Review: GHT

- Which of the following statement(s) is(are) TRUE concerning the Generalized Hash Tree where $m_0=m_1=...=4$ (i.e., size of tree nodes at all levels are 4) and $k_0=k_1=...=2$ (growth factor is the same for all levels)?
 - It is height-balanced.
 - It is order-dependent (i.e., the tree shape may be different if the same input data are ordered differently).
 - It guarantees a lower bound on storage utilization.
Is GHT height-balanced?

Insert a sequence of records that has the same hash values at various levels, say r1, r2 and r3

h0(key) = 1
h1(key) = 6
h2(key) = 1
h3(key) = 3
Is GHT order-dependent?

- Let’s consider insertion of values 1 and 5.
- Hash functions
 - Level 0: \(x \mod 4 \)
 - Level 1: \(x^3 \mod 8 \)

![Hash Tree Diagram]

Insert order: 5, 1

Insert order: 1, 5
Does GHT guarantee minimum utilization?

- Yes
- In general,
 - If a node j has m_j buckets/entries, then it guarantees $1/\max(m_j)$ space utilization
 - This is quite a meaningless bound