Secure Indexes*

Eu-Jin Goh
eujin@cs.stanford.edu

May 5, 2004

Abstract

A secure index is a data structure that allows a querier with a “trapdoor” for a word \(x\) to test in \(O(1)\) time only if the index contains \(x\); The index reveals no information about its contents without valid trapdoors, and trapdoors can only be generated with a secret key. Secure indexes allow a querier to check if a document contains a keyword without having to decrypt the entire document, a property that is especially useful for large documents and large document collections.

In this paper, we formally define a secure index and formulate a security model for indexes known as semantic security against adaptive chosen keyword attack (IND-CKA). We also develop an efficient IND-CKA secure index construction called \(z\)-IDX using pseudo-random functions and Bloom filters. We apply \(z\)-IDX to two real world document sets and show that index sizes are reasonable. Furthermore, the computational cost is low — a 866 MHz Pentium machine can search through about 15000 indexes per second. We also show how to use \(z\)-IDX to implement searches on encrypted data. This search scheme inherits the efficiency of \(z\)-IDX, the ability to handle arbitrary updates, and is indifferent to the compression and encryption algorithm used on the documents.

1 Introduction

Keyword indexes let us search in constant time for documents containing specified keywords. Unfortunately, standard index constructions such as those using hash tables are unsuitable for indexing encrypted (and presumably sensitive) documents because they leak information about the document contents (and hence break semantic security). Informally, a secure index allows users with a “trapdoor” for a word \(x\) to test the index only for \(x\); The index reveals no information about its contents without valid trapdoors, and trapdoors can only be generated with a secret key. Data structures with such privacy guarantees can be used to safely index the contents of semantically secure ciphertexts. Secure indexes allow a querier to check if a document contains a keyword without having to decrypt the entire document, a property that is especially useful for large documents and large document collections.

Secure indexes are a natural extension of the problem of constructing data structures with privacy guarantees such as those provided by oblivious [17] and history independent [18, 9] data structures. In oblivious (history independent) data structures, the shape (memory representation) of the data structure reveals no information about the sequence of operations applied to the data.

* A early version of this paper first appeared on the Cryptology ePrint Archive on October 7th 2003.
structure other than the final result. On the other hand, a history independent data structure guarantees nothing about the privacy of its contents, which is exactly the property required by secure indexes.

Our Contribution. The first contribution of this paper is in defining a secure index and formulating a security model for indexes known as semantic security against adaptive chosen keyword attack (\textit{ind-cka}). The \textit{ind-cka} model captures the intuitive notion that the contents of a document are not revealed from its index and the indexes of other documents apart from what an adversary already knows from previous query results or other channels. For example, consider a document \(D\) containing \(n\) words, of which an adversary already knows \(m\) words and wants information about the set \(W\) of \(n - m\) unknown words. Even when the adversary \(A\) has full access to other index-document pairs, and can adaptively obtain trapdoors for any word except those in \(W\), \(A\) still cannot deduce any information about any word in \(W\) from \(D\)'s index.

The second contribution is an efficient \textit{ind-cka} secure index construction called \textit{z-idx}, which is built using pseudo-random functions and Bloom filters. Our \textit{z-idx} scheme is efficient — in a collection of 2654 plaintext files found in a typical Debian Linux installation, an index for the average document is roughly 121.4 kilobytes in size. The largest document in this collection is 876.6 kilobytes long and its index is 774.3 kilobytes large. The smallest document is 9 bytes long and its index is 115 bytes large. Furthermore, 15151 indexes can searched in one second on an 866 MHz Pentium 3 machine. Section 4 contains more examples of the \textit{z-idx} scheme applied to real world document sets.

We also show how to use \textit{z-idx} for the application of searching on encrypted data, and as a result, obtain the most efficient scheme currently known. Our search scheme inherits the efficiency of \textit{z-idx}, the ability to handle arbitrary updates, and is indifferent to the compression and encryption algorithm used on the documents.

Applications. We emphasize that secure indexes have many applications, only one of which is the application of searching on encrypted data [21, 8, 10]. Secure indexes can also be used for accumulated hashing [6, 19] and testing set membership securely. In fact, the techniques in this paper have already been used to build encrypted and searchable audit logs [22], and similar techniques were recently used by Bellovin and Cheswick [5] to build databases that allow for private queries using a semi-trusted third party. We now describe a few applications in greater detail.

1. **Searching on Encrypted Data.** Increasingly, organizations and users are storing their data on servers outside their direct control. Backups and remote data storage are commonly outsourced to data warehousing companies. Even when data is stored locally, organizations hire system administrators to run backup and storage servers. In either case, administrators have full access to storage systems and can read confidential data. Therefore, sensitive documents should be encrypted before transserral to remote storage.

With files encrypted on a remote server, it is difficult to retrieve files based on their content. For example, consider a user Alice who stores her work documents on a untrusted file system. Suppose Alice wishes to retrieve all documents containing the word “aardvark”. Since the document files are encrypted and the server cannot be trusted with the document keys or their contents, Alice has to download all the document files, decrypt them, and then search the decrypted documents on her local machine; This naive solution is inefficient. The ideal
solution is to let the server search the encrypted documents and return only relevant ones, while ensuring that it learns nothing about the keyword or document contents. Section 5 discusses both the use of secure indexes and related work for this search problem. We point out that all existing schemes (including ours) for searching on encrypted data sacrifice access pattern privacy in return for greater efficiency.

Note that secure indexes are useful for searching on encrypted data only in multi-user settings where the encrypted documents and their indexes on the remote server are frequently updated. If indexes are used by only one user or if indexes are never updated, the best solution is for each user to maintain a local index such as a hash table where each bucket contains pointers to documents with a particular search term. Since indexes are stored locally, no security is required. Such local indexes do not work well in multi-user settings because it is difficult to maintain the consistency of local indexes across all users when documents are updated.

2. **Encrypted and Searchable Audit Logs.** Waters et al. [22] build private audit logs that allow keyword searches only if the querier possesses trapdoors for those keywords. The symmetric key version of their scheme is based partly on techniques derived from this paper.

Related Work. For an index to be IND-CKA secure, two encrypted documents of equal size must have indexes that appear to contain the same number of keywords. As Chang and Mitzenmacher [10] observe, this model allows for indexes that still leak some information, namely the approximate number of tokens in the document. They propose a stronger model, which we call IND2-CKA, where the indexes for two documents with different numbers of keywords cannot be distinguished. On the other hand, we note that the approximate number of words in the document can be deduced from the (public) size of the encrypted document. Extending our techniques, Chang and Mitzenmacher [10] developed two IND2-CKA secure index constructions using pre-built dictionaries. The price they pay for this extra security is threefold —

1. Computationally less efficient: For example, Z-IDX’s index building algorithm for a document with n words requires $O(n)$ time, whereas their scheme requires $3n + 2^d + 1$ time per document where 2^d is the size of the dictionary. Note that $2^d \gg n$ for the majority of documents.
2. Inability to handle arbitrary updates: Unlike Z-IDX their schemes use pre-built dictionaries where the dictionary size and contents are fixed when the dictionary and indexes are built for a set of documents. Since it is difficult to anticipate all possible words that need to be indexed, it is fair to say that their schemes cannot efficiently handle arbitrary updates. For the same reasons as the hash table index [21], it appears difficult to securely update the dictionary on a remote server.
3. Relatively large fixed size indexes: Regardless of the document size, their indexes must be 2^d bits long. For small documents, their index can be many times larger than the document, whereas Z-IDX indexes may be encoded so that they are only slightly larger than the document.

We note that this extra security (IND2-CKA) is not required for securing index contents, but if required, a small modification to Z-IDX described in Section 3.2 achieves IND2-CKA security — our resulting scheme is computationally more efficient, and can handle arbitrary updates; On the other hand, this increased security results in larger indexes.
2 IND-CKA Secure Indexes

In this section, we define an IND-CKA secure index scheme.

Notation. Throughout the paper, we use \(x, y, z \sim_{\mathcal{R}} S \) to denote random variables \(x, y, \) and \(z \) that are drawn uniformly at random from the set \(S \). We write \(x \sim_{\mathcal{R}} [1, N] \) to denote a random variable \(x \) drawn uniformly at random from the set of integers in \([1, N]\). For a randomized algorithm \(\mathcal{A} \), we use \(x \sim_{\mathcal{R}} \mathcal{A}() \) to denote the random variable \(x \) representing the output of the algorithm. The symmetric set difference of two sets \(A \) and \(B \) is defined as \(A \triangle B \overset{\text{def}}{=} (A - B) \cup (B - A) \). We write \(|A|\) for a set \(A \) to denote the number of elements \(A \). We use \(\| \) to denote string concatenation.

Index Scheme. An index scheme consists of the following four algorithms —

\[\text{Keygen}(s): \text{Given a security parameter } s, \text{ outputs the master private key } K_{\text{priv}}. \]
\[\text{Trapdoor}(K_{\text{priv}}, w): \text{Given the master key } K_{\text{priv}} \text{ and word } w, \text{ outputs the trapdoor } T_w \text{ for } w. \]
\[\text{BuildIndex}(D, K_{\text{priv}}): \text{Given a document } D \text{ and the master key } K_{\text{priv}}, \text{ outputs the index } I_D. \]
\[\text{SearchIndex}(T_w, I_D): \text{Given the trapdoor } T_w \text{ for word } w \text{ and the index } I_D \text{ for document } D, \]
\[\text{outputs } 1 \text{ if } w \in D \text{ and } 0 \text{ otherwise.} \]

Except for \text{Keygen}, which is a randomized algorithm, the other three algorithms are deterministic. We note that \text{SearchIndex} can also be defined with a probability of error in its answers.

Semantic Security Against Adaptive Chosen Keyword Attack (IND-CKA). Intuitively, our security model aims to capture the notion that an adversary \(\mathcal{A} \) cannot deduce a document’s contents from its index, other than what it already knows from previous query results or from other channels. Roughly speaking, the game works as follows — Suppose the challenger \(\mathcal{C} \) gives the adversary \(\mathcal{A} \) two equal length documents \(V_0 \) and \(V_1 \), each containing some (possibly unequal) number of words, together with an index. Here, \(\mathcal{A} \)’s challenge is to determine which document is encoded in the index. If the problem of distinguishing between the index for \(V_0 \) and \(V_1 \) is hard, then deducing at least one of the words that \(V_0 \) and \(V_1 \) do not have in common from the index must also be hard. If \(\mathcal{A} \) cannot determine which document is encoded in the index with probability non-negligibly different from \(1/2 \), then the index reveals nothing about its contents. We use this formulation of index indistinguishability (IND) to prove the semantic security of indexes. We note that secure indexes do not hide information such as document size that can be obtained by examining the encrypted documents. More precisely, let (\text{Keygen}, \text{Trapdoor}, \text{BuildIndex}, \text{SearchIndex}) be an index scheme. We use the following game between a challenger \(\mathcal{C} \) and an attacker \(\mathcal{A} \) to define semantic security against an adaptive chosen keyword attack (IND-CKA) —

Setup. The challenger \(\mathcal{C} \) creates a set \(S \) of \(q \) words and gives this to the adversary \(\mathcal{A} \). \(\mathcal{A} \) chooses a number of subsets from \(S \).\(^1\) This collection of subsets is called \(S^* \) and is returned to \(\mathcal{C} \). Upon receiving \(S^* \), \(\mathcal{C} \) runs \text{Keygen} to generate the master key \(K_{\text{priv}} \), and for each subset in \(S^* \), \(\mathcal{C} \) encodes its contents into an index using \text{BuildIndex}. Finally, \(\mathcal{C} \) sends all indexes with their associated subsets to \(\mathcal{A} \).

Queries. \(\mathcal{A} \) is allowed to query \(\mathcal{C} \) on a word \(x \) and receive the trapdoor \(T_x \) for \(x \). With \(T_x \), \(\mathcal{A} \) can invoke \text{SearchIndex} on an index \(I \) to determine if \(x \in I \).

\(^1\)\(S \) is the set of all the unique words in a collection of documents and each of the subsets represents a document.
Challenge. After making some Trapdoor queries, A decides on a challenge by picking a non-empty subset $V_0 \in S^*$, and generating another non-empty subset V_1 from S such that $|V_0 - V_1| \neq 0, |V_1 - V_0| \neq 0$, and the total length of words in V_0 is equal to that in V_1.

Note that Bloom filters are history independent [18, 9]. False positives occur because each location may have also been set by some element other than a in S. We say that an adversary A is at least ϵ-secure if A can not achieve a non-negligible advantage against the trapdoor algorithm. On the other hand, if any checked bits are 0, then $V_0 \triangle V_1 = 0$, and the total length of words in V_0 is equal to that in V_1.

Note 1. The IND-CKA model does not explicitly require that the trapdoor for a word x not reveal x because this property is not necessary for all applications. On the other hand, the trapdoors created by any index scheme where the BuildIndex algorithm creates its indexes using the Trapdoor algorithm may have this property in order for the index scheme to be IND-CKA secure. An explicit example is discussed in Note 1 of Section 3.2.

Stronger Security Model (IND2-CKA). We can strengthen the model to attain a similar level of security as Chang and Mitzenmacher [10] by slightly altering the criteria for the choice of the challenge subsets V_0, V_1 in the Challenge phase of the IND-CKA game. We call this stronger model IND2-CKA. In this game, the adversary A decides on a challenge by picking two non-empty subsets $V_0, V_1 \in S^*$ (possibly of unequal size and unequal total word length) such that $|V_0 \triangle V_1| \neq 0$. The rest of the game is identical.

3 Constructing IND-CKA Secure Indexes

We first review Bloom filters, pseudo-random functions, and pseudo-random generators.

3.1 Background

Bloom Filters. A Bloom filter [7] represents a set of $S = \{s_1, \ldots, s_n\}$ of n elements and is represented by an array of m bits. All array bits are initially set to 0. The filter uses r independent hash functions h_1, \ldots, h_r, where $h_i : \{0, 1\}^* \rightarrow [1, m]$ for $i \in [1, r]$. For each element $s \in S$, the array bits at positions $h_1(s), \ldots, h_r(s)$ are set to 1. A location can be set to 1 multiple times, but only the first is noted. To determine if an element a belongs to the set S, we check the bits at positions $h_1(a), \ldots, h_r(a)$. If all the checked bits are 1’s, then a is considered a member of the set. There is, however, some probability of a false positive, in which a appears to be in S but actually is not. False positives occur because each location may have also been set by some element other than a. On the other hand, if any checked bits are 0, then a is definitely not a member of S. Section 4 discusses the false positive rate. We note that Bloom filters are history independent [18, 9].

Note that it is possible for $|V_0| \neq |V_1|$ provided both V_0 and V_1 have equal total word length.
Pseudo-Random Functions. Intuitively, a pseudo-random function is computationally indistinguishable from a random function — given pairs \((x_1, f(x_1, k)), \ldots, (x_m, f(x_m, k))\), an adversary cannot predict \(f(x_{m+1}, k)\) for any \(x_{m+1}\). More precisely, we say that a function \(f : \{0,1\}^n \times \{0,1\}^s \rightarrow \{0,1\}^m\) is a \((t, \varepsilon, q)\)-pseudo-random function if

1. \(f(x, k) \overset{\text{def}}{=} f_k(x)\) can be computed efficiently from input \(x \in \{0,1\}^n\) and key \(k \in \{0,1\}^s\).
2. for any \(t\) time oracle algorithm \(A\) that makes at most \(q\) adaptive queries,
 \[
 \left| \Pr \left[A^{f(.; k)} = 0 \mid k \overset{R}{\leftarrow} \{0,1\}^s \right] - \Pr \left[A^g = 0 \mid g \overset{R}{\leftarrow} \{F : \{0,1\}^n \rightarrow \{0,1\}^m\} \right]\right| < \varepsilon.
 \]

Pseudo-Random Generators. Intuitively, a pseudo-random generator outputs strings that are computationally indistinguishable from random strings. More precisely, we say that a function \(G : \{0,1\}^n \rightarrow \{0,1\}^m\) where \(m > n\) is a \((t, \varepsilon)\)-pseudo-random generator if

1. \(G\) is efficiently computable by a deterministic algorithm
2. For all \(t\) time probabilistic algorithms \(A\),
 \[
 \left| \Pr \left[A(G(s)) = 0 \mid s \overset{R}{\leftarrow} \{0,1\}^n \right] - \Pr \left[A(r) = 0 \mid r \overset{R}{\leftarrow} \{0,1\}^m \right]\right| < \varepsilon.
 \]

Our secure index construction uses pseudo-random functions as shown in the following lemma —

Lemma 3.1. If \(f : \{0,1\}^n \times \{0,1\}^s \rightarrow \{0,1\}^m\) is a \((t, \varepsilon, q)\)-pseudo-random function, then

\[
G(k) = f(1, k) \parallel f(2, k) \parallel \ldots \parallel f(q, k)
\]

where \(k \in \{0,1\}^s\) is a \((t - q, \varepsilon)\)-pseudo-random generator.

The proof is straightforward and is omitted. Note that if \(f\) is a random function, the derived generator \(G\) is unconditionally secure.

3.2 Construction

We use a Bloom filter as a per document index to track words in each document. In our scheme, a word is represented in an index by a codeword derived by applying pseudo-random functions twice — once with the word as input and once with a unique document identifier as input. This non-standard use of pseudo-random functions ensures that the codewords representing a word \(x\) are different for each document in the set, and this technique together with blinding indexes with random tokens, ensures that our indexes are IND-CKA secure. Furthermore, the different codewords for a word \(x\) can be efficiently reproduced given just a short trapdoor for \(x\). Both efficiently computable codewords and short trapdoors are important for the application of searching on encrypted data. We now describe our index called \(z\)-IDX.

Keygen\((s)\): Given a security parameter \(s\), choose a pseudo-random function \(f : \{0,1\}^n \times \{0,1\}^s \rightarrow \{0,1\}^s\) and the master key \(K_{\text{priv}} = (k_1, \ldots, k_r) \overset{R}{\leftarrow} \{0,1\}^{sr}\).

Trapdoor\((K_{\text{priv}}, w)\): Given the master key \(K_{\text{priv}} = (k_1, \ldots, k_r) \in \{0,1\}^{sr}\) and word \(w\), output the trapdoor for word \(w\) as \(T_w = (f(w, k_1), \ldots, f(w, k_r)) \in \{0,1\}^{sr}\).
\textbf{BuildIndex}(D, K_{\text{priv}}): \text{ The input is the document } D \text{ comprising of an unique identifier (name) } D_{\text{id}} \in \{0, 1\}^n \text{ and a list of words } (w_0, \ldots, w_t) \in \{0, 1\}^{nt}, \text{ and } K_{\text{priv}} = (k_1, \ldots, k_r) \in \{0, 1\}^r.

1. For each unique word \(w_i \) for \(i \in [0, t] \), compute —
 (a) the trapdoor: \((x_1 = f(w_i, k_1), \ldots, x_r = f(w_i, k_r)) \in \{0, 1\}^r \),
 (b) the codeword for \(w_i \) in \(D_{\text{id}} \): \((y_1 = f(D_{\text{id}}, x_1), \ldots, y_r = f(D_{\text{id}}, x_r)) \in \{0, 1\}^r \),
 (c) and insert the codeword \(y_1, \ldots, y_r \) into document \(D_{\text{id}} \)'s Bloom filter BF.

2. Compute an upper bound \(u \) on the number of words in \(D \). For example, an extreme value for \(u \) assumes one word for every byte in \(D \) (after encryption).

3. Let \(v \) be the number of unique words among the set of \(t \) words \((w_0, \ldots, w_t)\). Blind the index by inserting \((u - v) \cdot r\) number of 1’s uniformly at random in the Bloom filter (possibly with replacement); This is equivalent to adding \(u - v \) random words into the index, but without any pseudo-random function computations.

4. Output \(I_{D_{\text{id}}} = (D_{\text{id}}, \text{BF}) \) as the index for \(D_{\text{id}} \).

\textbf{SearchIndex}(T_w, I_D): \text{ The input is the trapdoor } T_w = (x_1, \ldots, x_r) \in \{0, 1\}^r \text{ for word } w \text{ and the index } I_{D_{\text{id}}} = (D_{\text{id}}, \text{BF}) \text{ for document } D_{\text{id}}.

1. Compute the codeword for \(w \) in \(D_{\text{id}} \): \((y_1 = f(D_{\text{id}}, x_1), \ldots, y_r = f(D_{\text{id}}, x_r)) \in \{0, 1\}^r \).
2. Test if BF contains 1’s in all \(r \) locations denoted by \(y_1, \ldots, y_r \).
3. If so, output 1; Otherwise, output 0.

\textbf{Note 1.} \text{ To prove IND-CKA security of index schemes (like Z-IDX) where the BuildIndex algorithm uses the trapdoors generated by Trapdoor to create the index, the trapdoor for word } x \text{ cannot leak any information about } x. \text{ Otherwise, the adversary can trivially win the IND-CKA game by generating challenge subsets } V_0 = \{x\} \text{ and } V_1 = \{y\}. \text{ This property is the “hidden queries” suggested by Song et al. [21] and is important in the application of searching on encrypted data.}

\textbf{Note 2.} \text{ The obvious idea of inserting the trapdoors } T_x = f(x, k_1), \ldots, f(x, k_r) \text{ directly into the Bloom filter index makes the index vulnerable to correlation attacks where the similarity of two documents can be deduced by comparing Bloom filters indexes for overlaps, or lack thereof, of 1’s in the Bloom filter. A similar attack on document updates can be mounted by tracking document Bloom filter changes between updates.}

\textbf{Note 3.} \text{ Two equal length documents have the same number of tokens in their indexes, regardless of how many actual keywords the documents contain. The main disadvantage of adding random 1’s into the Bloom filter is increasing the false positive rate; On the other hand, a simple calculation shows that a small constant factor increase in the Bloom filter array size is sufficient for maintaining the false positive rate.}

\textbf{Note 4.} \text{ The notion of a unique document identifier is not unreasonable. For example, pathnames in a file system are unique and can be used as the document identifier, provided they are not reused on updates. Reusing pathnames is easily accomplished by appending an integer on the pathname and incrementing it on updates. We note that document identifiers are a property of the index scheme and need not be captured in the IND-CKA security model.}
Cost of Algorithms. We delay the discussion of choosing suitable Bloom filter parameters until Section 4. In practice, we use the keyed hash function HMAC-SHA1 : \(\{0, 1\}^* \times \{0, 1\}^{160} \rightarrow \{0, 1\}^{160} \) as the pseudo-random function \(f \), which allows z-idx to handle arbitrary length words. Hence, we can assume that computing a pseudo-random function is a constant time operation. We also assume that testing/inserting entries into a Bloom filter are constant time operations. Recall that the number of Bloom filter hash functions \(r \) is given by \(-\log(fp) \) where \(fp \) is the false positive rate. Hence, for almost all practical choices of the false positive rate, \(r \) is a very small constant. Indeed, it is reasonable to assume that \(r \) is constant.

As a result, the Trapdoor algorithm takes \(O(1) \) time and produces trapdoors that are \(rs \) bits long; The BuildIndex algorithm on a document takes time linear in the number of words in the document; The SearchIndex algorithm takes \(O(1) \) time. Indexes are small for real world applications; Section 4 gives index sizes for both a typical email archive and a collection of plaintext documents. We note that the false positive rate only affects the correctness of the result and not the performance.

Properties. The z-idx scheme possesses several useful properties —

1. Arbitrary Updates: Because z-idx does not pre-build dictionaries, it can handle any updates.
2. Compressible Indexes: Using techniques described in Section 4, the Bloom filter indexes can be very effectively compressed for small and medium sized documents.
3. Short Trapdoors and Efficiently Reproducible Codewords: Given the short trapdoor for word \(w \), the different codewords of \(w \) for each index can be efficiently reproduced.
4. Compressed and Encrypted Data: Index schemes do not require access to the document contents after the index is built. Hence, the documents can be compressed and encrypted with any compression algorithm and chosen ciphertext secure [15, 4, 20] cipher.
5. Boolean and Limited Regular Expression Queries: These queries can be performed efficiently on z-idx indexes; The algorithms for performing such queries are described in Section 5.1.
6. Occurrence Search: z-idx can be easily modified to handle queries such as “does ‘foo’ occur at least twice in the index”. This extension is described in Section 3.3.
7. Variable Length Words: when HMAC-SHA1 is used as the pseudo-random function \(f \).
8. Simple Key Management: As described, our construction requires \(r \) keys but the \(r \) keys can be generated by a pseudo-random generator with a single secret seed.

The following theorem shows that z-idx is a ind-cka index. Although the theorem does not take into account the potential false positives inherent in z-idx, we note that false positives can only negatively affect the adversary’s advantage (whereas we are interested in a lower bound).

Theorem 3.2. If \(f \) is a \((t, \epsilon, q) \)-pseudo-random function, then z-idx is a \((t, \epsilon, q/2) \)-ind-cka index.

Proof. We prove the theorem using its contrapositive. Suppose z-idx is not a \((t, \epsilon, q) \)-ind-cka index. Then there exists an algorithm \(A \) that \((t, \epsilon, q) \)-breaks z-idx. We build an algorithm \(B \) that uses \(A \) to determine if \(f \) is a pseudo-random function or a random function. \(B \) has access to an oracle \(O_f \) for the unknown function \(f \) that takes as input \(x \in \{0, 1\}^n \) and returns \(f(x) \in \{0, 1\}^s \). When running any of the four index algorithms, \(B \) substitutes evaluations of \(f \) with queries to the oracle \(O_f \). Algorithm \(B \) simulates \(A \) as follows —

Setup. Algorithm \(B \) picks a set \(S \) of \(q/2 \) strings from \(\{0, 1\}^n \) uniformly at random and sends \(S \) to \(A \). In response, \(A \) returns a polynomial number of subsets of \(S \). We call this collection of
indexes. As a result, we need only consider the challenge subsets.

Queries. On receiving \(\mathcal{A} \)'s query for the trapdoor of word \(x \), \(\mathcal{B} \) runs \texttt{Trapdoor} on \(x \) and replies with the trapdoor \(T_x \).

Challenge. After making some \texttt{Trapdoor} queries, \(\mathcal{A} \) decides on a challenge by picking a subset \(V_0 \in S^* \), and generating another subset \(V_1 \) from \(S \) such that \(|V_0 - V_1| \neq 0, |V_1 - V_0| \neq 0 \), and the total length of words in \(V_0 \) is equal to that in \(V_1 \). Furthermore, \(\mathcal{A} \) must not have queried \(\mathcal{B} \) for the trapdoor of any word in \(V_0 \Delta V_1 \). Next, \(\mathcal{A} \) gives \(V_0 \) and \(V_1 \) to \(\mathcal{B} \) who chooses \(b \leftarrow \{0, 1\} \) and also chooses a new (unique) identifier \(V_{id} \). \(\mathcal{B} \) runs \texttt{BuildIndex} on \(V_0 \) with the identifier \(V_{id} \) to get the index \(\mathcal{I}_{V_0} \), which is given to \(\mathcal{A} \). After the challenge is issued, \(\mathcal{A} \) is not allowed to query \(\mathcal{C} \) for the trapdoors of any word \(x \in V_0 \Delta V_1 \).

Response. \(\mathcal{A} \) eventually outputs a bit \(b' \), representing its guess for \(b \). If \(b' = b \), then \(\mathcal{B} \) outputs 0, indicating that it guesses that \(f \) is a pseudo-random function. Otherwise, \(\mathcal{B} \) outputs 1.

We see that \(\mathcal{B} \) takes at most \(t \) time because \(\mathcal{A} \) takes at most \(t \) time. Furthermore, \(\mathcal{B} \) makes at most \(q \) queries to \(O_f \) because there are only \(q/2 \) strings in \(S \) and \(\mathcal{A} \) makes at most \(q/2 \) queries. Finally, we show that \(\mathcal{B} \) can determine if \(f \) is a pseudo-random function or random function with advantage greater than \(\epsilon \) by proving the following two claims —

Claim 1: When \(f \) is a pseudo-random function, then \(\left| \Pr \left[\mathcal{B}^{(c,k)} = 0 \mid k \leftarrow \{0,1\}^s \right] - \frac{1}{2} \right| \geq \epsilon \).

Claim 2: When \(f \) is a random function, then \(\Pr \left[\mathcal{B}^g = 0 \mid g \leftarrow \{F : \{0,1\}^n \rightarrow \{0,1\}^s\} \right] = \frac{1}{2} \).

It follows from these two claims that
\[
\left| \Pr \left[\mathcal{B}^{(c,k)} = 0 \mid k \leftarrow \{0,1\}^s \right] - \Pr \left[\mathcal{B}^g = 0 \mid g \leftarrow \{F : \{0,1\}^n \rightarrow \{0,1\}^s\} \right] \right| \geq \epsilon,
\]
thus proving the theorem.

It remains to prove the two claims. The proof of Claim 1 is immediate. When \(f \) is a pseudo-random function, algorithm \(\mathcal{B} \) simulates perfectly the challenger in an \texttt{IND-CKA} game. Therefore, the claim follows by the definition of \(\mathcal{A} \).

We now prove Claim 2. We first show that we only need to consider the challenge subsets in our analysis because the other subsets of \(S^* \) and further trapdoor queries reveal no information about the challenge subsets. When \(f \) is a pseudo-random function, Lemma 3.1 implies that it is infeasible for \(\mathcal{A} \) to correlate codewords representing the same word across all document \texttt{z-IDX} indexes. Since \(f \) is a random function, the same lemma applied to random functions implies that it is information theoretically impossible for \(\mathcal{A} \) to correlate codewords across document Bloom filters. From this extended lemma, together with both restrictions on the choice of the challenge subsets \(V_0 \) and \(V_1 \) and on \(\mathcal{A} \)'s queries after receiving the challenge index, it follows that from \(\mathcal{A} \)'s view, each codeword representing a word \(z \in V_0 \Delta V_1 \) is independent of all other codewords for \(z \) across all subsets in \(S^* \) and their indexes. That is, \(\mathcal{A} \) learns nothing about \(V_0 \Delta V_1 \) from the other subsets in \(S^* \) and their indexes. As a result, we need only consider the challenge subsets.

Without loss of generality, assume that \(V_0 \Delta V_1 \) contains only two words, \(x \) and \(y \) where \(x \in V_0 \) and \(y \in V_1 \). Suppose \(\mathcal{A} \) guesses \(b \) correctly with advantage \(\delta > 0 \). It follows that \(\mathcal{A} \), given \(f(z) \), can determine if \(z = x \) or \(y \) with advantage \(\delta \); That is, \(\mathcal{A} \) can distinguish between outputs of a random function \(f \) with advantage \(\delta \), which is impossible. Therefore, \(\mathcal{A} \) at best guesses \(b \) correctly with probability \(1/2 \). It follows that \(\Pr \left[B^g = 0 \mid g \leftarrow \{F : \{0,1\}^n \rightarrow \{0,1\}^s\} \right] = \Pr \left[b' = b \right] = \frac{1}{2} \), thus proving Claim 2. \(\square \)
Corollaries. The results in this section show that z-IDX indexes can be used 1) to test set membership without revealing the set elements, and 2) for accumulated hashing [6, 19].

Attaining IND2-CKA Security. Z-IDX is easily extended to achieve IND2-CKA security, which is similar to that proposed by Chang and Mitzenmacher [10], where the indexes for two (possibly unequal size) documents with different numbers of keywords cannot be distinguished. Only the BuildIndex algorithm is modified — instead of estimating an upper bound \(u \) on the number of tokens for each document, simply set a global \(u \) for all documents that is an estimate for the maximum number of tokens in a single document.

3.3 Occurrence Search

Z-IDX can be modified handle queries such as “does ‘foo’ occur at least twice in the index”. Only the Trapdoor and BuildIndex algorithms need to change.

\[
\text{Trapdoor}(K_{\text{priv}}, w, i): \text{Given the master key } K_{\text{priv}} = (k_1, \ldots, k_r) \in \{0, 1\}^{sr}, \text{ the word } w, \text{ and the occurrence desired } i, \text{ output } T_w = (f(i || w, k_1), \ldots, f(i || w, k_r)) \in \{0, 1\}^{sr} \text{ as the trapdoor.}
\]

\[
\text{BuildIndex}(D, K_{\text{priv}}): \text{The input is the document } D \text{ comprising of an unique identifier (name) } D_{\text{id}} \in \{0, 1\}^n \text{ together with a list of words } (w_0, \ldots, w_t) \in \{0, 1\}^{nt} \text{ and the master key } K_{\text{priv}} = (k_1, \ldots, k_r) \in \{0, 1\}^{sr}. \text{ For each word } w_i \text{ for } i \in [0, t], \text{ do the following —}
\]

1. Let \(z_i \) be the order of occurrence of \(w_i \) relative to previous occurrences of \(w_i \) in \(D \). That is, if \(w_i = \text{‘foo’} \) is the second time word \(\text{‘foo’} \) occurs in \(D \), then \(z_i = 2 \).
2. Compute a modified trapdoor: \((x_1 = f(z_i || w_i, k_1), \ldots, x_r = f(z_i || w_i, k_r)) \in \{0, 1\}^{sr} \).
3. Compute the codeword for \(w_i \) in \(D_{\text{id}} \): \((y_1 = f(D_{\text{id}}, x_1), \ldots, y_r = f(D_{\text{id}}, x_r)) \in \{0, 1\}^{sr} \).
4. Insert the codeword \(y_1, \ldots, y_r \) into document \(D_{\text{id}} \)'s Bloom filter BF.

The index is blinded in the same way as before and \(I_{D_{\text{id}}} = (D_{\text{id}}, \text{BF}) \) is emitted as the index.

4 Choosing Suitable Bloom Filter Parameters

We first quantify the probability of a false positive occurring in a Bloom filter. Assume that the hash functions \(h_1, \ldots, h_r \) map arbitrary strings uniformly over the range \([1, m]\). After using the \(r \) hash functions to insert \(n \) distinct elements into an array of size \(m \), the probability that bit \(i \) in the array is 0 is \((1 - (1/m))^n \approx e^{-rn/m}\). Therefore, the probability of a false positive is \((1 - (1 - (1/m))^n)^r \approx (1 - e^{-rn/m})^r\). Since \(m \) and \(n \) are typically fixed parameters, we compute the value of \(r \) that minimizes the false positive rate. The derivative of the right hand side of the equation with respect to \(r \) gives a global minimum of \(r = (\ln 2)(m/n) \), with a false positive rate of \((1/2)^r\). We round \(r \) to the nearest integer in practice. Given a set of documents that we want to build indexes for, the following procedure shows how to choose optimal Bloom filter parameters.

1. First choose the desired false positive rate \(fp \). Note that increasing the Bloom filter false positive rate causes the server to return more irrelevant documents in a word search. But irrelevant documents can be weeded out by mechanical scanning by the user after being retrieved and decrypted. Hence, increasing the false positive rate increases the communication overhead between the user and the server without affecting the correctness of the result.
2. From the false positive rate, compute the number of pseudo-random function keys required. Recall that in Section 3.1, a false positive rate of \((1/2)^r \) is achieved by choosing the number of pseudo-random function keys \(r \) using the equation \(r = (\ln 2)(m/n) \) where \(m \) is the size of the Bloom filter array and \(n \) is the number of unique words in the document set. Therefore, the number of keys required can be determined by computing \(r = -\log_2(fp) \).

3. Scan every document in the set and count the number of unique words. Multiply the number of unique words by a constant factor to allow for updates, giving us the required value of \(n \). We only need to consider the unique words in the document set and not all possible words in the universe. With \(r \) and \(n \) determined, the array size \(m \) is given by \(m = nr/\ln 2 \).

Sparse Array Encoding. In typical document sets, individual documents are small and do not contain many words. For example, consider a collection of emails. Since the number of words in each email is small, using an array is inefficient because most of the array entries are 0. Instead, we can keep track of the entries containing 1’s. This technique is most effective when the document set consists of many small documents resulting in a large unique word set, a scenario that commonly occurs in real applications. An even more effective technique is difference encoding where instead of recording the 1’s, we record the the number of 0’s between two 1’s in the Bloom filter.

Real World Examples. We demonstrate the practicality of Z-IDX by computing the index sizes for two real world examples. In both examples, we assume a Bloom filter false positive rate of 1 in 1024. With this false positive rate, executing SearchIndex requires only 10 HMAC-SHA1 computations, implying that 15151 indexes can searched per second on a 866 MHz Pentium 3.

1. The 2654 plaintext documents on the author’s Debian Linux installation have a total size of 27.4 megabytes. These documents collectively contain 4799551 words, of which 439661 are unique. On the average, a document contains 1808 words, of which 528 are unique. Using difference encoding, the average index in this document set takes up roughly 42.4 kilobytes. The largest document in this collection is 876.6 kilobytes long and contains 72982 words; Its index has a size of 774.3 kilobytes. The smallest document is 9 bytes long and contains a single word; Its index has a size of 90 bytes.

2. The newsgroup archives for the IPSEC working group [1] from January to mid May 2003 consists of 1234 email messages totaling 4.5 megabytes. Excluding email headers and attachments, the email bodies collectively contain 459363 words, of which 26210 are unique. On the average, an email contains 372 words, of which 189 are unique, and is 2 kilobytes long. Using difference encoding, the average index in this email archive takes up only 6.59 kilobytes.

5 Secure Indexes Applied to Searching on Encrypted Data

As an application of secure indexes, we show how to use Z-IDX for searching on encrypted documents stored on a remote server (which was motivated in Section 1). The basic scheme is simple — simply generate an index for each document. Searching on encrypted data requires more security guarantees than that provided by IND-CKA secure indexes alone. Song et. al. [21] describe three properties that an encrypted search scheme should possess. We describe these properties and informally argue that the Z-IDX index scheme satisfies all three.
On a word search, recall that the querier sends the trapdoor for the word to the server and the server returns matching documents. As mentioned in Note 1 of Section 3.2, trapdoors generated for Z-IDX indexes do not reveal the actual search word; This is the property that Song et. al. [21] refer to as “hidden queries”. Furthermore, Z-IDX trapdoors are generated using a pseudo-random function and an adversary cannot generate trapdoors without the secret keys; Song et. al. call this property “controlled searching”. Following directly from the semantic security of an IND-CKA secure index, after a search, the server learns nothing about the documents than the search result; This property is known as “query isolation”. Like all existing encrypted search schemes, our search scheme using Z-IDX indexes sacrifices access pattern privacy for efficiency. For example, after a search for keyword x, the server does not know x but learns which documents contain x. Before describing the setup, search, and update algorithms for implementing searches on encrypted data, we review some related work.

Related Work. The problem of searching on encrypted data was put forward by Song, Wagner, and Perrig. [21]. In their paper, they presented a Searchable Symmetric Key Encryption (SSKE) scheme [21] that allows a user, given a trapdoor for a word, to test if a ciphertext block contains the word. Boneh et al. developed Searchable Public Key Encryption (SPKE) [8], which is the public key equivalent of SSKE. When applied to the problem of searching encrypted documents, both schemes require the server to perform a linear scan through all the document contents on every query.

As mentioned earlier, Chang and Mitzenmacher [10] developed two index schemes using the idea of pre-built dictionaries. Song et al. [21] also propose an index solution that has a single encrypted hash table index for the entire document set. Their encrypted hash table index is more computationally efficient than our scheme — it requires $O(1)$ time to search for all documents that contain a keyword whereas our scheme using Z-IDX has to test all document indexes. On the other hand, our scheme is fast enough for most applications; As shown in Section 4, even a relatively slow machine can search 15000 indexes a second. The main difficulty with using a master index for all documents is that securely and efficiently updating this master index appears difficult; Updating the index securely requires regenerating the entire index on an update. Nevertheless, the cost of an update can be mitigated by maintaining per document indexes; Updates now only need regenerate the per document index.

In the scenario of per document indexes, our search scheme using Z-IDX possesses several advantages over simply using a per document encrypted hash table. 1) The first is that of computational efficiency — an encrypted hash table requires decryption operations (such as AES) on a search, whereas Z-IDX only requires (cheaper) pseudo-random function evaluations (such as HMAC-SHA1). 2) Second, blinding techniques that hide the number of keywords in an index (necessary for IND-CKA security) may require fixed size buckets and are likely to be less efficient (in both space and computation) than the simple blinding technique for Z-IDX. As a result, it is likely that our search scheme using Z-IDX results in smaller indexes. 3) Third, it is difficult to design an efficient per document encrypted hash table such that a server, given only a trapdoor, can only decrypt small portions of each per document hash table. We note that it may be possible to design such a hash table scheme using similar techniques as those described in this paper, but such an investigation is outside the scope of this paper.

The seminal work of Goldreich and Ostrovsky on Oblivious RAMs [14] give us techniques for searching on encrypted data stored on a server while hiding data access patterns. Their techniques
require polylog rounds of communication. Although their best construction is asymptotically efficient, it is inefficient in practice because the big-O notation hides large constants. Note that the usage model here is different from that in the preceding paragraph; Here, the user performs a keyword search in a number of rounds by iteratively querying the server so as to narrow down the search, whereas for the schemes in the preceding paragraph, a user queries the server only once (in most cases) and the server performs the search, eventually returning the search result. Private Information Retrieval (PIR) [12, 16] schemes allow queries to a database where the database learns nothing about which records were read. Chor et al. show how to use multiple rounds of PIR to search on keywords [11]. On the other hand, PIR schemes are meant for public databases where the data is unencrypted on the server.

5.1 Setup, Search, and Update Algorithms

Suppose a user U stores a set of n documents D_1, \ldots, D_n on an untrusted server S. The search system is set up by running the ES-Setup algorithm to build indexes for D_1, \ldots, D_n. The ES-Search algorithm is used for performing searches. If documents are added, deleted, or altered, the ES-Update algorithm updates the indexes. HMAC-SHA1 [3] is used as the pseudo-random function f.

ES-Setup: Before the n documents are placed on the server, the indexes are built as follows —

1. First derive suitable Bloom filter parameters for the indexes. We assume that the Bloom filters are instantiated with an array of size m. Next invoke $\text{Keygen}(s)$ to obtain the pseudo-random function $f : \{0,1\}^s \times \{0,1\}^s \rightarrow \{0,1\}^s$ and the master key $K_{\text{priv}} = (k_1,\ldots,k_r) \in \{0,1\}^{sr}$.
2. Assign (and insert) an integer $i \in [1,n]$ to each document D_i as its unique identifier.
3. For each document D_i, build its index $I_{D_i} \leftarrow \text{BuildIndex}(D_i, K_{\text{priv}})$.
4. Compress and encrypt each document using standard algorithms before transferring the documents and their indexes to the server S.

Cost of **ES-Setup:** It is easy to see that the cost is linear with the total size of documents.

ES-Search: When a user U wants all documents on the server S containing the word y, the following actions are performed —

1. U computes the trapdoor $T_y \leftarrow \text{Trapdoor}(K_{\text{priv}}, y)$ for y and sends T_y to the server.
2. For every index I_{D_i}, S invokes $\text{SearchIndex}(T_y, I_{D_i})$ to test for a match. All matching documents are returned to U.

Cost of **ES-Search:** U takes $O(1)$ time to compute the trapdoor. Each SearchIndex evaluation takes $O(1)$ time and S runs it on all documents; Therefore, the cost of searching all documents is linear in the number of documents (and not the size of the documents). We note that simultaneous word searches can be combined and will only require one pass through all the indexes.

Boolean and Regular Expression Queries. The ES-Search algorithm can also efficiently perform “AND” and “OR” boolean queries involving multiple words. This technique is aimed at increasing the efficiency of such queries and is only as secure as performing individual queries for each term. The procedure for handling these queries is best illustrated with an example.
Suppose the user U wants all documents containing words x and y. U first computes the trapdoors for both x and y and gives the server S both T_x and T_y. With a single pass over all indexes, S invokes SearchIndex once on each trapdoor. Documents whose indexes match both trapdoors are returned to U. “OR” queries can be carried out in a similar manner. The cost of such boolean queries is linear with the number of terms in the boolean expression, but can be completed with a single pass over all documents, whereas the naive method of performing such boolean queries involves multiple passes over the documents.

Certain regular expression queries such as “ab[a–z]” can be expressed as boolean queries $(aba \land \ldots \land abz)$. Hence, these queries can also be done with a single pass over all documents. Wild-card regular expression queries such as “ab∗” are much harder because of the exponential blowup in the number of possible strings.

ES-Update: There are three possible types of updates —

1. Adding Documents: To add a new document D, the BuildIndex algorithm is used to build D’s index after D is assigned a unique identifier.
2. Deleting Documents: Deletions simply involve deleting the document and its index from S.
3. Altering Document Contents: Altering the contents of an existing document requires assigning the document a new (unique) number and regenerating its index by invoking BuildIndex on the document with the new identifier.

Cost of **ES-Update**: Deleting a document is a constant time operation. Adding or updating a document requires invoking BuildIndex, which has cost linear in the size of the document.

5.2 Extensions

We describe three useful extensions to the basic encrypted search algorithms.

1. **Heuristically Increasing Security.** We describe a technique that makes it harder for the server to identify duplicate queries for the same word.

 Technique. To search for word y, the user computes the trapdoor $T_y = f(y, k_1), \ldots, f(y, k_r)$ but instead of sending all r pseudo-random outputs to the server, she sends only $r/2$ randomly chosen outputs. Note that the index is still built using all r outputs.

 Benefits. In most normal situations, this technique makes it harder for an eavesdropper to identify multiple queries for the same word. On the other hand, since the server has only half of the trapdoor, the document indexes constructed using Bloom filters register more false positives. A higher rate of false positives increases the communication overhead but more false positives also hide the documents that actually contain the keyword. Section 4 discusses the right choice of Bloom filter parameters to give the desired information hiding rate versus communication overhead.

 Why Only Heuristic? In certain situations, the server can determine which truncated trapdoors refer to the same word with no extra work. We show this using an example. Assume we have a set of n documents, all of which contain a word x. Also assume that using the technique described above gives a false positive rate of $1/10$.

 Suppose a user performs m queries, of which two are for the same word x and the other $m-2$ are queries for words not contained by any document in the set (non-existent words). The
number of documents returned by a query for a non-existent word is given by the binomial
distribution with \(p = \frac{1}{10} \). Observe that the two queries for \(x \) return all \(n \) documents. In
contrast, the probability that a non-existent word query returns all \(n \) documents is bounded
by the Chebyshev inequality to be at most \(\frac{1}{\sqrt{n}} \). Hence, the probability that all \(m - 2 \) queries
return less than \(n \) documents is at least \(1 - \left(\frac{1}{\sqrt{n}} \right)^{m-2} \). Figure 1 lists some sample values of \(n \)
and the corresponding values of \(m \) where \(m = \sqrt{n} \). From the table, we see that the probability
that all \(m - 2 \) queries return less than \(n \) documents is high even with relatively low values
of \(m \). Therefore, after all \(m \) queries are complete, an eavesdropper can pinpoint with high
probability the two queries for \(x \) by observing which queries return the entire document set.
The example given above is a contrived “bad” case. In many common scenarios, it is hard
(or impossible) for the server to perform similar analysis on the query patterns.

2. **Locating Words Within Documents.** Instead of using an index for every document, we
can divide documents into chunks and create indexes for each chunk. With this modification, words
can be located with chunk size granularity within a document.

3. **Searching for Infrequent Words.** If preventing statistical analysis attacks (described in
Section 3) is not required, then document indexes (Bloom filters) can be organized into a binary
tree, which facilitates efficient searches for uncommon or non-existent words. Appendix A contains
a complete description of this extension.

References

In N. Koblitz, editor, *Proceedings of Crypto 1996*, volume 1109 of *Lecture Notes in Computer

A Searching for Infrequent Words Efficiently

If preventing statistical analysis attacks (described in Section 3) is not required, then we can organize document indexes (Bloom filters) into a binary tree, which can be used to efficiently search for uncommon or non-existent words.

Bloom Filter Tree. In this modified scheme, document indexes (Bloom filters) contain the trapdoors $T_x = f(x, k_1), \ldots, f(x, k_r)$ instead of codewords $f(D_{id}, f(x, k_1)), \ldots, f(D_{id}, f(x, k_r))$ as described in the original scheme. Note that document identifiers are no longer needed.

Observe that a bitwise OR operation between the arrays of two Bloom filters (indexes) representing sets S_1 and S_2 results in another bit array that represents the union of S_1 and S_2. The two Bloom filter arrays must be of the same length and must have been initialized with the same set of hash functions. We can now describe how to exploit this property to build a document index tree for a set of n documents. For ease of exposition, assume that n is a power of 2.

1. Divide the set of n documents into pairs of documents. The corresponding document indexes (Bloom filters) for each pair are the leaves of the index tree.

2. Compute the bitwise OR of each pair of document index (Bloom filters) and assign the resulting index (Bloom filter) as the parent node of the pair in the document tree.

Note that this parent node represents the set of unique words in both documents. Also note that these parent nodes are the tree nodes at $\log n - 1$ depth.

3. Repeat the previous step for higher levels of the tree until we reach the root. Note that the index at the root contains the set of unique words in the entire document set.

Figure 2 shows an example of an index (Bloom filter) tree for a set of 4 documents. The tree can be built by the server or by the user and later transferred to the server. Note that the cost of building the tree is cheap because only approximately $2n$ Bloom filter bitwise ORs are computed for a set of n documents. Also note that documents are arbitrarily sorted to form pairs.

Searching a Bloom Filter Tree. We use the following procedure to search for all documents containing a word x in a set of n documents.

1. Perform a breadth-first traversal on the tree starting at the root. At every node i traversed, check if the index (Bloom filter) at node i contains the trapdoor for x.

2. If not, all nodes in the subtree rooted from node \(i \) are ignored for the rest of the search because no documents in the subtree rooted from node \(i \) contains \(x \).

3. Otherwise, continue searching from node \(i \). If \(i \) is a leaf node, the document represented by the index (Bloom filter) at \(i \) contains \(x \).

Figure 3 illustrates the search procedure. In this example, only document \(d_5 \) contains word \(x \). The dark lines and shaded circles mark the nodes traversed by the search algorithm.

Cost of Searching. If no document in the set contains the word, the word digest will not be found in the root node. Hence, the index (Bloom filter) tree allows us to rule out non-existent words with a single operation. Otherwise, the cost of searching for a word \(x \) in a set of \(n \) documents has an upper bound of \(2v \log n \) Bloom filter tests where \(v \) is the number of documents containing \(x \). This method of searching is better than linearly searching all indexes only if \(v < n/2 \log n \).

Figure 4 plots the value of \(v = n/2 \log n \) as a percentage of \(n \) versus \(n \) for \(n \) up to \(2^{23} \). The x-axis is plotted on a log scale. From the graph, we see that the efficiency of this method of searching drops as the document set grows in size. In a document set of size \(2^{14} = 16384 \), the tree construction is more efficient than linearly searching all document indexes if \(r \) is less than 6.25% of \(n \) (1024 out of 16384 documents). In a document set of size \(2^{23} = 8388608 \), the tree method is more efficient than linear search if \(v \) is less than 4% of \(n \) (335544 out of 8388608 documents). As the document set size increases, we observe a decrease in the rate at which \(v \) as a percentage of \(n \) drops. Therefore, this technique is still useful for very large document sets.
In practice, the search cost can be heuristically reduced using the following technique — when building the index (Bloom filter) tree, choose pairs of documents such that the Hamming distance of each pair’s indexes (Bloom filters) is minimized.

Updates on an Index Tree. Adding (or deleting) a document now requires an extra step for adding (or deleting) a new leaf node to the tree and then propagating the changes up to the root. Altering the contents of a document also requires an additional step of regenerating the Bloom filter nodes from the document leaf node back to the tree root.

Deleting a document or altering a document might remove unique words from the document set. Recall that standard Bloom filters cannot handle word deletions. Therefore, we use “counting Bloom filters” [13] at all non-leaf nodes.

Cost of Updates. Adding a new document, deleting a document, or changing document contents now incur an additional cost of updating the index (Bloom filter) tree. Note that changes to the tree on an update only affect the subtree where the changes occur. Therefore, the update cost has an upper bound of $2 \log n$ where n is the new number of documents in the tree. The communication overhead remains the same as in the basic scheme.