
Secure Deletion from Inverted Indexes on Compliance
Storage

Soumyadeb Mitra
Dept. of Computer Science

University of Illinois at Urbana-Champaign

mitra1@cs.uiuc.edu

Marianne Winslett
Dept. of Computer Science

University of Illinois at Urbana-Champaign

winslett@cs.uiuc.edu

ABSTRACT
Recent litigation and intense regulatory focus on secure re-
tention of electronic records have spurred a rush to intro-
duce Write-Once-Read-Many (WORM) storage devices for
retaining business records such as electronic mail. A file
committed to a WORM device cannot be deleted even by a
super-user and hence is secure from attacks originating from
company insiders. Secure retention, however, is only a part
of a document’s lifecycle: It is often crucial to delete doc-
uments after its mandatory retention period is over. Since
most of the modern WORM devices are built on top of mag-
netic media, they also support a secure deletion operation
by associating expiration time with files. However, for the
deleted document to be truly unrecoverable, it must also be
deleted from any index structure built over it.

This paper studies the problem of securely deleting entries
from an inverted index. We first formalize the concept of
secure deletion by defining two deletion semantics: strongly

and weakly secure deletions. We then analyze some of the
deletion schemes that have been proposed in literature and
show that they only achieve weakly secure deletion. Fur-
thermore, such schemes have poor space efficiency and/or
are inflexibe. We then propose a novel technique for hiding
index entries for deleted documents, based on the concept
of ambiguating deleted entries. The proposed technique also
achieves weakly secure deletion, but is more space efficient
and flexible.

Categories and Subject Descriptors
H.2.1 [Database Management]: Logical Design

General Terms
Security, Legal Aspects, Design

Keywords
Inverted Index, Regulatory Compliance, Secure Deletion

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
StorageSS’06, October 30, 2006, Alexandria, Virginia, USA.
Copyright 2006 ACM 1-59593-552-5/06/0010 ...$5.00.

1. INTRODUCTION
Documents such as electronic mail, financial statements,

meeting memos, drug development logs, and quality assur-
ance documents are valuable assets. Key decisions in busi-
ness operations and other critical activities are based on in-
formation in these documents, so they must be maintained
in a trustworthy fashion. Businesses increasingly store these
documents electronically, making them relatively easy to
delete and modify without leaving much of a trace. Ensur-
ing that records are readily accessible, accurate, credible,
and irrefutable is particularly imperative given recent legal
and regulatory trends. The US alone has over 10,000 regu-
lations [14] that mandate how records should be managed.
Many of those focus on ensuring that records are trustwor-
thy (e.g., Securities and Exchange Commission (SEC) Rule
17a 4 [12] and the Sarbanes-Oxley Act [4]).

This has led to a rush to introduce Write-Once-Read-
Many (WORM) compliance storage devices (e.g., [5, 8, 10])
for proper data retention. A file committed to the WORM
device is read-only and cannot be deleted or altered even
by the super-user. A WORM device hence secures critical
documents from certain threats originating from company
insiders or hackers with administrative privileges.

However, document retention is only one component of its
life-cycle. The ability to delete electronic records is as im-
portant as the act of securely maintaining them. It is often
crucial for an organization to properly dispose of records
after a certain point in time. For example, regulations or
standards may prohibit their retention after a certain time
period [1]. Alternatively, once the mandated retention pe-
riod for a record has passed, the company is free to dispose
of the record. At that point, the record may be a liabil-
ity for the company and corporate policies might require
its deletion (e.g. so that it cannot be subpoenaed in fu-
ture lawsuits). Since most modern WORM storage [5, 8,
10] devices are built atop conventional re-writable magnetic
disks, with the write-once semantics enforced through soft-
ware, these devices support file deletion operations too. Ev-
ery file committed to the device is assigned an expiry date
that cannot be moved forward in time. Once the file ex-
pires, the device makes the file deletable, thereby allowing
external cleanup applications to erase it. The WORM de-
vice takes precautions to prevent deleted files from being re-
covered by data forensics. For example, deletion is usually
carried out by overwriting the file data multiple times with
specific patterns to completely erase any remnant magnetic
effects. Techniques for securely deleting files from versioning
filesystems have also been proposed by researchers [11].

67

Unfortunately, just erasing the file from the disk is not
adequate to ensure that its contents cannot be recovered.
Records are usually indexed on multiple fields to facilitate
search and retrieval. The record contents can be recon-
structed from the corresponding index entries even after the
original record is deleted. For example, all the words of
a text document can be obtained from a full-text inverted
index built over the document database. When deleting a
record, its index entries hence must also be erased.

Since a record can be “logically” modified or deleted by
modifying or deleting the index entries pointing to it [17,
9], an index structure stored on a read-write media is not
trustworthy. To address this problem, researchers have in-
troduced the concept of fossilized index, which is impervi-
ous to such logical modifications [17, 9], when maintained on
WORM storage. For securely deleting a document, its index
entries hence must also be deleted from any such fossilized
index maintained on WORM storage.

Unfortunately, the current generation of WORM devices
are not suitable for supporting deletion from an index main-
tained on WORM. For example, they do not support dele-
tion at a byte granularity, which is required for supporting
fine-grained deletion of index entries. It is also not feasible
to enhance the WORM device with such support, because
of the high space and deletion time overhead it will incur.
Researchers hence have proposed alternative solutions for
hiding index entries of deleted records by encrypting them
and discarding the encryption key on expiry [17].

In this paper, we formally study the problem of secure
deletion from inverted index. We first define two semantics
for secure deletion: strongly secure and weakly secure dele-
tions. We give a hypothetical but impractical scheme for
achieving strongly secure deletion and show that the other
index deletion schemes that have been proposed only achieve
weakly secure deletion. We then analyze some of the prob-
lems with the current deletion schemes, and propose a novel
technique for hiding the entries of a full-text index, based on
the idea of ambiguating the index entries, through merging
posting lists.

The rest of the paper is organized as follows. Section 2.1
discusses the threat model. Section 2.2, gives an overview
of the inverted index and the deletion problem, under that
threat model. Section 3 discusses some of the current index
deletion schemes and identifies their deficiencies. Section
4 discusses our proposed solution. Finally we conclude in
Section 5.

2. BACKGROUND

2.1 Threat Model
In this paper, we use the terms document, record and file

interchangeably. Furthermore, since the focus of this paper
is full-text inverted indexes, we assume that the documents
are text documents. A text document is an ordered sequence
of words, with the words coming from a dictionary.

A document’s life cycle spans multiple stages, starting
from its creation, its retention and finally its disposal. The
document is subject to different threats at each stage of its
life cycle. The threat model for the stages of creation and
retention was discussed by Mitra et al. [9]. The focus of
this paper is the stage after the document retention period
is over and the document has to be securely deleted.

A secure deletion routine should prevent the adversary

Mala from reconstructing the contents of a deleted docu-
ment. A document can be reconstructed at multiple levels.
A full reconstruction is one in which Mala is able to recon-
struct the full contents of a deleted document, as an ordered
sequence of words. In a set reconstruction, Mala is able to
determine the set of words contained in the document, but
not necessarily the order in which they appear. As the set
of words in a document is often adequate to infer the mean-
ing of a document, secure deletion method must prevent set
reconstruction.

As Mala has superuser privileges, she can read any file
or index structure stored on the WORM storage. We as-
sume that Mala does not have access to external information
about the file system, such as old backups, logs of past file
operations or other meta-level information, such as specific
kinds of files always contain certain keywords (for example
emails have the subject keyword).

We assume that Mala knows the file system metadata
(document ID, pathname, commit time, delete time) of the
file d she is trying to reconstruct. Let S be a set reconstruc-
tion of d obtained by Mala using the above information.

We say that d’s deletion was strongly secure iff

∀w P (w ∈ d|w ∈ S) = P (w ∈ d)

∀w P (w ∈ d|w 6∈ S) = P (w ∈ d)

where P (w ∈ d) denotes the probability of the word w be-
longing to document d, while P (w ∈ d|w ∈ S) denotes the
probability, given that the word w is in S.

The above definition captures the fact that for a deletion
to be strongly secure, the presence (given by P (w ∈ d|w ∈
S)) or absence (P (w ∈ d|w 6∈ S)) of w in any reconstruction
of d should not convey any information about its presence
in the original document. In the next section, we propose
a simple, but impractical scheme to achieve strongly secure
deletion.

Unfortunately, the practical schemes [17] that have been
proposed do not support strongly secure deletion. A much
weaker concept of secure deletion is weakly secure deletion,
in which the adversary Mala cannot prove that the deleted
document had a specific set reconstruction. A middle path
between strongly and weakly secure deletions would be prob-

abilistic deletion, where the probability of the document
having a specific reconstruction is bounded above by some
constant. Unfortunately it is quite hard to come up with
such probabilistic definitions because of lack of precise mod-
els for natural languages.

2.2 Inverted Index
Search engines typically use inverted indexes to support

keyword search [15]. As shown in Figure 1(a) an inverted in-
dex comprises a dictionary of keywords and associated post-
ing lists of document identifiers (IDs) for each keyword. The
document IDs are usually assigned through an increasing
integer counter1. Some search engines store the difference
between consecutive document IDs in the posting elements,
instead of the full document IDs. This difference usually has
a skewed distribution and can be represented using more ef-
ficient encoding schemes than fixed-width encoding [15].

1We assume that the WORM device maintains the associ-
ation between document IDs and their full paths. Alter-
natively, this can be maintained explicitly by the indexing
application

68

Query

Data

Base

Worm

Index

1 3 11 17 36

3 9 31

3 19

7 36

3

(a) Inverted Index

Base

Worm

Index

KeyFile0 KeyFile1
Expiry=08/2010Key Files

3+#B

7+#W

3+#I

13+#B

17+#W

7+#I 9+#I

21+#W

23+#B

(b) Encrypted Inverted Index

Figure 1: Logical Disposal: The posting elements are encrypted (shown as shaded elements) using the disposal key.

To prevent join attacks, the document ID is XORED with the hash of the keyword before encryption.

Keyword queries are answered by scanning the posting
lists of all the query keywords, thereby obtaining a list of
documents containing those keywords. When a new docu-
ment is added, the index can be updated by appending its
document ID to the posting lists of all the keywords con-
tained in the document. The inverted index can be main-
tained on WORM by keeping each posting list as a separate
appendable file [9].

A traditional inverted index contains sufficient informa-
tion for creating its set reconstruction. For example, from
the index in Figure 1, one knows that document 3 contains
the keywords Data, Base and Index. If the index is a full-
text index, all the words contained in the document can be
reconstructed, even after the document has been deleted.
Thus, it is imperative to dispose of all the index entries as-
sociated with a record when the record itself is deleted.

3. DELETION FROM INVERTED INDEX

3.1 Secure Deletion
A document d can be deleted from the inverted index by

removing its document ID from the posting list of all its
keywords. The most secure way of doing that is to create
new copies of the document keyword’s posting lists, with the
document ID erased from them. The original posting list
must also be erased. Irrespective of the initial contents of
the document, the resulting index structure is the same after
the document is deleted from the index. In other words, the
resulting index structure, and hence any set reconstruction
obtained from it, is independent of the initial contents of
the document. Thus, this scheme achieves strongly secure
deletion.

Unfortunately, this scheme is impractical. Maling a new
copy of many posting lists on every document deletion is
prohibitively costly. Furthermore, in the current generation
of WORM devices, one must associate an expiry time with
the posting list file when the file is created. In the above
scheme, however, the expiry time of the posting list should
be set to that of the document expiring the soonest, and
hence cannot be assigned unless documents are added, and
once set it cannot be moved forward in time.

3.2 Physical and Logical Deletion
An alternate way of removing the index entries of a deleted

document is to erase (zero-out) the document ID and asso-
ciated meta-information from the posting list files. Unfortu-

nately, the presence of holes in the posting lists can leak in-
formation about deleted documents. For example, the doc-
ument ID of an erased posting element can be guessed from
the neighboring elements. For example, a hole surrounded
by ‘posting elements with document IDs 4 and 6 must cor-
respond to a deleted document 5. Such attacks can also be
based upon commit time order. A hole between two posting
elements can only correspond to a document which has been
committed in between those two times. Thus this scheme
does not provide strongly secure deletion. It also does not
achieve weakly secure deletion, always. It may be possible to
reconstruct all the keywords in the document, as described
above (although it is unlikely that all the posting elements
of this document will be surrounded by its successor and
predecessor document IDs).

Furthermore, zeroing index entries is not very practical
because of the prohibitive cost of implementing such fine
grained deletion. Firstly, the WORM device would have
to support maintaining and disposing of individual posting
elements. Supporting expiry times at a byte granularity, in-
stead of a file granularity, has considerable space and time
overhead. Furthermore, deleting small ranges of data within
a file can only be accomplished by reading in a full block
from disk, erasing the specific entry and writing back the
block. In other words, one would have to incur a disk seek
for deleting every posting element of a document. This can
be prohibitively slow. For example, consider a file with 100
keywords. Assuming 2.5 msec per random I/O and block
transfer, it would require about 750 msecs (100 random
I/Os and 200 block transfers to read/write the block) to
delete one document. In other words the document deletion
rate would be 1.3 docs/sec, which is not adequate for most
business environments. The presence of huge storage cache
might reduce this overhead by caching the posting list blocks
in memory. However as observed by Mitra et al. [9] caching
only benifits the posting lists corresponding to the popu-
lar terms and is usually not very effective in reducing the
number of random I/Os, beyond a certain point. Further-
more, since the individual posting lists are usually scattered
around on disk, filesystem prefetching schmes are unlikely
to be very effective too.

The space and time overhead for deletion can be amor-
tized over consecutive posting list elements if they have the
same expiry time. However, adjacent elements of the posting
lists of infrequent keywords can correspond to documents
which have been committed quite far apart in time and

69

hence have different expiry times. Furthermore, even if the
documents have been committed close in time and are ad-
jacent in a posting list, they can have different expiry times
if they are of different types (email, financial records) and
hence governed by different retention regulations, or have
different intrinsic value (business, personal).

To address these problems, researchers have proposed the
concept of logical deletion [17]. The key idea behind logical
deletion is to encrypt the document IDs in the posting list
with a per document secret key. Once the document expires,
this encryption key is disposed of along with the document.
This prevents the adversary from getting the list of words
contained in a specific deleted document. Unfortunately, an
adversary can still join on the encrypted document IDs and
prove the existence of a document containing a certain set
of keywords. Equivalently the adversary can join on the
key-pointers, stored with each posting list element.

As shown in Figure 1(b), Zhu [17] addresses these prob-
lems by dividing the documents into deletion groups accord-
ing to their expiration time. The posting elements of all the
documents in a disposition group are encrypted using the
same key. This key is stored in a separate key file, whose
expiry time is set to that of the disposition group. To avoid
having the same ciphertext for each occurrence of a par-
ticular document ID, which would enable an adversary to
reconstruct the record by performing a join on the cipher-
text, the combination of the index key and document ID
is encrypted together. Disposition with this scheme is very
efficient, as one has to erase just one file (the key file) to
dispose of all the posting elements corresponding to that
disposition group.

Once the key is deleted, the adversary can still obtain the
set of all posting elements corresponding to that disposition
group, by joining on the key file pointers stored with the
posting elements. That is, she can determine a set of key-
words that were committed in documents in that disposition
group. However, she cannot determine the exact association
of those words with documents. Unfortunately, this is not
adequate when context information can be used to partition
words into documents. For example, if keywords “Martha
Stewart”, “Ralph” and “ImClone” were mentioned in the
same disposition, one might guess that they appeared in the
same email document, particularly if the other documents in
the same disposition group are of different types or are email
communication between users who are unlikely to communi-
cate with either Ralph or Martha. Furthermore, document
IDs of “logically” deleted documents can be guessed from
neighboring undeleted document IDs.

Both the physical and logical deletion schemes also consid-
erably increase the size of the index. Posting lists can usu-
ally be compressed to under a byte per posting element [15]
by storing the encoding of the difference between document
IDs. Such compression schemes cannot be used if the post-
ing elements are discarded: One must have access to all the
intermediate document ID differences to obtain any specific
document ID. Furthermore, for logical disposition one also
has to store a key file pointer (typically 3-4 bytes) with ev-
ery encrypted document ID. Thus the above scheme can
increase the index size by a factor 8.

Logical disposition is also inflexible. It is not possible
to extend the retention period of any individual document
in the index, since the disposition key is associated with a
group of documents. One option to is to make a new copy

of the document in the index with the new expiry time, but
this can be highly space inefficient if the retention period of
a large set of documents has to be changed (for example if
the company decides to increase the retention period of a
subset of financial emails).

4. MERGED POSTING LISTS
The concept of merged posting lists was motivated by the

need to support efficient online updates of posting lists [9].
As explained above, each posting list can be maintained as a
separate file on WORM. The index can be updated when a
new document is added by appending its document ID to the
posting lists of all the keywords it contains. Unfortunately,
this operation can be prohibitively slow, as each file append
will require a random I/O. For example, if each document
contains almost 250 keywords on average and each append
incurs a 2 msec random I/O, it would take 1/2 second to
index a document. Mitra et al. [9] showed that even adding
a large amount of storage cache (of the order of 4-64 GBs)
does not reduce the I/Os per document enough to make it
acceptable for typical business needs.

In order to address this problem, they proposed [9] the
concept of merging posting lists, as shown in Figure 2. If
the posting lists are merged so that the total number of lists
is no more than the number of cache blocks in the storage
device, then all the posting list updates hit the cache. Sim-
ulations on real world datasets showed that such merging
gives a factor of 20 speedup over using a storage cache of 4
GB and no merging, and a factor of 500 speedup over the un-
cached case. Merging however, increases the query response
time, because longer posting lists have to be scanned. How-
ever, simulations using a real world user query log obtained
from a large business organization showed that the query
throughput slowed down by under 10% when the posting
lists were merged to form 32K lists

In order to disambiguate between the different keywords
in the merged posting list, one must store the encoding of
the keyword with each posting entry in a merged list. This
encoding can be stored in log(q) bits, where q is the num-
ber of keywords that are merged together. Mitra et al. [9]
evaluated different merging strategies like isolating the top
queried terms, the top merged terms and random merging.
Simulation results showed that uniform merging with 100-
200 keywords merged into one list gives good query perfor-
mance with a reasonable storage cache size (256 MB).

Query

Data

Base

Worm

Index

1 3 11 17 36

00 3 01 3 11 3 10 7

00 9 01 19 00 31 10 36

Encoding Document ID

Figure 2: Inverted Index with Merged Posting Lists.

An encoding for the keyword must be stored with each

posting element in the merged list. In the above ex-

ample, the keywords Data, Base, Worm and Index are

assigned encodings 00, 01, 10 and 11 respectively.

70

00101 d

1101 d

…
…

Tk

T1

Tk+1

….

Tl

Tl+m

01100

0100

r0 =

r1 =

….

…. ….

Encoding Document ID

Random Seq log(n) bits

(a) Original Merged Index

01001 d

…
…

Tk

T1

Tk+1

….

Tl

Tl+m

0

1001 d0…. ….

….

Encoding Document ID

Random Seq #

01100

0100

r0 =

r1 =

Key File for d

r2 =

(b) Encrypted Merged Index

Figure 3: The keyword encodings of a document are XORed with a set of random sequences. The sequence itself is

stored in a separate key file, which is discarded when the document expires. The posting elements must also maintain

the sequence numbers (0,1,2..) that must be used to decrypt the encoding shown in (b).

4.1 Exploiting merged list for hiding
The basic idea behind our proposed scheme is to encrypt

the keyword encoding stored with each posting element in
the merged posting list. One possible encryption technique
is to store, in the posting element, the XOR of the keyword
encoding with a secret key k, instead of storing the pure en-
coding E itself. The key k can be stored with the document
and can be deleted when the document expires. This scheme
gives perfect encryption, without loss of functionality. While
the key is present (document has not expired), the encoding
E can be extracted from the posting element. However once
the key has been deleted, the keyword encoding E cannot
be retrieved from E ⊕ k stored with the posting element. In
other words the adversary cannot determine which of the q

keywords merged together, the posting element corresponds
to, after the key is discarded.

We can generalize this scheme to handle more than one
keyword per document. Consider a document D with n

keywords, W1, . . . , Wn. Suppose that the keywords belong
to the merge sets S1, . . . , Sm respectively: The posting lists
of all the keywords in each Si are merged together. Also,
let E1, . . . , En be the encoding for the words W1, . . . , Wn,
such that Ei uniquely identifies Wi within the set Si. As
explained above, Ei can be stored in dlog(|Si|)e bits.

The encoding Ei can be encrypted by XORing it with
a random sequence. Specifically, we generate a set of ran-
dom bit sequences r1, . . . , rn of lengths |E1|, . . . , |En| respec-
tively, where |Ei| (= dlog(|Si|)e) denotes the length of the
ith encoding. The keyword encoding Ei is stored by XOR-
ing it with ri. Figure 3 gives an illustration of the pro-
posed scheme. The keywords T1, . . . , Tk and Tl, . . . , Tl+m are
merged together into single posting lists. The keyword en-
coding for document ID d is XORed with random sequence
ri before storing it in the index. The random sequences
themselves can be stored in a separate key file, which can
be deleted when the document expires. Assuming a typi-
cal document size of 100 keywords (average email size) and
q = 200, one would need a key file of 100 ∗ log(100) bits or
about 0.1 KB.

This scheme prevents set reconstruction of documents:
The adversary cannot reconstruct the words W1, . . . , Wn

from the encrypted encodings. That is, the adversary cannot

determine which of the |Si| different keywords this specific
posting element corresponds to. We analyze the security
provided by this scheme in the next section.

While scanning the posting lists during query processing,
the corresponding key file must be read from disk. Since
the document IDs themselves are stored in plain-text for-
mat, the corresponding key file can be identified by sepa-
rately maintaining a mapping between document IDs and
their key files. This is unlike the previous scheme for logi-
cal disposition where the document IDs were encrypted and
hence key pointers had to be maintained in every posting
element. Furthermore since the document IDs are never ex-
plicitly deleted, they can be compressed by storing the dif-
ference between consecutive document IDs, as was explained
in section 2.2.

The above scheme however requires an additional key se-
quence number (i of ri) to be stored with every posting
element, so that the correct key is used for decryption. An
expected posting element size in this case is about 3 bytes,
1 byte for posting element, 1 for encrypted encoding for
q = 100 and 1 for key sequence numbers assuming 28 key-
words per document.

Unfortunately, the above scheme is likely to have poor
query performance. For every posting element, an I/O op-
eration is required to fetch the corresponding key file from
disk. The considerably large size of the key files (1KB) also
makes it infeasible to store key files for all the documents
in memory. One way to address this problem is to generate
the set of random sequences using a keyed pseudo-random
sequence generator. Instead of storing the entire key se-
quence, one needs to only store the key used as a seed to
the sequence generator. This key can be stored along with
the document and can be discarded once the document ex-
pires. Since the seed is much smaller (typically 8-16 bytes)
than the key sequence, the keys for all the documents can
be pre-loaded into memory during query processing.

4.2 Comparison with Logical Deletion
Although the proposed scheme does not achieve strongly

secure deletion, it offers certain advantages over the previ-
ously proposed logical disposition scheme. For example, un-
like logical disposition, it is secure from correlation attacks.

71

With logical deletion, the presence of correlated words like
“Martha Stewart”, “Ralph” and “ImClone” in the same dis-
position, can point to a existence of a document containing
all of those terms. With merged posting lists however, one
cannot determine the exact term(s) that a particular doc-
ument or a set of document contains, if the set of terms
that are merged is choosen appropriately (We discuss some
merging heuristics below).

The merging scheme offers other advantages too. For ex-
ample, it works with compressed lists and has a substantially
lower space overhead (by more than a factor of 2). It does
not require the documents to be disposed of in groups and
hence it can support fine grained deletion of documents. In-
creasing the retention period of a document does not require
making new copies of the posting elements.

4.3 Merging Heuristics
The document anonymity provided by keyword merging

scheme critically depends on the set of keywords that are
merged together. One good merging heuristic can be to
group keywords from the same parts of speech. For example,
merging adjectives like “bad”, “ugly” with their antonym
words like “good” and “beautiful” can help ambiguiate the
meaning of the documents. Such an analysis of merging
strategies for words can be done offline and built into the
indexing application.

Nouns must be treated differently, because the set of nouns
is domain (usage) specific and hence cannot be pre-trained
into the index application. Furthermore the presence of
nouns in a document often can reveal critical information.
For example if all the words “Martha Stewart”, “Raplh” and
“ImClone”, occur in a single document, it might be a strong
indication of some communication between them. One pos-
sible strategy for handling such cases is to merge person-
ally identifiable information together in the index. Merging
fields like name, SSN and email address of multiple people
can help anonymize the sender and the receiver of the mes-
sage. Named entity recognition is a well researched field [2,
3, 6, 16] from which techniques can be adopted directly.

Non-personally identifiable nouns like names of cars, cities,
etc can be treated by dividing them into conceptual classes.
Keywords belonging to a similar “conceptual class” should
not all be merged together (or at-least merged with other
conceptual classes). As an example, if the merged set is
obtained by merging the names of all possible cars, the ad-
versary would know that an encrypted keyword from that
merged set is about cars. Considerable work has been done
on clustering documents and words [7, 13], which can be di-
rectly used in our scenario. Similarly numerical strings can
also me merged together.

Another possible heuristic is to merge words having simi-
lar frequencies, so that the probability of the encrypted word
being any of the words from the merged set is roughly equal
for all the keywords.

5. CONCLUSION
In this paper, we studied the problem of securely deleting

entries from an inverted index. We analyzed the deletion
schemes that have been proposed in literature and identified
their key deficiencies. We then proposed a new deletion
scheme based on the idea of ambiguating keywords.

6. ACKNOWLEDGEMENTS
We would like to thank the anonymous reviewers for their

invaluable feedback. We would also like to thank Windsor H.
Hsu of IBM Almaden Research Center for useful discussion
about the problem and Sruthi Bhandakavi for reading the
paper and suggesting important changes. This research was
supported by NSF under grants IIS-0331707, CNS-0325951
and CNS-0524695.

7. REFERENCES
[1] Dod 5015.2-std, design criteria standard for electronic

records management software applications.
http://www.dtic.mil/.

[2] X. Carreras, L. Màrques, and L. Padró. Named Entity
Extraction using AdaBoost. In Proceedings of

CoNLL-2002, pages 167–170. Taipei, Taiwan, 2002.

[3] H. Chieu and H. Ng. Named entity recognition: A
maximum entropy approach using global information,
2002.

[4] Congress of the United States of America.
Sarbanes-Oxley Act of 2002, 2002. Available at
http://thomas.loc.gov.

[5] EMC Corp. EMC Centera Content Addressed Storage
System, 2003. Available at
http://www.emc.com/products/
systems/centera ce.jsp.

[6] R. Florian. Named entity recognition as a house of
cards: Classifier stacking. In Proceedings of

CoNLL-2002, pages 175–178. Taipei, Taiwan, 2002.

[7] T. Hofmann. Probabilistic Latent Semantic Indexing.
In Proceedings of the 22nd Annual ACM Conference

on Research and Development in Information

Retrieval, 1999.

[8] IBM Corp. IBM TotalStorage DR550, 2004. Available
at http://www-1.ibm.com/servers/storage/disk/dr.

[9] S. Mitra, W. Hsu, and M. Winslett. Trustworthy
Keyword Search for Regulatory Compliance. In VLDB

2006, Sept 2006.

[10] Network Appliance, Inc. SnapLockTM Compliance
and SnapLock Enterprise Software, 2003. Available at
http://www.netapp.com/products/filer/snaplock.html.

[11] Z. N. J. Peterson, R. Burns, and J. Herring. Secure
deletion for a versioning file system. In FAST 2005.

[12] Securities and Exchange Commission. Guidance to
Broker-Dealers on the Use of Electronic Storage
Media under the National Commerce Act of 2000 with
Respect to Rule 17a-4(f), 2001. Available at
http://www.sec.gov/ rules/interp/34-44238.htm.

[13] M. Steinbach, G. Karypis, and V. Kumar. A
comparison of document clustering techniques, 2000.

[14] The Enterprise Storage Group, Inc. Compliance: The
effect on information management and the storage
industry, May 2003.

[15] T. C. Wittenm I. H., A Bell. Managing Gigabytes:

Compressing and Indexing Documents and Images.
Morgan Kaufman, San Francisco, CA, 1999.

[16] G. Zhou and J. Su. Named entity recognition using an
hmm-based chunk tagger, 2002.

[17] Q. Zhu and W. Hsu. Fossilized Index: The Linchpin of
Trustworthy Non-Alterable Electronic Records. In
ACM SIGMOD Conference 2005, June 2005.

72

