
Authenticating Query Results in Edge Computing

HweeHwa Pang Kian-Lee Tan
Institute for Infocomm Research Department of Computer Science

21 Heng Mui Keng Terrace National University of Singapore
Singapore 119613 3 Science Drive 2, Singapore 117543

hhpang@i2r.a-star.edu.sg tankl@comp.nus.edu.sg

Abstract

Edge computing pushes application logic and the under-
lying data to the edge of the network, with the aim of im-
proving availability and scalability. As the edge servers are
not necessarily secure, there must be provisions for validat-
ing their outputs. This paper proposes a mechanism that
creates a verification object (VO) for checking the integrity
of each query result produced by an edge server – that val-
ues in the result tuples are not tampered with, and that no
spurious tuples are introduced. The primary advantages of
our proposed mechanism are that the VO is independent of
the database size, and that relational operations can still
be fulfilled by the edge servers. These advantages reduce
transmission load and processing at the clients. We also
show how insert and delete transactions can be supported.

1. Introduction

Edge computing is being promoted as a strategy to
achieve scalable and highly available Web services (e.g.
[10]). It pushes business logic and data processing from cor-
porate data centers out to proxy servers at the “edge” of the
network. There are several potential advantages: Running
applications at the edge cuts down network latency and pro-
duces faster responses to end-users’ applications and part-
ners’ Web services. Adding edge servers near user clusters
is also likely to be a cheaper way to achieve scalability than
fortifying the servers in the corporate data center and pro-
visioning more network bandwidth for every user. Finally,
by lowering the dependency on the corporate data center,
edge computing removes the single point of failure in the
infrastructure, hence reducing its susceptibility to denial of
service attacks and improving service availability.

In theory, edge computing is a natural extension of the

Content Delivery Network (CDN) architecture. In practice,
pushing application logic to edge servers introduces a num-
ber of technical challenges, one of which is data security:
For applications that run on a database, edge computing
entails the distribution of (parts of) the database, to edge
servers that perform query processing on behalf of the cen-
tral DBMS. Since the edge servers are not necessarily as
secure as the corporate data center, the query results pro-
duced by them must be checked for integrity. Specifically, a
recipient must be able to verify that the values in his query
result have not been tampered with, and that no spurious
tuples are introduced.

In this paper, we propose a mechanism for authenticat-
ing the query results produced by edge servers. The central
database server maintains on each base table one or more
verifiable B-trees (VB-tree), which are B-trees extended
with concepts from the Merkle hash tree [11]. Each inter-
nal node of a VB-tree is associated with a signed digest or
hash value, derived from all the tuples in the subtree that is
rooted at the node. The VB-tree is distributed to the edge
servers along with the base table. In processing a query, an
edge server will identify the smallest subtree that envelops
the query result, and return a verification object (VO) con-
taining the digests for all the attributes and branches in the
subtree that are not part of the query result. With this VO,
the recipient can verify the query result by computing a di-
gest from them, and checking for a match with the subtree’s
digest that was signed by the trusted central database server.

One of the primary contributions of this paper over exist-
ing work is that the proposed mechanism creates VOs that
are linear in the size of the query answers, and independent
of the database size. Moreover, all the relational operations
can be fulfilled by the edge servers; for example, we do not
push projection operations to the clients. Hence, our mecha-
nism lowers the transmission overhead, and also the storage
and processing demands on the clients. Finally, we demon-
strate how the VB-trees can be updated dynamically while

N1234 = h(N12 | N34)

N12 =
h(N1 | N2)

N34 =
h(N3 | N4)

N1 = h(d1) N2 = h(d2) N3 = h(d3) N4 = h(d4)

Figure 1. Example of a Merkle Hash Tree

ensuring data consistency.
The remainder of this paper is organized as follows: Sec-

tion 2 summarizes related work on data authentication, with
particular emphasis on authentication in database systems.
Our proposed authentication mechanism is introduced in
Section 3, while Section 4 analyzes the costs and perfor-
mance of the mechanism. Finally, Section 5 concludes the
paper.

2. Related Work

This paper builds upon the work by Merkle in [11]. We
shall explain the Merkle hash tree with the example in Fig-
ure 1, which is intended for authenticating data values ��,
.., ��. Each leaf node �� is assigned a digest �����, where �
is a one-way hash function. The value of each internal node
is derived from its child nodes, e.g. ��� � ���� � ���
where � denotes concatenation. In addition, the value of the
root node is signed. The tree can be used to authenticate
any subset of the data values, in conjunction with a verifi-
cation object (VO). For example, to authenticate ��, the VO
contains ��, ��� and the signed �����. The recipient first
computes ����� and ��������� � ��� � ����, then checks
if the latter is the same as the signed �����. If so, �� is ac-
cepted; otherwise, the recipient concludes that �� has been
tampered with.

Merkle hash trees have inspired many proposals on data
authentication, including certifying answers to queries over
XML documents [4], for proving the presence or absence
of public key certificates on revocation lists [7, 12], and for
authenticating JPEG2000 images [13]. The proposal that
is most closely related to our work is [5], which describes
a scheme for verifying query results produced by untrusted
third-party publishers. The scheme calls for the data owner
to periodically distribute signed digests directly to users.
The digests are hashes computed recursively over tree in-
dices on the owner’s database. To prove that the answer to
a query is correct, the publisher constructs a VO using the
same tree index that the owner used to compute the signed

digest. The VO provides a hard-to-forge proof that links the
answer to the signed digest.

This work by Devenbu et al [5] is among the first few
papers to address the authentication of query results in
database systems. However, when applied directly in our
context of edge computing, their scheme poses a number of
limitations that we aim to overcome: First, a Merkle tree
is needed for every sort-order on a table; this incurs large
storage overheads, and makes updates very expensive. Sec-
ond, a VO needs to contain links all the way to the digest
for the root of the tree index. This means that the VO grows
linearly to the query result and logarithmically to the base
table, which can be quite sizeable for large databases. An-
other potential problem is that projections have to be per-
formed by the clients, which leads to wasteful data trans-
fers especially if the filtered attributes are BLOBs. There is
also no provision for dynamic updates on the database and
the associated Merkle trees. Finally, the approach is weak in
terms of access control – even attributes that are supposed to
be filtered out through projection must be returned to users
for verification. Moreover, to check for completeness, tu-
ples beyond the left and right boundaries of the query re-
sult must be exposed to the user; this would undermine any
tuple-based access control in the system.

A more recent work by Roos et al [16] also employs the
Merkle hash tree to authenticate range queries. However,
the focus of that paper is on encoding the VO in a more
compact form to minimize communication overhead; it has
the same limitations as the scheme in [5].

3. Authenticated Query Processing at Edge
Servers

This section presents our proposed mechanism for veri-
fying the query results produced by proxy servers in edge
computing. The idea is for the trusted central DBMS to
maintain and distribute verifiable B-trees (VB-tree) on the
base tables, that the edge servers use to create a verification
object (VO) for each query. This VO enables the recipient
to check the integrity of the query result – that the values
of the result tuples have not been tampered with, and that
no superfluous tuples are introduced. It is computationally
infeasible for an edge server to compromise the integrity of
the result, without invalidating the VO and being detected.

We start with an overview of the system setup, then
present the structure of the verifiable B-tree. Following that,
we show how an edge server constructs a VO from the VB-
tree for the selection, projection and join operations in a
query. Finally, we address how the central DBMS carries
out insertions and deletions on the VB-tree while preserv-
ing the consistency requirement of other queries and update
operations.

Trusted
DB Client

Unsecured
Edge Server

Trusted
Central DBMS

Result
+ VOQuery

DB +
VB-trees

…

Figure 2. Edge Computing Set-Up

3.1. System Overview

Figure 2 shows the set-up of a generic edge computing
environment. The central server hosts the master database,
and is responsible for creating and maintaining the VB-
trees. The database (or parts of it) and VB-trees are dis-
tributed to servers situated at the edge of the network, i.e.,
edge servers, near the users and their application clients.
The database queries issued by the applications are pro-
cessed at the edge servers; the result for each query is re-
turned together with a VO that the client can use to verify
the query result. Unlike the proposal in [5], all the informa-
tion that the client needs for verifying the query result are
returned by the edge server on-demand; the central server
does not need to periodically broadcast any information to
the clients. Finally, the edge servers are assumed to be un-
secured, meaning it is possible for a hacker to tamper with
the data there, but the servers themselves do not act mali-
ciously, e.g. they do not intentionally drop qualifying tuples
from the query results.

3.2. Verifiable B-Tree

Figure 3 depicts the structure of the verifiable B-tree
(VB-tree). It is constructed by adding signed digests to the
B+-tree as follows:

� Within each tuple, a signed digest �� is added for ev-
ery attribute ��, i.e.,

��� � ������	
�� �
���	
�� �

���	
�� � ������� � ���� (1)

Tuple

Child Pointer

Leaf node Ki DT Ki+1

A1 DA1 Am DAm…
(b) Structure of Leaf Node

Child node

Child Pointer

Internal node Ki DN Ki+1

D1 Dp…
(c) Structure of Internal Node

key key

Root

Tuples

(a) Overview

…
…

Leaf nodes

Internal nodes

Figure 3. Verifiable B-Tree

where � is a one-way hash function on the concatena-
tion of the database name, the table name, the attribute
name, the key of the tuple, and the attribute value;
and � encrypts its argument with the private key of the
DBMS. A one-way hash function is one that is easy to
compute but effectively impossible to invert [6]; i.e., if
� � ��
�, then it is easy to compute � given
 and �,
but difficult to recover
 given � and �. Popular one-
way hash functions include MD5 [14] and SHA [1].
We assume that the central server has a pair of pub-
lic and private keys in a digital signature scheme, and
the public key can be disseminated to users through an
authenticated channel using, for example, a public key
infrastructure [8].

The (pre-signed version of the) attribute digests are

Root

Query Result

VB-tree

Tuples

DN

Enveloping
Subtree

Figure 4. Enveloping Subtree of Result Tuples

used to compute the signed tuple digest �� :

�� � ����
�

���������� � attributes �� (2)

where � is another one-way hash function and ��� de-
crypts its argument with the public key of the DBMS.
�� is then stored with the corresponding tuple pointer
in the leaf node of the VB-tree. With the DBMS’ pub-
lic key, any user can subsequently confirm the integrity
of the tuple, by recalculating the tuple digest from the
retrieved attribute values or their digests using formu-
las (1) and (2), and matching it with ������ �.

� For each leaf node � , a signed node digest �� is de-
rived from the tuple digests within it, i.e.,

�� � ����
�

���������

� tuples � � � � � in node � (3)

The node digest is stored with the corresponding child
pointer in the parent node. This process is performed
recursively up the VB-tree.

� Finally, a signed digest is computed for the root node
and stored as part of the metadata of the VB-tree.

Definition: The enveloping subtree is the smallest subtree
within the VB-tree that covers all the result tuples of a query
(involving selection, projection or join operations), or all
the tuples affected by an update. Figure 4 illustrates the
enveloping subtree.

Before we explain how the VB-tree is used to create VOs
for query answers, let us first consider the choice of the one-
way hash function �. � plays a key role in ensuring that it
is infeasible for an edge server to tamper with the tuples or
introduce superfluous tuples, in such a way that the query

results still match the signed digests. While any one-way
hash function can be employed, a judicious choice can lead
to improved performance. For this work, we use the func-
tion ���� � �� ��� �, which combines its input digests
with a commutative operator:

���� �� � ������ ��� �

� ���� ��� ����� ��� �

� ����� � ����� ��� �

� ��� � ��

As we shall discuss shortly in the following subsections,
this property has three advantages. First, it allows digests
to be combined in arbitrary order, i.e., a set of digests
��� ��� � � � � �� can be combined in any order without affect-
ing the final digest ��

��

��� ���. Second, it enables projec-
tion operations to be performed at the edge servers. Third,
it facilitates insertion of new tuples with minimal effect on
other digests. Hence, even though the hash function itself is
computationally more expensive than alternatives with only
polynomial complexity, the resulting savings in transmis-
sion load and processing at the clients would justify the
choice.

Nevertheless, to minimize processing overhead, we can
implement � by picking � � �� for some � in order to opti-
mize the modulo operation, and by computing exponentia-
tion through repeated squaring coupled with modulo reduc-
tions. For example, instead of 15 multiplications followed
by a large modulo reduction at the end, we perform only 4
multiplications and 4 modulo reductions:

��� ��� � � ����� ��� ��� ��� ���

��� ��� ��� �

3.3. Query Verification

In this section, we shall present the VOs for selection,
projection and join operations, and show that they are suffi-
cient to verify the correctness of the answers for the respec-
tive operations.

Selection: ����� � � � � � and ���� where � is
a relation, � is a condition of the form �� 	 �, �� is an
attribute of �, and 	 � ��� ��� ���� ��	�.

When an edge server receives a query that performs only
selection(s) on the primary key of a table, the result is a
range of contiguous tuples as illustrated in Figure 5. In this
case, the edge server needs to compose a verification object
that includes:

� �� , the signed digest for the node � at the top of the
enveloping subtree;

� for each node in the enveloping subtree, the signed di-
gests representing those branches that do not overlap
the result.

Root

Query Result

VB-tree

Tuples

Da Db

Dc Dd

DN

Verification object = DN + DS
where DS = {Da, Db, Dc, Dd}

Figure 5. Verification Object for Selection

The VO and the query result are sufficient for the recipient
to reconstruct the hierarchy of digests to check for a match
with the signed digest for node � . As the attribute digests
within the result tuples are not needed here, they are filtered
out by the edge server.

In the case of a query that performs selection on non-key
attribute(s), the result is likely to contain non-contiguous tu-
ples from the table; in other words, there are “gaps” within
the result range. The above procedure still applies, but the
VO is expected to be bigger here as it needs to include ad-
ditional digests to account for the gaps.

As we maintain a signed digest for every VB-tree node,
our VO does not contain digests for branches all the way
up to the root node of the index as in [5]. Hence the VO
grows only linearly with the size of the query result, but is
independent of the table size. Although our decision to sign
every node digest imposes processing overhead on the cen-
tral server in creating and maintaining the VB-tree, the ex-
pected I/O savings at the edge servers during runtime more
than justify the overhead. In addition, as input digests to the
hash function � are coalesced with a commutative operator,
the VO does not need to preserve the order in which the di-
gests are merged into node � ’s digest in the VB-tree. Hence
our VO simply contains a set of signed digests, �	 ; it is
simpler than the scheme in [5], which requires its VOs to
contain the structure among the digests. These advantages
reduce the transmission overhead, and also the amount of
processing that the client must perform in order to verify
the query result.

Figure 6 shows an example of the query result and the
associated VO after a selection operation.

Lemma 1: The VO is sufficient for verifying the correct-

A1 A2 Am
Result tuples

Verification object = DN + DS

…

DS

Filtered tuples

Filtered tuples

DS

Figure 6. Example Query Result for Selection
Operation

ness of the result for selection operations.
Proof: We consider different cases based on the height of
the enveloping subtree.
Case 1. The enveloping subtree consists of only a leaf node
� .
By definition (3), �� � ����

�
unsigned digest for tuple

����. For our choice of hash function ���� � �� ��� �,
the formula can be translated to:

������ � � ���
�

unsigned digest for

result tuple ���

��
�

�����filtered

tuple ��
��� ��� �

Case 2. The enveloping subtree has a height of 2, with �
being the top node.
By definition, �� � ����

�
unsigned digest

for child node ����. If a child node �� con-
tains at least one result tuple, it is represented
by ���

�
unsigned digest for result tuple � �

��
�

�����filtered tuple �

��� ��� � as in case 1. If

a child node �� does not contain any result tuple, it can be
represented by its digest ��������.
For our choice of ���� � �� ��� �, the formula can be
translated to:

������ � � ���
�

unsigned digest for

result tuple � �

��
�

�����filtered

tuple �

��

��
�

���������� ��� � (4)

Case 3. The enveloping subtree has a height � 2.

Apply Case 2 recursively up the subtree.

Therefore, the recipient can decrypt �� with
the public key of the central server, compute
��
�

unsigned digest for result tuple � � from the re-
sult tuples using formulas (1) and (2), combine the signed
digests for the filtered tuples and nodes in �	 , and finally
check that they satisfy the above equation. Since ��

and the digests in �	 are signed, and the digests for the
result tuples are derived with a one-way function [6], it is
practically impossible to manipulate the values of the result
tuples without violating the above equation. Thus the VO
is sufficient for verifying the correctness of the result for
selection operations.

As the edge server is not necessarily secure, it cannot
combine the signed digests in �	 for the client. Rather,
the client needs the original signed digests to check their
validity, before combining them to verify the query result.
�

Projection: !���������� � �� ���� ��� ��� �� � ��
where ��’s are attributes of relation �.

Conceptually, constructing a VO for a projection oper-
ation is similar to handling selection on non-key attributes
– the gaps within the result tuples left by the filtered at-
tributes are accounted for by their respective attribute di-
gests. Again, we can exploit the commutative property of
the hash function � to consolidate those attribute digests
into a set �� without recording the attribute orders, and
which attribute digest belongs to which result tuple. Thus,
the VO remains linear in the size of the query results, con-
taining only the signed digest for the node at the top of the
enveloping subtree, �	 for the digests from the selection
operation(s) as described above, and �� for the projection
operation(s). As with �	 , �� contains the signed version
of the digests for the filtered attributes, so they cannot be
tampered with at the edge servers.

Figure 7 shows how the query result and the associated
VO in Figure 6 change after a further projection operation.

Lemma 2: The VO is sufficient for verifying the correct-
ness of the result for projection operations.
Proof: By definition (2),
�� � ����

�
unsigned digest for attribute ����.

For our choice of ���� � �� ��� �, the formula can
be translated to: unsigned digest for result tuple j =
���
�

unsigned digest for result attribute Ajk�

��
�

�����filtered attribute �

��� ��� �. Plugging into

formula (4), we have:

������ � � ���
�

unsigned digest for

projected tuple � �

��
�

�����filtered

attribute �

��

A3 A7 Ai A1 A2

Result tuples

Verification object = DN + DS + DP

… …
DP

Filtered attributes

Figure 7. Example Query Result for Projection
Operation

��
�

�����filtered

tuple �

��

��
�

���������� ��� � (5)

Since the VO contains the signed digest �� , the signed di-
gests for the filtered attributes in �� , and the signed digests
for the filtered tuples/nodes in �	 , the client can verify the
results by checking whether the above equation holds. �

Join: � �� " where � is a condition of the form �� 	�
 ,
�� and �
 are attributes of relations � and " respectively,
and 	 � ��� ��� ���� ��	�.

Unlike selection and projection that operate on single ta-
bles, a join operation could conceivably involve any two
base tables, or even tables of intermediate results from other
relational operations. It is thus infeasible for the central
database server to construct and distribute VB-trees for all
possible ad-hoc join operations.

Fortunately, in edge computing most of the database
queries are not likely to be ad-hoc, but are embedded in
application programs and hence known in advance. It is
thus possible to materialize each join operation, and con-
struct a VB-tree on the materialized view for authenticating
the query results. Thus, join operations can be verified in a
similar manner as selection-projection operations.

3.4. Update Operation

While queries can be processed by any edge server, up-
date operations have to be channeled back to the central
database server as they change the digests in the VB-trees,
and only the central server possesses the private key for
signing new digests. Depending on the consistency re-
quirement, the DBMS can either lock and update the VB-
trees at all the edge servers concurrently, or propagate the

changes periodically. In the former case, a distributed con-
currency control mechanism like basic 2PL [3], with the
central server hosting the master copy, can be applied. For
delayed broadcast of the updates to the edge servers, the
central server can include the timestamp or version number
in its public key, and make available to users the validity
period of each public key at a well-known location. This
would ensure that edge servers cannot masquerade out-of-
date data, signed with an old private key, as the latest data
without being detected by the recipients.

Insert:
When a tuple is to be inserted, the DBMS first calculates

the attribute digests and the tuple digest �� using formulas
(1) and (2). �� is then used to update the digests on the
path from the root of the VB-tree to the leaf node that holds
the new tuple. As the digest for each node is a combination
of all the tuple digests under it, and as input digests to the
hash function � are coalesced with a commutative operator,
each node digest �� on the path is simply updated using
the formula:

����
� � ������������

� � � ������ ���

To ensure consistency, the DBMS needs to exclusively lock
(X-lock) each digest in turn only as it is being modified.
Finally, if the insertion necessitates a node to be split, the
DBMS would have to X-lock the parent node, so the digests
for the split nodes can be safely recorded in the parent. The
locking protocol for VB-tree is the same as B-tree locking
(e.g. see [2]).

Delete:
Unlike insertion, a tuple deletion transaction is more ex-

pensive to process. Since the SQL statement specifies only
criteria on the tuples to be deleted rather than the entire tuple
content, the tuples’ contribution to each node digest cannot
be reversed out immediately while the transaction traverses
down the VB-tree. Instead, the transaction has to X-lock
all of the digests on the path from the root of the VB-tree
to the affected leaf nodes, delete the selected tuples, then
re-calculate the digests back up to the root.

In the course of the delete transaction, other queries on
the same table can still proceed as long as their enveloping
subtrees do not overlap the tuples affected by the transac-
tion. This is because a query requires only the digests in
its own enveloping subtree, not the root of the entire index
as in [5]. To ensure that there is no overlap with the trans-
action, each query should shared-lock the digests within its
subtree.

4. Analysis and Evaluation

Having presented our authentication mechanism, we
now analyze the overheads that it introduces. We begin by

quantifying the storage overhead on the base tables and the
index trees. Next, we look at the communication cost for
transmitting the answer and the VO to the user. Follow-
ing that, the costs incurred by the edge servers in construct-
ing verification objects for queries, and the clients in verify-
ing the query results are presented. Finally, we investigate
the processing demand on the central server in updating the
VB-trees for insertion and deletion transactions. The pa-
rameters used in the analysis are summarized in Table 1.

Parameter Meaning Default
� � � Length of signed

node/tuple/attribute
digest (Bytes)

16

� # � Length of search key
(Bytes)

16

� �� � Length of node pointer
(Bytes)

4

� � � Size of block/node
(KBytes)

4

�� Number of tuples/rows
in table (million)

1

�� Number of at-
tributes/columns in
table

10

�� Height of the VB-tree -
$� Number of tuples/rows

in query result
-

$� Number of at-
tributes/columns in
query result

10

$� Height of enveloping
subtree for query result

-

� �� � Size of attribute ��

(Bytes)
-

�%� Average cost for deriv-
ing an attribute digest
with the 1-way hash
function �

-

�%�� Cost for combining two
digests with the 1-way
hash function �

-

�%�� Cost for decrypting a
signature, ���

-

& The ratio between of
�%�� and �%��

10

Table 1. Parameters

As a baseline for comparison, we use the naive strategy
that transmits, for each answer tuple, the signed digest for
verifying the tuple. We shall denote the VB-tree scheme as
VB-tree, and the naive strategy as Naive. The cost formulas

0 2 4 6 8
log2 |K| - Key Size (Bytes)

0

100

200

300

400

500

F
an

 O
ut

B-tree
VB-tree

Figure 8. Index Tree Fan-Out versus Key
Length

for the naive strategy is shown in the Appendix.

4.1. Storage Costs

Base Table:
Since each attribute in a database table is associated with

a signed digest, the space overhead for the table is ��

��
 � � � bytes.

VB-tree:
The fan-out factor of the original B-tree is:

'����� �

�
� � � � � �� �

� # � � � �� �

�
� �

and the height of a fully packed B-tree is�

������������ ��

�
.

In comparison, the fan-out factor of the VB-tree is:

'� ����� �

�
� � � � � �� � � � � �

� # � � � �� � � � � �

�
� � (6)

This means that there is a space overhead of '� �����
 � � �
bytes per node. Moreover, the height of a fully packed VB-
tree is:

�� �
�

������������� ��

�
(7)

To visualize the height differences, Figures 8 and 9 show
the fan-out and height, respectively, of the B-tree versus the
VB-tree for different key lengths. As expected, the VB-tree
has a significantly smaller fan-out than B-tree when the key
length is short relative to the size of the digest. However, as
this does not translate to a material difference in height, the
performance penalty for index traversal is minimal.

0 2 4 6 8
log2 |K| - Key Size (Bytes)

0

2

4

6

8

T
re

e
H

ei
gh

t

B-tree
VB-tree

Figure 9. Index Tree Height versus Key Length

4.2. Query – Communication Cost

For each query, the edge server has to construct two sets
of digests – �	 and �� :

� �	 : Assuming that the query result is a range of con-
tiguous tuples in the base table and that the VB-tree is
fully packed, the height of the enveloping subtree is:

$� �
�

������������� $�

�
(8)

At the most, there are ('� ����� � �) digests each in
the top node of the subtree, and the leftmost and right-
most nodes at each level of the subtree, to be copied to
�	 . Hence the maximum number of digests that �	

contains is ��$� � ���'� ����� � ��.

� �� : Since the query requires only $� attributes, there
are ��� � $�� digests for the filtered attributes per
result tuple. The total number of digests to copy into
�� , from across all the result tuples, is thus $�

��� �$��.

Therefore, the communication cost is determined by the
size of the query answers, the digests in �� and the di-
gests in �	 . Assuming that the $� attributes are the first
attributes �� � � � ���

, we have

�%����� � $�

���
���

�����

$�

���
������

����

��$� � ��

 �'� ����� � ��
 ��� (9)

0 20 40 60 80 100
Selectivity (%)

0

40

80

120

160

200

x
10

00
00

0
B

yt
es

Naive
VB-tree

(a) Qc = 2

0 20 40 60 80 100
Selectivity (%)

0

40

80

120

160

200

x
10

00
00

0
B

yt
es

Naive
VB-tree

(b) Qc = 5

0 20 40 60 80 100
Selectivity (%)

0

40

80

120

160

200

x
10

00
00

0
B

yt
es

Naive
VB-tree

(c) Qc = 8

Figure 10. Query – Communication Cost

Figure 10 shows the communication cost of the pro-
posed VB-tree and the Naive schemes for three scenarios
– $� � �, 5 and 8. Here, we vary the number of answer tu-
ples by changing the selectivity factor, defined as $�(��.
We also fix the size of tuples at 200 bytes with an average of
20 bytes per attribute. As expected, VB-tree incurs smaller
transmission costs than Naive, because sending a signed di-
gest per result tuple is expensive especially with high se-
lectivity factors. Moreover, as $� increases, the commu-
nication cost also increases. This is the case because more
attribute values are returned instead of their digests, and the
attribute size (in our settings) is larger than the size of the
digests.

In Figure 11, we profile the effect of the ratio between the
attribute size and the digest size (by setting the attribute size
to �������������,
�)
�%� � �� �� ��� �) for two selectiv-
ity factors, 20% and 80%, while keeping the default values
for the other parameters. As shown in the figure, the com-
munication cost of the two schemes converge gradually as
the attribute size increases. This is reasonable because the
cost of transmitting the query results dominates the over-
head due to the digests. However, the cost differential is
still significant in absolute terms. For example, compared
to VB-tree, Naive incurs at least 3 MB more communica-
tion cost for selectivity factor of 20% and 12 MB more for
selectivity factor of 80%.

4.3. Query – Computation Cost

After the query result and VO (i.e., �	 and ��) are
received, the client computer needs to compute the di-
gests for the $�
 $� attribute values in the result tu-
ples, at a cost of $�
 $�
 �%�. Next, the client
needs to decrypt the signed digests in �	 and �� . This
incurs a cost of ��$� � ���'� ����� � ��
 �%�� and
$�
 ��� � $��
 �%�� respectively. Following that,
the attribute digests are combined with �� and �	 to de-

0 1 2 3 4 5 6
attrFactor

0

100

200

300

400

500

600

x
10

00
00

0
B

yt
es

Naive(20%)
Naive(80%)
VB-tree(20%)
VB-tree(80%)

Figure 11. Attribute size = �������������

rive a final digest for comparison with the signed digest ��

in the VO. The total cost incurred by the client is thus:

�%�� ��� � $�
$�
 �%� �

��$� � ���'� ����� � ��

 �%�� �

$�
 ��� � ��

 �%�� �

��$� � ���'� ����� � ��

 �%�� �

$�
 ��� �$��

 �%�� (10)

For large queries, we expect $� �� , $� , '� �����
and $�, so �%�� ��� increases roughly linearly with the
size of the query result, i.e., �%�� ��� � O�$��. The
reason is that most of the overheads are incurred in com-
puting the digests for the attributes within the result tuples,

0 20 40 60 80 100
Selectivity (%)

0

5

10

15

20

x
10

00
00

0
C

os
t_

h

Naive
VB-tree

(a) X = 5

0 20 40 60 80 100
Selectivity (%)

0

5

10

15

20

25

x
10

00
00

0
C

os
t_

h

Naive
VB-tree

(b) X = 10

0 20 40 60 80 100
Selectivity (%)

0

20

40

60

80

100

120

x
10

00
00

0
C

os
t_

h

Naive
VB-tree

(c) X = 100

Figure 12. Query – Computation Cost for different X

and then verifying the tuples. The observation is confirmed
in Figure 12, which plots �%�� ��� for various selectivity
factors for the default values in Table 1.

According to [15], hash functions are about 100 times
faster than signature verification and 10000 times faster than
signature generation. This is because public key signature
operations involve large prime modulus and are computa-
tionally expensive. Clearly, Naive incurs more processing
cost as it needs to decrypt the signature for each result tu-
ple. Figure 12 compares the computation cost of VB-tree
and Naive for & � , 10 and 100, where & is the ratio of
�%�� to �%��. The results clearly show the superiority
of VB-tree over Naive since it essentially reduces the num-
ber of decryptions needed for verifying the answers. More-
over, the performance difference between the two schemes
widens as & increases.

Figure 13 shows more sensitivity analysis of the query
cost. In Figure 13(a), we study the effect of �����

�����
for selec-

tivity factors of 20% and 80% while keeping the other pa-
rameters at their default settings. As the figure shows, VB-
tree still outperforms Naive. Moreover, the difference be-
tween VB-tree and Naive remains almost constant. This is
because the difference in the cost components comes largely
from the cost of decrypting the signatures which is indepen-
dent of �%� and �%��.

In Figure 13(b), we study the effect of $� for selectivity
factors of 20% and 80%. The results show that $� has
little effect on the relative performance of the two schemes
either, for the same reasons that the main determinant of
the performance difference between the two schemes is the
decryption cost of the signatures.

4.4. Update Costs

When a new tuple is inserted, the central server com-
putes the digests for the �� attribute values, and combines

them to derive the tuple digest �� . Next, the digest for
each node on the path from the root of the VB-tree to the
leaf must be combined with �� . Assuming that the VB-
tree is fully packed, the number of nodes on this path is�

������������� ��

�
. The insertion cost is thus:

�%�!����� � ��
 �%� �

��� � ��
 �%�� ��

������������� ��

�

 �%�� (11)

For the deletion of a range of contiguous tuples from
the base table, the operation removes some entries from the
nodes at the top, left and right boundaries of the enveloping
subtree, and empties out the other nodes within the subtree.
Denoting the number of deleted tuples with $�, the height

of the enveloping subtree is $� �
�

������������� $�

�
and the number of nodes at the boundaries is �$���. With
at most '� ����� � � child pointers remaining in each of
those nodes, the cost for recomputing the node digests is
��$� � ���'� ����� � ���%��. Finally, the digests for the
nodes on the path from the enveloping subtree up to the root
of the VB-tree must also be updated. Each of these nodes
can have at most '� ����� child pointers, giving rise to a
cost of ��� � $��
 '� �����
 �%��. The total cost for
the deletion is, therefore:

�%�"����� � ���$� � ���'� ����� � �� �

��� �$��'� ������

 �%��

� ���� �$� � ��'� �����

� �$� � ��
 �%�� (12)

The formula does not account for node merges that are ex-
pected to occur only rarely. The reason is that real database

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Cost_k/Cost_h

0

5

10

15

20

25

30

x
10

00
00

0
C

os
t_

h

Naive(20%)
Naive(80%)
VB-tree(20%)
VB-tree(80%)

(a) Effect of �����������

0 1 2 3 4 5 6 7 8 9 10
Qc

0

4

8

12

16

20

24

x
10

00
00

0
C

os
t_

h

Naive(20%)
Naive(80%)
VB-tree(20%)
VB-tree(80%)

(b) Effect of ��

Figure 13. Query – Computation Cost for X = 10

systems usually do not require their B-tree nodes to actually
contain at least � entries, so nodes are merged only when
they become empty [9].

5. Conclusion

In this paper, we propose a mechanism for verifying the
query results produced by proxy servers in edge comput-
ing. The idea is for the trusted central DBMS to maintain
and distribute verifiable B-trees (VB-tree) on the base ta-
bles, that the edge servers use to create a verification object
(VO) for each query. This VO enables the recipient to check
the integrity of the query result – that the values of the result
tuples have not been tampered with, and that no spurious tu-
ples are introduced. It is computationally infeasible for an
edge server to compromise the integrity of the result, with-
out invalidating the VO and being detected.

One of the primary contributions of this paper over exist-
ing work is that the proposed mechanism creates VOs that
are linear in the size of the query answers, and independent
of the database size. Moreover, all the relational operations
can be performed by the edge servers; for example, we do
not push projection operations to the clients. Hence, our
mechanism lowers the transmission overhead, and also the
storage and processing demands on the clients. Finally, we
address how the VB-trees can be updated dynamically while
ensuring data consistency.

6. *

Acknowledgements
We are grateful to Robert H. Deng, Feng Bao and Chee-

Yong Chan for helpful discussions.

References

[1] Secure hash standard (shs). National Institute of Standards
and Technology, FIPS Publication, 180-1, April 1995.

[2] R. Bayer and M. Schkolnick. Concurrency of operations on
b-trees. In Acta Informatica, volume 9(1), pages 173–189,
1977.

[3] P. Bernstein and N. Goodman. Concurrency control in dis-
tributed database systems. In ACM Computing Surveys, vol-
ume 13(2), pages 185–221, June 1981.

[4] P. Devanbu, M. Gertz, A. Kwong, C. Martel, G. Nuckolls,
and G. Stubblebine. Flexible authentication of xml docu-
ments. In Proceedings of the 8th ACM Conference on Com-
puter and Communications Security, pages 136–145, 2001.

[5] P. Devanbu, M. Gertz, C. Martel, and S. Stubblebine. Au-
thentic data publication over the internet. In 14th IFIP 11.3
Working Conference in Database Security, pages 102–112,
2000.

[6] A. Evans, W. Kantrowitz, and E. Weiss. A user authentica-
tion system not requiring secrecy in the computer. In Com-
munications of the ACM, volume 17(8), pages 437–442, Au-
gust 1974.

[7] M. Goodrich, R. Tamassia, and A. Schwerin. Implementa-
tion of an authenticated dictionary with skip lists and com-
mutative hashing. In DARPA Information Survivability Con-
ference and Exposition (DISCEX II), volume 2, pages 1068–
1084, 2001.

[8] R. Housley, W. Ford, W. Polk, and D. Solo. Internet x.509
public key infrastructure certificate and crl profile. In RFC
2459, 1999.

[9] T. Johnson and D. Shasha. Utilization of b-trees with inserts,
deletes and searches. In Proceedings of the Eighth ACM
Symposium on Principles of Database Systems, pages 235–
246, 1989.

[10] D. Margulius. Apps on the edge. InfoWorld, 24(21),
May 2002. http://www.infoworld.com/article/02/05/23/
020527feedgetci 1.html.

DT A3 A7 Ai DA1 DA2

Result tuples

… …
Filtered attributes

DT – Signed tuple digest
DAi – Signed attribute digest

Figure 14. The Naive Strategy of Verifying Re-
sult Tuples

[11] R. Merkle. A certified digital signature. In Proceedings
of Advances in Cryptology-Crypto ’89, Lecture Notes in
Computer Science, volume 0435, pages 218–238. Springer-
Verlag, 1989.

[12] M. Naor and K. Nissim. Certificate revocation and certifi-
cate update. In Proceedings of the 7th USENIX Security
Symposium, pages 217–228, 1998.

[13] C. Peng, R. Deng, Y. Wu, and W. Shao. A flexible and scal-
able authentication scheme for jpeg2000 codestreams. In
Proceedings of the ACM Multimedia, November 2003.

[14] R. Rivest. Rfc 1321: The md5 message-digest algorithm.
Internet Activities Board, April 1992.

[15] R. Rivest and A. Shamir. PayWord and Mi-
croMint: Two simple micropayment schemes. In
http://theory.lcs.mit.edu/ rivest/RivestShamir-mpay.pdf
(This version is dated 2001). An earlier version appears
in Security Protocols, Lecture Notes in Computer Science,
LNCS 1189, pp. 69-87, 2001.

[16] M. Roos, A. Buldas, and J. Willemson. Undeniable replies
for database queries. In Proceedings of the Baltic Confer-
ence, BalticDB&IS, pages 215–226, 2002.

Appendix

In this appendix, we present the communication and
computation costs of the naive strategy. The naive strategy
maintains for each attribute a signed digest, and for each
tuple a signed digest obtained from the attribute digests. It
transmits the result tuples together with their attribute and
tuple digests for the client to verify the correctness of the
result tuples. Figure 14 illustrates the naive strategy.

We shall show only the formulas that are used in our
comparative study in Section 4. Let $� be the number of
tuples in the result of a selection query. Let �� be the num-
ber of attributes in the queried relation, and $� be the num-
ber of attributes in the query result. Moreover, suppose that
the answers are consecutive tuples in the queried relation.

Communication Cost

The transmission cost includes the signed tuple digest for
each result tuple, the actual value of each required attribute,
and the signed digest for every filtered attribute.

�
�*����� � $�

���
���

�����

$�
 ����

$�

���
������

���

Computation Cost

For each attribute in the answer, we need to compute the
digest. For each result tuple, we need to compute the tuple
digest by combining the computed attribute digests and the
decrypted digests for the filtered attributes. Finally, we need
to compare it with the signed digest (after decrypting it) that
the edge server returns for that result tuple. Therefore, the
computation cost is:

�
�*�# ��� � $�
$�
 �%� �

$�
 ��� � ��
 �%�� �

$�
 �%�� �

$�
 ��� �$��
 �%��

