Assessment 1

Treasure
We use the order imposed by the fact that the treasure hunter cannot go in one particular direction to do a DP.

If we have a(j,k) referring to the maximum score the hunter can get ending at position j,k, and we restrict movement in such a way that we can move to (j+1,k), (j,k-1), (j,k+1) but not (j-1,k), then we can use the following recurrence
a(j,k) = max [a(j-1,i) + sum of path from (j,i) to (j,k) over all possible i]

where path distance from any point to itself is 0.

With appropriate base cases, a simple dynamic programming solution solves this in O(m*n^2) where j ranges from 1 to m and k ranges from 1 to n.
Zerosum
Let the sequence be a1, a2, a3, …, an.

Let the cumulative sums C1, C2, C3, … Cn be defined as:

C1 = a1

Ci = C(i-1) + ai

The sum of the sequence from ai to aj (I <= j) can be given as Cj – C(i-1) where we define C0 as 0.
Since we are interested in the smallest absolute sums, we can obtain such sums by sorting C1, C2, C3, … Cn and using the differences between the Cs as the values of these smallest sums.

This allows us to find the smallest absolute sum.  Finding the number of these sums is then left up to the student.

The complexity of this solution is O(n log n) due to sorting.
Galactic
Let d[j] be the minimum edge weight needed to travel from the source to vertex j, and w(j,k) be the weight of the edge from vertex j to vertex k, then the following algorithm holds: (source is vertex 0)

Set d[0] to 0

Set all d[j], j != 0, to infinity.

Set all vertices to be unmarked.

Repeat until destination is marked:

Find smallest d[j] out of all unmarked j

Mark j

For all edges (j,k) out of j

d[k] = min(d[k], max(d[j], w(j,k)))
This is simply a modified priority first search (which is used in Prim, Dijkstra, etc).

With a simple array structure, the algorithm runs in O(n^2) time, which is sufficient.

Assessment 2

Matchmaking
Since we wish to find the matching with the least total cost, a direct Hungarian algorithm will solve this question.

Longest Increasing Subsequence
Let Ai,j be the smallest possible tail out of all increasing subsequences of length j using elements a1, a2, a3, …, ai.

Observe that, for any particular i, Ai,1 < Ai,2 < … < Ai,j.  This suggests that if we want the longest subsequence that ends with a(i+1), we only need to look for a j such that Ai,j < a(i+1) <= Ai,j+1 and the length will be (j+1).
Notice that in this case, A(i+1,j+1) will be equal to a(i+1), and all A(i+1, k) will be equal to Ai,k for k != j + 1.

Furthermore, there is at most one difference between the set Ai and the set Ai+1, which is caused by this search.
Since A is always ordered in increasing order, and the operation does not change this ordering, we can do a binary search for every single a1, a2, …, an.  This suggests an O(n log n) solution.

Number Arrangement
Notice that because of the constraints imposed on the matrix, an order is implied.
Let us insert the numbers one by one into the matrix in increasing order.  If we let j be the number of numbers in the first row, k in the second, l in the third, we notice that after X numbers have been inserted, j+k+l = X, and j >= k >= l.

Let C(j,k,l) be the number of ways to insert the (3 * n – j – k – l) numbers from (j + k + l + 1) to (3 * n) to a matrix already filled by j numbers in the first row, k numbers in the second, and l in the third (recall that the total number of numbers is 3 * n), while maintaining the constraints presented in the question.  For example, C(n,n,n) = C(n,n,n-1) = 1, C(0,0,0) is the total number of possible arrangements.
Using the boundary condition C(n,n,n) = 1, we can evaluate C(j,k,l) using the following recurrence:
C(j,k,l) = 0 if (j > n or k > n or l > n or k > j or l > k)

               C(j+1,k,l) + C(j,k+1,l) + C(j,k,l+1) otherwise

Then to find the position number of the sequence given, we can simply trace through the C matrix.  This leads to an O(3 * n) solution.
Rubbish Disposal
This problem is easy.

Notice that the minimum time needed to dispose any particular piece of rubbish is the sum of the time it is available and its distance from the endpoint.  Let us call this sum Sj for piece of rubbish j, the distance from the endpoint Dj, and the time available Tj, i.e. Sj = Dj + Tj.  Furthermore, we let n be the distance from the start to the endpoint i.e. the length of the road.
Furthermore, notice that if (Sj >= Sk):

We have Dj + Tj >= Dk + Tk and hence Dj – Dk + Tj >= Tk.

If j is further from the endpoint than k: Supposing the rubbish trucks pick up rubbish from j at time Tj (i.e. when it’s available), and proceeds towards point k, it will reach point k at time Tj + Dj – Dk.  From the above equation, it will definitely be able to pick up rubbish at point k this time.
If j is nearer the endpoint than k:  Supposing we wait at the start point until the appropriate time where if we move directly towards j, we will reach there at exactly time Tj, where the rubbish is picked up.
We will reach point j at time Tj, but before that we will have reached point k at time Tj – (Dk – Dj) = Dj – Dk + Tj.  From the above equation, at point k the rubbish will be available already.

The above two points suggest a simple strategy for the garbage collectors:  Take the maximum possible Sj.  Wait at the start line until if they walk directly to the corresponding point j, they will reach there at time Tj.  Then walk from start to finish picking up garbage along the way.  The time needed is Sj.

The final consideration is that the time needed cannot be shorter than n (which is the distance from start to finish).  Hence the solution is actually Max(n, S1, S2, … Sm) where m is the amount of rubbish.

Computing Sj takes O(1) time.  This suggests a basic linear time solution.

Pixels
We can expand the relation given as Ar + Bg + Cb – J <= D where J = Armin + Bgmin + Cbmin.  This suggests that the solution involves sorting all the pixels on Ar + Bg + Cb.

Suppose we fix the minimum r and g value, and go through the minimum b value in increasing order.  Consider the set of all possible pixels that will fit with this b value.
Obviously this set of pixels cannot have r, g, or b lower than the proposed minimum.  Let us scan through the pixels in increasing order of Ar + Bg + Cb, and we include pixels that have r, g and b higher or equal than proposed minimums.  We can obviously stop when Ar + Bg + Cb – J > D.  

Let us now use the next (increasing) value of b as the proposed minimum.  This will cause J to increase and hence obviously all previously included pixels will satisfy Ar + Bg + Cb – J > D.  From this set, however, we must remove the pixels where b was equal to the previous proposed minimum, as now their b values are lower than the proposed minimum.  Since J increases, it is also possible to add more pixels to this set as well, by proceeding from the previous stop point (in the pixels sorted by Ar + Bg + Cb).
This leads to a O(n^3) algorithm.

Longest Common Increasing Subsequence (LCIS)
Let C(j,k) be the length of the LCIS of s1[1..j] and s2[1..k] using value s2[k].

C(j,k) = max C(j-1,k) if s1[j] != s2[k]
                     1 + C(j-1,l) over all (l < k and s2[l] < s2[k]) if s1[j] == s2[k].
