $V(R2,A) \leq V(R1,A)$ then $||W|| = \frac{||R2|| \times ||R1||}{V(R1,A)}$
For complex expressions, need intermediate T,S,V results

E.g. $W = [\sigma_{A=a}(R1)] \bowtie R2$

Treat as relation U

$||U|| = ||R1||/V(R1,A) \quad S(U) = S(R1)$

Also need $V(U, *)$!!
Example

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>cat</td>
<td>1</td>
<td>10</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>cat</td>
<td>1</td>
<td>20</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>dog</td>
<td>1</td>
<td>30</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>dog</td>
<td>1</td>
<td>40</td>
<td>30</td>
<td></td>
</tr>
<tr>
<td>bat</td>
<td>1</td>
<td>50</td>
<td>10</td>
<td></td>
</tr>
</tbody>
</table>

- $V(R_1, A) = 3$
- $V(R_1, B) = 1$
- $V(R_1, C) = 5$
- $V(R_1, D) = 3$

Let $U = \sigma_{A=a}(R_1)$.

$V(U, A) = ?$ $V(U, B) = ?$ $V(U, C) = ?$ $V(D, U) \ldots$ somewhere in between $V(U, B)$ and $V(U, C)$
For Joins \[U = R1(A,B) \bowtie R2(A,C) \]

\[V(U,A) = \min \{ V(R1, A), V(R2, A) \} \]
\[V(U,B) = V(R1, B) \]
\[V(U,C) = V(R2, C) \]

(Assumption: Preservation of value sets)
Example

\[Z = R1(A,B) \bowtie R2(B,C) \bowtie R3(C,D) \]

| R1 | \(||R1|| = 1000\) | V(R1,A)=50 | V(R1,B)=100 |
|------|-------------------|------------|-------------|
| R2 | \(||R2|| = 2000\) | V(R2,B)=200| V(R2,C)=300 |
| R3 | \(||R3|| = 3000\) | V(R3,C)=90 | V(R3,D)=500 |
Partial Result: \(U = R1 \bowtie R2 \)

\[
\|U\| = \frac{1000 \times 2000}{200}
\]

\[
Z = U \bowtie R3
\]

\[
\|Z\| = \frac{1000 \times 2000 \times 3000}{200 \times 300}
\]

\[
Z = R1(A,B) \bowtie R2(B,C) \bowtie R3(C,D)
\]

\[
\|R1\| = 1000 \quad V(R1,A)=50 \quad V(R1,B)=100
\]

\[
\|R2\| = 2000 \quad V(R2,B)=200 \quad V(R2,C)=300
\]

\[
\|R3\| = 3000 \quad V(R3,C)=90 \quad V(R3,D)=500
\]

\[
V(U,A) = 50
\]

\[
V(U,B) = 100
\]

\[
V(U,C) = 300
\]

\[
V(Z,A) = 50
\]

\[
V(Z,B) = 100
\]

\[
V(Z,C) = 90
\]

\[
V(Z,D) = 500
\]
Errors in Estimating Size of Plan

• Errors
 • source include uniformity assumption, and inability to capture correlation, accuracy of cost model, statistics, etc.
 • propagated to other operators at the higher level of the plan tree

• Dealing with errors
 • Maintain more detailed statistics (at finer granularity)
 • During runtime, may need to sample the actual intermediate results
 • dynamic query optimization
Statistical Summaries of Data

- More detailed information are sometimes stored e.g., histograms of the values in some attributes
 - A histogram divides the values on a column into k buckets
 - k is predetermined or computed based on space allocation
 - Several choices for “bucketization” of values
 - If a table has n records, an equi-depth histogram divides the set of values on a column into k ranges such that each range has approximately the same number of records, i.e., n/k
 - Equi-width histogram – each bucket has (almost) equal number of values
 - Within each bucket, records are uniformly distributed across the range of the bucket
 - Frequently occurring values may be placed in singleton buckets
15 records are uniformly distributed

Histograms

Equiwidth Histogram

Equidepth Histogram
Estimations with Histograms

Query Q: \(\sigma_{A=6} (R) \)

- Actual value, \(||Q|| = 3 \)
- Without histogram, \(||Q|| = 45/15 = 3 \)
- Equiwidth histogram, \(||Q|| = 15/3 = 5 \)
- Equidepth histogram, \(||Q|| = 14/4 = 3.5 \)

Query Q: \(\sigma_{A=10} (R) \)

- Actual value, \(||Q|| = 0 \)
- Without histogram, \(||Q|| = 45/15 = 3 \)
- Equiwidth histogram, \(||Q|| = 1 \)
- Equidepth histogram, \(||Q|| = 1.75 \)
Statistical Summaries of Data

- Histograms on single column do not provide information on the correlations among columns
 - 2-dimensional histograms can be used but too many buckets!
Summary

- Query optimization is NP-hard
- Instead of finding the best, the objective is largely to avoid the bad plans
- Many different optimization strategies have been proposed
 - greedy heuristics are fast but may generate plans that are far from optimal
 - dynamic programming is effective at the expense of high optimization overhead