NUS,/SoC/CS 2005/05/28

Topics

e Problem modeling by graphs

e Basic graph terminology

e Graph representations

e Graph traversal — BFS and DFS

e Shortest paths — one-to-any (single source) and any-to-any (all pairs)

e (All diagrams will be provided during the lecture.)

NOI only 1

NUS,/SoC/CS 2005/05/28

Vegetarians and Cannibals Crossing River

e Two vegetarians and two cannibals want to cross a river on a boat that
can take only two persons.

e At no time must the vegetarians be outnumbered.

e How should they cross the river?

NOI only 2

NUS,/SoC/CS 2005/05/28

Vegetarians and Cannibals: Hint

vvccB/
vc/Bvc vv/Bcc vvc/Bce cc/Bvv
vvcB/c
c/Bvvc
ccB/vv vcB/ve
/Bvvcc

NOI only 3

NUS,/SoC/CS 2005/05/28

Wolf, Goat, Cabbage, Farmer Crossing River

o Wolf eats goat if left alone, goat eats cabbage if left alone.

e The farmer can only take one object with him at a time.

e How should the farmer bring the wolf, goat, and cabbage to the other
side of the river?

NOI only

NUS,/SoC/CS 2005/05/28

Wolf, Goat, Cabbage, Farmer Crossing River: Hint

FWGC/
WC/FG

FWC/G
C/FWG W/FGC

FGC/W FWG/C
G/FWC

FG/WC

/FWGC

NOI only 5

NUS,/SoC/CS 2005/05/28

Decanting: 34+ 5 — 1

e A 3-unit bottle and a 5-unit bottle are given.

e Each bottle can be filled from a tap, emptied into a sink, poured into
another bottle until itself is empty or the other is filled.

e How to obtain 1-unit of liquid?

NOI only

NUS/SoC/CS

00
30
35 03
33
15
10
01
31

NOI only

05

32
02
20
25
34
04

Decanting: Hint

2005,/05,/28

NUS,/SoC/CS 2005/05/28

Decanting : BFS (To be Discussed Later)

#define N 24
int visit[4] [6];

int gx[N], qyl[N];

int head, tail = O;

NOI only 8

NUS,/SoC/CS 2005/05/28

check(int ox, int oy, int x, int y) {
if(visitl[x] [yl) return;
enqueue(x, vy);
visit[x] [y] = 1;
printf("%d %d -> %d %d\n", ox, oy, X, y);

NOI only

NUS/SoC/CS 2005,/05,/28
enqueue(int x, int y) {

if((tail+1)%N == head) {

printf("queue overflow\n"); exit(1);

+

gx[taill] = x; qyltail] = y;

if (++tail >= N) tail = 0;
+

dequeue(int *x, int *y) {
if (head == tail) {
printf("queue underflow\n"); exit(1);
+
xx = gqxlhead]; *y = qylhead];
if(++head >= N) head = 0;
+

NOI only 10

NUS/SoC/CS

main() {
int 1, j, X, V;

for(i =0; i < 4; i++)
for(j =0; j<6; j++)
visit[i] [j] = O;

check(0, 0, 0, 0);

NOI only

2005,/05,/28

11

NUS/SoC/CS

while(head != tail) {
dequeue(&x, &y);

if (
if (
if(
if (

if (
if (
if (
if (

NOI only

X

X< X

< HN< <
vV V. A A
O O 01 ;o

<

vV V A

O O W Ww

) check(x,y, 3, vy); // fill x

& y >= 3-x) check(x,y, 3, y-3+x);
& y < 3-x) check(x,y, xty, 0);

) check(x,y, 0, y); // empty x

) check(x,y, x, 5); // fill y

&& x >= b5-y) check(x,y, x-b+y, 5);
&& x < 5-y) check(x,y, 0, y+x);

) check(x,y, x, 0); // empty y

2005,/05,/28

12

2005,/05,/28

NUS/SoC/CS

0O0->00
00 ->30
00 ->005
30 ->35
30->03
05 ->32
03 ->33
32 ->02
33->105
02->20
15->10
20 ->205
10->01
25 ->34
01->31
34 ->04

13

NOI only

NUS,/SoC/CS 2005/05/28

Basic Graph Terminology: Vertices and Edges

e Mathematically a graph GG consists of a vertex set V' and an edge set E:

G = (V,E).

e An edge has two end-points, each of which must be a vertex.
e A vertex may or may not be an end-point of an edge.

e Unless explicitly specified otherwise, a graph usually means undirected
graph.

NOI only 14

NUS/SoC/CS
Incidence

e Incidence is a relation between a vertex and an edge.

e For any vertex v and any edge e,
vertex v is incident on edge e,
or
edge e is incident on vertex v,
if (and only if)

v is an end-point of e.

NOI only

2005,/05,/28

15

NUS,/SoC/CS 2005/05/28

Vertex Adjacency

e For any distinct vertices u and v,

u and v are adjacent
if (and only if)

they are incident on the same edge.

e Two distinct vertices are adjacent if (and only if) they are the end-points
of the same edge.

NOI only 16

NUS,/SoC/CS 2005/05/28

Edge Adjacency

e For any distinct edges e and f,
e and f are adjacent
if (and only if)

they are incident on the same vertex.

e Two distinct edges are adjacent if (and only if) they share an end-point.

NOI only 17

NUS,/SoC/CS 2005/05/28

Simple Graphs

e An edge is a loop if (and only if) its two end-points are identical.
e Two edges are parallel if (and only if) they have the same end-points.

e A graph is simple if (and only if) there are no loops and parallel edges.

NOI only 18

NUS,/SoC/CS 2005/05/28

Vertex Degree

e For any vertex v, the degree of v is the number of times edges incident
on v.

e If there are u loops and v (non-loop) edges incident on a vertex v, the

degree of v is
d(v) =2u + v.

NOI only 19

NUS,/SoC/CS 2005/05/28

Isolated Vertices

e A vertex is isolated if (and only if) its degree is zero.

e That is, a vertex is isolated if (and only if) no edges incident on it;
equivalently, it is incident on no edges; or no edges are incident on it.

NOI only 20

NUS/SoC/CS

The Handshake Theorem

e For any graph G = (V, F),

> d(v) =2|E]

veV

e Proof:
Each edge has two end-points.
d(v) = the number of times v labels an end-point.

> ey d(v) = number of end-points.

NOI only

2005,/05,/28

21

NUS,/SoC/CS 2005/05/28

A Corollary

e The number of odd-degree vertices is even.
e Proof:

Y dw)= > dw)+) dv)=2|E|.

veV 2|d(v) 2/ d(v)

NOI only 22

NUS,/SoC/CS 2005/05/28

Applications

e |s it possible that each of a group of nine people knows exactly five
others in the group?

e |s it possible to have a graph of five verices of degrees 1, 2, 3, 4, 57

NOI only 23

NUS,/SoC/CS 2005/05/28

Paths

e Let vy and vy, not necessarily distinct, be vertices of a graph.

e A path from vy to vy of length n is an alternating sequence of n + 1
vertices and n edges of the form:

Vg €1 V1 """ Up—-1 €En Un
such that e; is incident on v;,_1 and v; fori =1,...,n.

e For a simple graph, since ¢; is completely determined by v; and v; 1, the
path may be written simply as

Vg U1 *+*Unp—1 Up

NOI only 24

NUS,/SoC/CS 2005/05/28

Cycles

e A cycle is a path of nonzero length from a vertex to itself with distinct
edges.

e A length 1 cycle is a loop.
e A length 2 cycle is two parallel edges.

e A simple cycle is a cycle with distinct vertices (except the first and last).

NOI only 25

NUS,/SoC/CS 2005/05/28

Connectedness

e A graph G = (V, E) is connected if (and only if) for any distinct vertices
uw €V and v € V, there is a path from u to v.

NOI only 26

NUS,/SoC/CS 2005/05/28

Acyclicity

e A graph is acyclic if (and only if) it has no cycles.

NOI only 27

NUS,/SoC/CS 2005/05/28

Trees

e A tree is a connected acyclic graph.

NOI only 28

NUS,/SoC/CS 2005/05/28

Graph Representation 1: Adjacency Matrices

e Number the n vertices of a graph either from 0 to n — 1 or from 1 to n.
e The graph can be represented as a matrix a| || | such that

ali|[j] = number of edges incident on vertices i, j.

e For a simple graph, we have

and

NOI only 29

NUS,/SoC/CS 2005/05/28

Graph Representation 2: Adjacency Lists

e Number the n vertices of a graph either from 0 to n — 1 or from 1 to n.
e Create an array a|] of lists.
e Array entry ali] lists the vertices adjacent to vertex i.
e Alternatively, create a 2-dimensional jagged array al || |
length of ali] = d(7).

(Very easily done in Java.)

NOI only 30

NUS,/SoC/CS 2005/05/28

Adjacency Matrices Versus Adjacency Lists

e Storage: |V|? against |V|+ 2|E)|

e Access: direct against serial

NOI only 31

NUS,/SoC/CS 2005/05/28

Example

e Represent the graph
G =({1,2,3,4,5,6},{{1,2},{1,3},{2,4},{2,5},{2,6},{3,5}})
as an adjacency matrix and as adjacency lists.
e Represent the graph
G =({1,2,3,4,5,6},{e1,ea,e3,€e4,€5,€6,€7})
where f(e1) = {6}, fle2) = {1,5}, fles) = {1,5}, fles) = {2,4},

fles) = {3,4}, f(eg) = {3,4}, f(er) = {1,1}, as an adjacency matrix
and as adjacency lists.

NOI only 32

NUS,/SoC/CS 2005/05/28

Breadth First Search (BFS)

e One way of traversing a graph is to do a breadth first search (BFS).
e BFS can be described as follows:

visit a vertex
while there is a least recently visited vertex v do
visit all unvisited vertices adjacent to v

NOI only 33

NUS,/SoC/CS 2005/05/28

BFS Pseudo Code

bfs(start) {
for(i =0; 1 < mn; i++) visit[i] = false;
visit[start] = true; show(start); enqueue(start);
while(! empty()) {
for(1 = adjldequeue()]; 1; 1 = 1->next) {
v = 1->vertex;
if(lvisit[v]) {
visit[v] = true; show(v); enqueue(v);
}
+
}
}

NOI only 34

NUS,/SoC/CS 2005/05/28

BFS: The Decanting Example

e A graph modeling the previous decanting example is given as adjacency
lists.

e What is the rooted ordered tree obtained by a breadth first search starting
with 00 (both bottles are empty)?

e Note that the order of the ordered tree is determined by the vertex order
in the adjacency lists.

NOI only 35

NUS/SoC/CS

00:
01:
02:
03:
04
05:
10:
15:
20:
25
30:
31:
32:
33:
34
35:

NOI only

30,
31,
32,
33,
34,
35,
30,
35,
30,
35,
00,
01,
02,
03,
04,
05,

05

10,
20,
30,
31,
32,
00,
33,
00,
34,
35,
35,
35,
35,
35,
30

05,
05,
05,
05,
00

15,
05,
25,
05,
03

04,
05,
15,
25,

00
00
00
00

01
10
02
20

30
30
30
30

2005,/05,/28

36

NUS,/SoC/CS 2005/05/28

Depth First Search

e Another way of traversing a graph is to do a depth first search (DFS).

e DFS can be described as follows:

dfs(v) {
mark v as visited

for each unvisited vertex u adjacent to v do
dfs(u)

NOI only 37

NUS/SoC/CS

DFS Pseudo Code

dfs_init(start) {
for(1 =0; i< n; i++) visit[il]
dfs(start);

+

dfs(start) {
visit[start] = true; show(start);

= false;

for(1 = adjlstart]; 1; 1 = 1->next) {

v = 1->vertex;
if('visit[v]) dfs(v);
+
}

NOI only

2005,/05,/28

38

NUS,/SoC/CS 2005/05/28

DFS: The Decanting Example

e Consider the adjacency lists of the graph for the decanting example.

e What is the rooted ordered tree obtained by a depth first search starting
with 107

NOI only 39

NUS/SoC/CS

35

NOI only

00
05

DFS: The Decanting Example Answer

10
30

32
02
20
25
34
04
31
01

03
33
15

2005,/05,/28

40

NUS,/SoC/CS 2005/05/28

A Remark on the Decanting Problem

e The adjacency lists are not created explicitly and statically. They are
created on the flight.

e The possible configurations from the configuration (x,y):

(1,9).2<3 — (3,1)
(%,y),$<3,y>3—£€ — (37y+33_3)
(z,9),y>0,y<3 -z — (z+y,0)

(0,9),z>0 — (0,y)

NOI only 41

NUS,/SoC/CS 2005/05/28

(z,9),y <5 — (x,5)
(x,y),y<b,x>b—y — (r+y—>5,5)
(z,y), >0,z <5—y — (0,z+7v)

(z,9),y>0 — (z,0)

NOI only 42

NUS,/SoC/CS 2005/05/28

Weighted Graphs

e A weighted graph G consists of a vertex set V, an edge set F/, and a
weight function w : E — R

G=(V,E,w).

e Every graph can be treated as a weighted graph by taking
w(e) =1

for any edge e € E.

NOI only 43

NUS,/SoC/CS 2005/05/28

Some Observations on Weighted Graphs

e Many situations can be modeled as weighted graphs.

e For example, the highways connecting cities may be modeled as a
weighted graph with highway distance as the weight function.

e The rooted tree built by a breadth first search starting at vertex v gives
the shortest path length of all vertices from v: the shortest distance of a

vertex at level L is L.

e In other words, BFS solves the 1-to-any (single source) shortest path
problem for the specail case when w(FE) = {1}.

NOI only 44

NUS,/SoC/CS 2005/05/28

Weighted Graph Representations

e A simple weighted graph can be represented as an adjacency matrix:
ali][j] = w({z, j}).

e A weighted graph can also be represented as adjacency lists:
ali] = a list of pairs (v, w(e))

where v is a vertex adjacent to ¢ and e is an edge incident on ¢ and .

NOI only 45

NUS/SoC/CS

Floyd’s Algorithm: All-Pairs Shortest Path

floyd() {
for(k = 0; k < n; k++)
for(i = 0; i< n; i++)
for(j = 0; j < mn; j++)
if (ali] (k] + alk][j] < alil[j])
alil [j] = alil k] + alk][j];

NOI only

2005,/05,/28

46

NUS,/SoC/CS 2005/05/28

Floyd’s Algorithm: Comments

e \ery easy to code.
e Transform the adjacency matrix to an all-pairs shortest path matrix.
e Complexity ©(n?).

e Theory: dynamic programming subproblem structure:

(k)

1,]

(k—1) (k—1) (k:—l)).

a; ; =min(a, ; " a;, " +ap

e Programming: update in place is correct because

k k—1 k k—1
apy = agy) = ap; .

NOI only 47

NUS,/SoC/CS 2005/05/28

Dijkstra’s Algorithm for Single-Source Shortest Paths

e This is a greedy algorithm.

e Theory (skipped).

NOI only 48

NUS,/SoC/CS 2005/05/28

Dijkstra’s Algorithm: Pseudo Code

for each vertex v do d[v] = MAX_VAL;
d[source] = 0; plsource] -1;
do |V| times {
let d[v] be the smallest among all undeleted vertices
x = d[v]; delete v;
for each vertex u adjacent to v do {
if u is undeleted and x+w[u] < d[u] then {
dlul] = x + wlu]; plul = v;
by
+

} // array d gives the shortest distance from source

NOI only 49

NUS,/SoC/CS 2005/05/28

Implementation: Naive Versus Sophisticated

e Two pieces of information: adjacency and distance.

e If the distance information is implemented as an array d|v|, coding is
simple but may incur a time complexity of O(|V]?).

e |f the distance information is implemented as a priority queue, coding is

more involved but the time complexity is O(|E|log|V|) when the graph
is connected.

NOI only 50

NUS,/SoC/CS 2005/05/28

Dijkstra’s Algorithm: Example

1.0

NOI only 51

NUS/SoC/CS

Dijkstra’s Algorithm

#include <values.h>
// adjacency nodes
struct edge {
int v, wt;
struct edge *nxt;
¥

// adjacency lists

int n, m;
struct edge **adj;

NOI only

: A C Program

2005,/05,/28

52

NUS,/SoC/CS 2005/05/28

// priority queue with
// priority updates and
// indirect priorities

int N;
int *delete, *heap, *dist, *where, *parent;

NOI only 53

NUS/SoC/CS

// build adjacency lists

insert(struct edge ** 1, int v, int wt) {
struct edge *p, *q;

2005,/05,/28

p = *1;

q = (struct edge *) calloc(1, sizeof(struct edge));
q->v = V;

q->wt = wt,;

q->nxt = p;

*1 = q;

+

show(struct edge *1) {
for(; 1; 1 = 1->nxt)
printf(" %d (4", 1->v, 1->wt);
printf("\n");
+

NOI only

54

NUS,/SoC/CS 2005/05/28

siftdown(int i) {
int hi, child;

hi = heap[i];
while(2*%i+1 <= N-1) {
child = 2xi+1;
if (child<N-1 && dist[heap[child+1]]<dist[heap[child]])
child++;
if (dist[heap[child]] < dist[hi]) {
heap[i] = heapl[child]; wherelheapl[i]] = i;
} else
break;
1 = child;
+
heap[i] = hi; wherelheapl[i]] = i;
+

NOI only 55

NUS/SoC/CS

heapify() {
int 1;

for(i = N/2-1; i >=
+

int heap_del() {
int v;
v = heap[0];
deletelv] = 1;
heap[0] = heap[N-1];
where [heap[0]] = 0;
N--;
siftdown(0);
return v;

NOI only

0;

i--) siftdown(i);

2005,/05,/28

56

NUS/SoC/CS

heap_decrement(int v, int val) {

int 1;

dist[v] = val;

i = wherel[v];

while(i > 0 && val < dist[heap[(i+1)/2 - 111) {
heap[i] = heap[(i+1)/2 - 1];
where[heap[i]] = i;
i = (i+1)/2 - 1;

h

heap[i] = v;

where[heap[i]] = i;
}

NOI only

2005,/05,/28

57

NUS,/SoC/CS 2005/05/28

heap_show() {
int 1;

printf ("*\n");

for(i = 0; i < N; i++)
printf("%d %d %d\n", i, heapl[il, dist[heapl[i]]);

NOI only 58

NUS/SoC/CS 2005/05,/28
dijkstra(int start) {

int 1, minc, v, u;

struct edge x*e;

for(i = 0; i< n; i++) {
dist[i] = MAXINT;
heap[i] = i;
where[i] = i;
deletel[i] = O;

+
N = n;

dist[start] = 0; parentl[start] = -1;
heapify();

NOI only 59

NUS/SoC/CS 2005/05/28
for(i = 0; i< n; i++) {
v = heap_del();
minc = distl[v];
for(e = adjlv]; e; e = e->nxt) {

u = e->v;
if(!'deletel[u] && minc + e->wt < dist[u]) {
parent [u] = v;
heap_decrement(u, minc + e->wt);
}
+
heap_show() ;
+
}

NOI only 60

NUS,/SoC/CS 2005/05/28

// vertices are numbered from O

main(int ac, char *av[]) {
int i, u, V, Wt;

scanf("%d %d", &n, &m); printf("%d %d\n", n, m);
adj = (struct edge **) calloc(n, sizeof(struct edge *));

for(1 =0; i <m; i++) {
scanf ("%d %4 %d4d", &u, &v, &wt);
printf("%d %d %d\n", u, v, wt);
insert(&adjlul, v, wt);
insert(&adjlv], u, wt);

+

for(i = 0; i < mn; i++) show(adjl[i]);

NOI only 61

NUS/SoC/CS 2005/05/28
delete = (int *) calloc(n, sizeof(int));
parent = (int *) calloc(n, sizeof(int));
heap = (int *) calloc(n, sizeof(int));
dist = (int *) calloc(n, sizeof(int));
where = (int *) calloc(n, sizeof(int));

if(ac > 1)

dijkstra(atoi(av[1]));
else

dijkstra(0);

for(i = 0; i < n; i++)
printf("%d %d %d\n", i, dist[i], parent[i]);

NOI only 62

NUS,/SoC/CS 2005/05/28

Dijkstra’s Algorithm: Output

W PP P PRP P, OO O W,
NN W NN D PYW R~
_ O O O~ O - B~

NOI only 63

NUS/SoC/CS

4 (9)
2 (5)
3 (1)
2 (1)
2 (9)

NOI only

3
4
4
4
3

(1)
(1)
(9)
(9)
(9)

1 (1)
0 (1)
1 (5)
0 (1)
1 (1) 0 (9)

2005,/05,/28

64

2005,/05,/28

NUS/SoC/CS

— O O O AN O © M © <
— M N O S M N M AN QY
¥ O A AN M ¥ O AN ¥ O +H ¥ O *

65

NOI only

NUS/SoC/CS

021

D W N -
O W K-
I O W
|_L

NOI only

2005,/05,/28

66

NUS,/SoC/CS 2005/05/28

Exercises

1. A complete graph is a simple graph in which any two distinct vertices
are adjacent. A complete graph of n vertices is denoted K,,. Describe
the rooted ordered tree produced by a bfs and a dfs on K.

2. Code a naive Dijkstra’s algorithm to run the given example. (By naive
we mean using an array instead of a priority queue to store the distance
information.)

3. What is the role of where| | array in the given Dijkstra’s algorithm?

4. Implement Floyd's algorithm to run the given example.

NOI only 67

