Private Queries in Location-Based Services

“New technologies can pinpoint your location at any time and place. They promise safety and convenience but threaten privacy and security”

IEEE Spectrum, July 2003

Motivation

• Big and growing mobile Internet
 – 2.7 B mobile phone users (cf. 850 MM PCs)
 – 1.1 B Internet users, 750 MM access the Internet from phones
 – 419 M mobile phones sold in 1Q 2012 (Source: Gartner)
 – Africa has surpassed North America in numbers of users
• The mobile Internet will be location aware.
 – GPS, Wi-Fi-based, cell-id-based, Bluetooth-based, other
 – A very important signal in a mobile setting!
Location-Based Services (LBS)

- Location-based services
 - Location-based store finders
 - Location-based traffic reports
 - Location-based advertisements

- LBS users
 - Mobile devices with GPS capabilities

- Queries
 - Nearest Neighbor (NN) Queries

- Location-based services rely on the *implicit* assumption that users agree on revealing their *private* user locations
- Location-based services *trade* their services with privacy

Query Location Privacy

- A mobile user wants nearby points of interest.
- A service provider offers this functionality.
 - Requires an account and login
- The user does not trust the service provider.
 - The user wants location privacy.
Problem Statement

• Queries may disclose sensitive information
 – Query through anonymous web surfing service

• But user location may disclose identity
 – Triangulation of device signal
 – Publicly available databases
 – Physical surveillance

• How to preserve query source anonymity?
 – Even when exact user locations are known

Service-Privacy Trade-off

• Example:
 – *Where is my nearest bus?*

![Diagram of service and privacy trade-off]

100% Service

0% Privacy

100% Privacy

0% Service
Spatial K-Anonymity: Spatial Cloaking

- kNN query ($k=1$)
- K anonymity
- Range kNN query
 - Anonymizing spatial regions (ASR)
 - User hides among $K-1$ users
 - Probability of identifying user $\leq 1/K$

Client

Q'

Anonymizer

Server

- Candidate set is $\{p_1, ..., p_6\}$
- Result is p_1

K-Anonymity in LBS: Architecture

Location-based Database Server

K-Anonymity in LBS: Architecture

The New Casper

- Each mobile user has her own privacy-profile that includes:
 - K – A user wants to be k-anonymous
 - A_{min} – The minimum required area of the blurred area
 - Multiple instances of the above parameters to indicate different privacy profiles at different times

<table>
<thead>
<tr>
<th>Time</th>
<th>k</th>
<th>A_{min}</th>
</tr>
</thead>
<tbody>
<tr>
<td>8:00 AM -</td>
<td>1</td>
<td>—</td>
</tr>
<tr>
<td>5:00 PM -</td>
<td>100</td>
<td>1 sq mile</td>
</tr>
<tr>
<td>10:00 PM -</td>
<td>1000</td>
<td>5 sq miles</td>
</tr>
</tbody>
</table>

Large K and A_{min} imply stricter privacy requirement
Location Anonymizer: Grid-based Pyramid Structure

- The system area is divided into grids at multiple levels in a quad-tree-like manner
 - Level h (root at level 0) has 4^h grids;
 - Each cell is represented as (cid, N) where N is the number of mobile users in cell cid
- The Location Anonymizer incrementally keeps track of the number of users residing in each grid.

![Diagram of Grid-based Pyramid Structure](image)

Location update (uid, x, y)
- If $cid_{old} = cid_{new}$ done
- else
 1. update new cell identifier in hash table;
 2. update counters in both cells;
 3. propagate changes in counters to higher levels (if necessary)

- New user – (a) create new entry in hash table; (b) counters of all affected cells increased by 1
- User departs – (a) remove entry; (b) decrease counters by 1

Location Anonymizer: Grid-based Pyramid Structure

Cloaking Algorithm
- Blur the query location
- Traverse the pyramid structure from the bottom level to the top level, until a cell satisfying the user privacy profile is found.

![Diagram of Cloaking Algorithm](image)

- Let $K = 2$
- If u_3 queries, ASR is A_1 or A_2
 - (if the area $> A_{min}$) otherwise ...

![Diagram of Cloaking Algorithm](image)
Location Anonymizer: Grid-based Pyramid Structure

Cloaking Algorithm
- Traverse the pyramid structure from the bottom level to the top level, until a cell satisfying the user privacy profile is found.

- Let \(K = 3 \)
- If any of \(u_1, u_2, u_3 \) queries, ASR is \(A_1 \)
- If \(u_4 \) queries, ASR is \(A_2 \)

- Disadvantages:
 - High location update cost
 - High cloaking cost

Adaptive Location Anonymizer

- Each sub-structure may have a different depth that is adaptive to the *environmental changes* and *user privacy requirements*
- Stricter privacy requirements \(\Rightarrow \) higher level
 - All users at the higher level have strict privacy requirements that cannot be met by the lower level
Adaptive Location Anonymizer

- **Cell Splitting:** A cell cid at level i needs to be split into four cells at level $i+1$ if there is at least one user u in cid with a privacy profile that can be satisfied by some cell at level $i+1$.
 - Need to keep track of most relaxed user u for each cell
 - If newly arrived user, v, to cell has a more relaxed profile than u
 - If splitting cell can satisfy v’s requirement, split and distribute content to the 4 children cells; otherwise, replace u by v
 - If u departs, need to find a replacement
- **Cell Merging:** Four cells at level i are merged into one cell at a higher level $i-1$ only if all users in the level i cells have strict privacy requirements that cannot be satisfied within level i.
 - Need to keep track of most relaxed user u for the 4 cells of level i
 - If u departs, find v to replace u. If v’s requirement is stricter than can be handled by the 4 cells, then merge them
 - If v enters cell at level i, we replace u if necessary

Same cloaking algorithm applies at the lowest existent levels.

The Privacy-aware Query Processor

- Embedded inside the location-based database server
- Process queries based on cloaked spatial regions rather than exact location information
- Two types of data:
 - *Public* data. Gas stations, restaurants, police cars
 - *Private* data. Personal data records
- Three types of queries
 - *Private* queries over *public* data, e.g., *What is my nearest gas station?*
 - *Public* queries over *private* data, e.g., *How many cars in the downtown area?*
 - *Private* queries over *private* data, e.g., *Where is my nearest friend?*
- Focus on the first query type
Private Queries over Public Data: Naïve Approaches

- Complete privacy
 - The Database Server returns all (or a sufficiently large superset that contains the answer) the target objects to the Location Anonymizer
 - High transmission cost
 - Shifting the burden of query processing work onto the mobile user

- Nearest target object to center of the spatial query region
 - Simple but NOT accurate

Private Queries over Public Data: The Casper Scheme

Basic idea:
- Find the smallest bounding region that contains the answer
- Return all points within the region
Private Queries over Public Data: The Casper Scheme

Step 1: Locate four filters
- The NN target object for each vertex

Step 2: Find the middle points
- The furthest point on the edge to the two filters
Private Queries over Public Data: The Casper Scheme

Step 1: Locate four filters
- The NN target object for each vertex

Step 2: Find the middle points
- The furthest point on the edge to the two filters

Step 3: Extend the query range

Step 4: Candidate answer
Private Queries over Public Data: Correctness

- Theorem 1
 - Given a cloaked area A for user u located anywhere within A, the privacy-aware query processor returns a candidate list that includes the exact nearest target to u.

- Theorem 2
 - Given a cloaked area A for a user u and a set of filter target object t_1 to t_4, the privacy-aware query processor issues the minimum possible range query to get the candidate list.

Casper may compromise location anonymity

- Quad-tree based
 - Fails to preserve anonymity for outliers
 - Unnecessarily large ASR size

- Let $K=3$

- If any of u_1, u_2, u_3 queries, ASR is A_1

- If u_4 queries, ASR is A_2

- u_4’s identity is disclosed
SpaceTwist: No Cloaking Needed

• Cloaking
 – Requires servers to support “specialized” techniques for processing cloaked queries
 – High communication overheads

• Computes kNN query \textit{incrementally} until client is guaranteed to have accurate results
 – Server supports R-tree, and INN (incremental nearest neighbor) retrieval
 – Simple client-server architecture, i.e., no trusted components

SpaceTwist Concepts

• \textbf{Anchor} location q' (\textit{fake} client location)
 – Defines an ordering on the data points

• Client fetches points from server (\textit{based on} q') incrementally

• \textbf{Supply space}
 – The part of space explored by the client so far
 – Known by both server and client
 – Grows as more data points are retrieved

• \textbf{Demand space}
 – Guaranteed to cover the actual result
 – Known only by the client
 – Shrinks when a “better” result is found

• Terminate when the supply space contains the demand space
SpaceTwist

- Input: user location q, anchor location q' (NOTE: distance between q and q' affects privacy)
- Client asks server to report points in ascending distance from anchor q' iteratively
 - Note: server only knows q' and reported points
- Supply space radius τ, initially 0
 - Distance of the current reported point from anchor q'
- Demand space radius γ, initially ∞
 - Nearest neighbor distance to user (found so far)
 - Update γ to $\text{dist}(q,p)$ when a point p closer to q is found
- Stop when $\text{dist}(q,q') + \gamma \leq \tau$
 - Supply space covers demand space
 - Guarantee that exact nearest neighbor of q has been found

SpaceTwist Example

What client sees The global view What server sees
Privacy Analysis

- \(\text{dist}(q, q') \) affects degree of privacy
 - If it is small, then few objects will be retrieved (and low cost), but less location privacy is achieved
- What does the server (malicious attacker) know?
 - The anchor location \(q' \)
 - The reported points (in reporting order): \(p_1, p_2, \ldots, p_m \) where \(\beta \) is the number of points per packet and \(m \) is the number of packets transmitted
 - Termination condition: \(\text{dist}(q, q') + \text{dist}(q, \text{NN}) \leq \text{dist}(q', p_m) \)
- Possible query location \(q_c \)
 - The client did not stop at point \(p_{(m-1)} \) (else packet \(m \) is not needed (??))
 - \(\text{dist}(q_c, q') + \min\{ \text{dist}(q_c, p_i) : i \in \{1, (m-1)\beta\} \} > \text{dist}(q', p_{(m-1)}) \)
 - Client stopped at point \(p_{m\beta} \)
 - \(\text{dist}(q_c, q') + \min\{ \text{dist}(q_c, p_i) : i \in \{1, m\beta\} \} \leq \text{dist}(q', p_{m\beta}) \)
- *Inferred privacy region* \(\Psi \): the set of all possible \(q_c \)

Quantification of privacy
- Privacy value: \(\Gamma(q, \Psi) = \text{the average dist. of location in } \Psi \text{ from } q \)
- NOTE: Only user can compute this

Visualization of \(\Psi \)

- Visualization with different types of points
- Characteristics of \(\Psi \) (i.e., possible locations \(q_c \))
 - Roughly an irregular ring shape centered at \(q' \)
 - Radius approx. \(\text{dist}(q, q') \)
 - \(\Gamma(q, \Psi) \) is at least \(\text{dist}(q, q') \)
 - Coarser granularity (low data density)
Privacy Analysis

- By carefully selecting the distance between \(q \) and \(q' \), it is possible to guarantee a privacy setting specified by the user.

- SpaceTwist extension: Instead of terminating when possible, request additional query points.
 - This makes the problem harder for the adversary.
 - It makes it easier (and more practical) to guarantee a privacy setting.

Granular Search

- What if the server considers searching on a small sample of the data points instead of all?
 - Lower communication cost
 - \(\Psi \) becomes large at low data density
 - But less accurate results

- Accuracy requirement
 - User specifies an error bound \(\varepsilon \)
 - A point \(p \in P \) is a relaxed NN of \(q \) iff
 \[\text{dist}(q, p) \leq \varepsilon + \min \{ \text{dist}(q, p') : p' \in P \} \]

- Granular search
 - Goal: Search at coarser granularity
 - Reduces communication cost; yet guarantees accuracy bound of results
Granular Search

- Given an error bound ε, impose a grid in the space with cell length $\lambda = \varepsilon / \sqrt{2}$
- Slight modification of the incremental NN search
 - Points are still reported in ascending distance order from anchor q'
 - But the server discards a data point p if it falls in the same cell of any reported point (never reports more than one data point p from the same cell)
- Incremental granular searching at anchor q'
 - Server reports p_1, client updates its NN to p_1
 - Server discards p_2, p_3
 - Server reports p_4, client updates its NN to p_4
- Outcome: reduced communication cost (from 4 points to 2 points), yet with guaranteed result accuracy

How users choose appropriate parameter values?

- Error bound ε
 - Set $\varepsilon = v_{\text{max}} \cdot t_{\text{max}}$
 - t_{max}: maximum time delay acceptable by user
 - v_{max}: maximum travel speed (walking, cycling, driving)
- Anchor point q'
 - Decide the anchor distance $\text{dist}(q, q')$
 - Based on privacy value, i.e., privacy value at least $\text{dist}(q, q')$
 - Based on acceptable value of m (communication)

$$N_{\varepsilon} = \min\{N, 2k \cdot (U/\varepsilon)^2\} \quad \text{dist}(q, q') = \frac{U}{\sqrt{\pi \cdot N_{\varepsilon}}} \cdot (\sqrt{m \beta} - \sqrt{k})$$

- U is the extent of the space; $U/(\lambda) = \sqrt{2} \times U/\varepsilon$ is the length of each grid cell; so total number of cells $= 2 \times (U/\varepsilon)^2$; each cell returns at most k points, so we have N_{ε}
- Set the anchor q' to a random location at distance $\text{dist}(q, q')$ from q
LBS Privacy with Computational Private Information Retrieval (cPIR)

- Limitations of existing solutions
 - Assumption of trusted entities
 - anonymizer and trusted, non-colluding users
 - Considerable overhead for sporadic benefits
 - maintenance of user locations
 - No privacy guarantees
 - especially for continuous queries (same user issuing the same query in different areas – correlation attack possible for cloaking methods)

- cPIR
 - Two-party cryptographic protocol
 - No trusted anonymizer required
 - No trusted users required
 - No pooling of a large user population required
 - No need for location updates
 - Location data completely obscured

cPIR Overview

- Computationally hard to find \(i \) from \(q(i) \)
- Bob can easily find \(X_i \) from \(r \) (trap-door)
cPIR Theoretical Foundations

- Let \(N = q_1 \times q_2 \), \(q_1 \) and \(q_2 \) large primes

\[
Z_N^* = \{ x \in \mathbb{Z}_N \mid \gcd(N, x) = 1 \}
\]

\[
QR = \{ y \in Z_N^* \mid \exists x \in Z_N^* : y = x^2 \mod N \}
\]

- E.g. \(N = 5 \times 7 = 35 \), \(11 \) is \(QR \) \((9^2 = 11 \mod 35)\), \(3 \) is \(QNR \) (no \(y \) exists for \(y^2 = 3 \mod 35 \))
- Let \(Z_N^{+1} = \{ y \in Z_N^* \mid \left(\frac{y}{N}\right) = 1 \} \) where \(\left(\frac{y}{N}\right) \) is the Jacobi symbol

then exactly half of the numbers are in \(QR \) and the other half in \(QNR \)

- \textit{Quadratic Residuosity Assumption (QRA)}
 - \(QR/QNR \) decision computationally hard (if \(q_1 \) and \(q_2 \) are not given)
 - Essential properties:

\[
QR \times QR = QR
\]
\[
QR \times QNR = QNR
\]

\(N = 35 \)
\(QNR = \{3, 12, 13, 17, 27, 33\} \)
\(QR = \{1, 4, 9, 11, 16, 29\} \)

Get \(M_{2,3} = 4 16 17 11 \)

Server computes (Server knows \(N \)):

\[
z_i = \Pi_{j=1}^{t} y_j \cdot y_j^{-M_{i,j}} \mod N
\]

\[
M_{i,j} = 0 \quad y_j^2
\]

\[
M_{i,j} = 1 \quad y_j
\]

\[
z_2 = 4^2 \times 16 \times 17 \times 11^2 \mod 35 = 17
\]

Organize data in a \(t \times t \) \((4 \times 4)\) binary matrix \(M \)

public data size: \(n = 16 \)
let \(t = \sqrt{n} \)

19
cPIR Protocol for Binary Data

\[N = 35 \]
\[\text{QNR}=\{3,12,13,17,27,33\} \]
\[\text{QR}=\{1,4,9,11,16,29\} \]

Get \(M_{2,3} \)

Server computes:
\[z_i = \prod_{j=1}^{t} y_j^{1-M_{i,j}} \]

Client computes:
\[\left(\frac{a_1^{-1}}{2a} \equiv 1 \mod q_1 \right) \land \left(\frac{a_2^{-1}}{2a} \equiv 1 \mod q_2 \right) \]

If expression is true, then \(Z \) is in QR.

\[z_2=\text{QNR} \Rightarrow M_{2,3}=1 \]
\[z_2=\text{QR} \Rightarrow M_{2,3}=0 \]

CPIR Protocol for Objects

- Same idea for binary data can be easily extended
- Organize collection of objects as a matrix
- Conceptually, this is like having \(m \) matrices (assuming each object is represented by \(m \) bits)
- Server applies the computation on each of these matrices, and \(m \) answer messages will be returned
- Communication overhead is \(m \) times larger (\(m \cdot \sqrt{n} \))
- \(\text{PIR}(p_i) \) denote user retrieving object \(p_i \) using this protocol
Exact Nearest Neighbor Queries

• Preprocess the data
 – Compute Voronoi tessellation of the set of objects
 • NN of any point within a Voronoi cell is the point enclosed in that cell
 – Superimpose a regular G x G grid on top of the Voronoi diagram
 • For each cell C, determine all Voronoi cells that intersect it; C keeps track of the corresponding objects
 • C contains all potential NNs of every location inside it

A3: \(p_1, p_2, p_3 \)
A4: \(p_1, --, -- \)
Exact NN

• Query processing
 – User u initiates query
 – Server returns the granularity of the grid (\sqrt{n})
 – u can figure out the cell of the current location, and corresponding column, say b
 – u issues PIR(b) (which is essentially y)
 \[y = [y_1 : y_{\sqrt{n}}], \forall y_i \in QNR, \text{ and } \forall y_j \neq b, y_j \in QR \]
 – From the answers returned, NN of u can be determined

Exact Nearest Neighbor

A3: p_1, p_2, p_3
A4: $p_1, --, --$

Only z_2 needed

Answer: p_4
Exact NN

• Cells may be associated with different number of points
 – “Object” of each cell has different size!
 – Need to “force” them to be the same size, otherwise, server will know which cell u is targeting.
 – Fix the size to the maximum number of data objects, and pad with dummy those cells that have fewer than P_{max}

![Diagram]

• Concern
 – Since information of entire column b is returned, potentially reveals to user $\sqrt{n} \times P_{max}$ points!
 – However, many of these are also duplicates, e.g., D_1, D_2, D_3 and D_4 contains only P_4
 • Compression can be used to reduce overheads of sending duplicates to user

• Effect of grid size
 – As number of grids increases, communication cost reduces (since P_{max} decreases); however, beyond certain point, it starts to increase again since it reaches the lower bound (and replication effect kicks in)
 – CPU cost increases with number of grids
Rectangular PIR Matrix

\[r < s \] may be beneficial:
- Since "object" size is larger
- For exact NN, user learns fewer other objects

Summary

- LBS services is here to stay
- User privacy needs to be preserved
- Various methods have been developed for user location privacy
 - Spatial K-Anonymity
 - SpaceTwist
 - cPIR
- What else?
 - Continuous queries
 - Road networks
 - ...