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Topics

e Problem modeling by graphs

e Basic graph terminology

e Graph representations

e Graph traversal — BFS and DFS

e Shortest paths — one-to-any (single source) and any-to-any (all pairs)

e (All diagrams will be provided during the lecture.)
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Vegetarians and Cannibals Crossing River

e Two vegetarians and two cannibals want to cross a river on a boat that
can take only two persons.

e At no time must the vegetarians be outnumbered.

e How should they cross the river?

NOI only 2



NUS,/SoC/CS 2005/05/28

Vegetarians and Cannibals: Hint

vvccB/
vc/Bvc vv/Bcc vvc/Bce cc/Bvv
vvcB/c
c/Bvvc
ccB/vv vcB/ve
/Bvvcc
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Wolf, Goat, Cabbage, Farmer Crossing River

o Wolf eats goat if left alone, goat eats cabbage if left alone.

e The farmer can only take one object with him at a time.

e How should the farmer bring the wolf, goat, and cabbage to the other
side of the river?
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Wolf, Goat, Cabbage, Farmer Crossing River: Hint

FWGC/
WC/FG

FWC/G
C/FWG W/FGC

FGC/W FWG/C
G/FWC

FG/WC

/FWGC
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Decanting: 34+ 5 — 1

e A 3-unit bottle and a 5-unit bottle are given.

e Each bottle can be filled from a tap, emptied into a sink, poured into
another bottle until itself is empty or the other is filled.

e How to obtain 1-unit of liquid?
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00
30
35 03
33
15
10
01
31
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05

32
02
20
25
34
04

Decanting: Hint
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Decanting : BFS (To be Discussed Later)

#define N 24
int visit[4] [6];

int gx[N], qyl[N];

int head, tail = O;

NOI only 8



NUS,/SoC/CS 2005/05/28

check( int ox, int oy, int x, int y ) {
if( visitl[x] [yl ) return;
enqueue( x, vy );
visit[x] [y] = 1;
printf( "%d %d -> %d %d\n", ox, oy, X, y );
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enqueue( int x, int y ) {

if( (tail+1)%N == head ) {

printf( "queue overflow\n" ); exit( 1 );

+

gx[taill] = x; qyltail] = y;

if ( ++tail >= N ) tail = 0;
+

dequeue( int *x, int *y ) {
if ( head == tail ) {
printf( "queue underflow\n" ); exit( 1 );
+
xx = gqxlhead]; *y = qylhead];
if( ++head >= N ) head = 0;
+
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main() {
int 1, j, X, V;

for( i =0; i < 4; i++)
for( j =0; j<6; j++)
visit[i] [j] = O;

check( 0, 0, 0, 0 );

NOI only

2005,/05,/28

11



NUS/SoC/CS

while( head != tail ) {
dequeue( &x, &y );

if (
if (
if(
if (

if (
if (
if (
if (

NOI only
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) check( x,y, 3, vy ); // fill x

& y >= 3-x ) check( x,y, 3, y-3+x );
& y < 3-x ) check( x,y, xty, 0 );

) check( x,y, 0, y ); // empty x

) check( x,y, x, 5); // fill y

&& x >= b5-y ) check( x,y, x-b+y, 5 );
&& x < 5-y ) check( x,y, 0, y+x );

) check( x,y, x, 0 ); // empty y
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0O0->00
00 ->30
00 ->005
30 ->35
30->03
05 ->32
03 ->33
32 ->02
33->105
02->20
15->10
20 ->205
10->01
25 ->34
01->31
34 ->04
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Basic Graph Terminology: Vertices and Edges

e Mathematically a graph GG consists of a vertex set V' and an edge set E:

G = (V,E).

e An edge has two end-points, each of which must be a vertex.
e A vertex may or may not be an end-point of an edge.

e Unless explicitly specified otherwise, a graph usually means undirected
graph.
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Incidence

e Incidence is a relation between a vertex and an edge.

e For any vertex v and any edge e,
vertex v is incident on edge e,
or
edge e is incident on vertex v,
if (and only if)

v is an end-point of e.

NOI only
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Vertex Adjacency

e For any distinct vertices u and v,

u and v are adjacent
if (and only if)

they are incident on the same edge.

e Two distinct vertices are adjacent if (and only if) they are the end-points
of the same edge.
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Edge Adjacency

e For any distinct edges e and f,
e and f are adjacent
if (and only if)

they are incident on the same vertex.

e Two distinct edges are adjacent if (and only if) they share an end-point.
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Simple Graphs

e An edge is a loop if (and only if) its two end-points are identical.
e Two edges are parallel if (and only if) they have the same end-points.

e A graph is simple if (and only if) there are no loops and parallel edges.
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Vertex Degree

e For any vertex v, the degree of v is the number of times edges incident
on v.

e If there are u loops and v (non-loop) edges incident on a vertex v, the

degree of v is
d(v) =2u + v.
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Isolated Vertices

e A vertex is isolated if (and only if) its degree is zero.

e That is, a vertex is isolated if (and only if) no edges incident on it;
equivalently, it is incident on no edges; or no edges are incident on it.
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The Handshake Theorem

e For any graph G = (V, F),

> d(v) =2|E]

veV

e Proof:
Each edge has two end-points.
d(v) = the number of times v labels an end-point.

> ey d(v) = number of end-points.

NOI only
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A Corollary

e The number of odd-degree vertices is even.
e Proof:

Y dw)= > dw)+ ) dv)=2|E|.

veV 2|d(v) 2/ d(v)
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Applications

e |s it possible that each of a group of nine people knows exactly five
others in the group?

e |s it possible to have a graph of five verices of degrees 1, 2, 3, 4, 57
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Paths

e Let vy and vy, not necessarily distinct, be vertices of a graph.

e A path from vy to vy of length n is an alternating sequence of n + 1
vertices and n edges of the form:

Vg €1 V1 """ Up—-1 €En Un
such that e; is incident on v;,_1 and v; fori =1,...,n.

e For a simple graph, since ¢; is completely determined by v; and v; 1, the
path may be written simply as

Vg U1 *+*Unp—1 Up

NOI only 24
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Cycles

e A cycle is a path of nonzero length from a vertex to itself with distinct
edges.

e A length 1 cycle is a loop.
e A length 2 cycle is two parallel edges.

e A simple cycle is a cycle with distinct vertices (except the first and last).
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Connectedness

e A graph G = (V, E) is connected if (and only if) for any distinct vertices
uw €V and v € V, there is a path from u to v.
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Acyclicity

e A graph is acyclic if (and only if) it has no cycles.
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Trees

e A tree is a connected acyclic graph.

NOI only 28



NUS,/SoC/CS 2005/05/28

Graph Representation 1: Adjacency Matrices

e Number the n vertices of a graph either from 0 to n — 1 or from 1 to n.
e The graph can be represented as a matrix a| || | such that

ali|[j] = number of edges incident on vertices i, j.

e For a simple graph, we have

and
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Graph Representation 2: Adjacency Lists

e Number the n vertices of a graph either from 0 to n — 1 or from 1 to n.
e Create an array a| ] of lists.
e Array entry ali] lists the vertices adjacent to vertex i.
e Alternatively, create a 2-dimensional jagged array al || |
length of ali] = d(7).

(Very easily done in Java.)
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Adjacency Matrices Versus Adjacency Lists

e Storage: |V|? against |V|+ 2|E)|

e Access: direct against serial
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Example

e Represent the graph
G =({1,2,3,4,5,6},{{1,2},{1,3},{2,4},{2,5},{2,6},{3,5}})
as an adjacency matrix and as adjacency lists.
e Represent the graph
G =({1,2,3,4,5,6},{e1,ea,e3,€e4,€5,€6,€7})
where f(e1) = {6}, fle2) = {1,5}, fles) = {1,5}, fles) = {2,4},

fles) = {3,4}, f(eg) = {3,4}, f(er) = {1,1}, as an adjacency matrix
and as adjacency lists.
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Breadth First Search (BFS)

e One way of traversing a graph is to do a breadth first search (BFS).
e BFS can be described as follows:

visit a vertex
while there is a least recently visited vertex v do
visit all unvisited vertices adjacent to v
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BFS Pseudo Code

bfs( start ) {
for( i =0; 1 < mn; i++ ) visit[i] = false;
visit[start] = true; show( start ); enqueue( start );
while( ! empty() ) {
for( 1 = adjldequeue()]; 1; 1 = 1->next ) {
v = 1->vertex;
if( lvisit[v] ) {
visit[v] = true; show( v ); enqueue( v );
}
+
}
}

NOI only 34
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BFS: The Decanting Example

e A graph modeling the previous decanting example is given as adjacency
lists.

e What is the rooted ordered tree obtained by a breadth first search starting
with 00 (both bottles are empty)?

e Note that the order of the ordered tree is determined by the vertex order
in the adjacency lists.
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00:
01:
02:
03:
04
05:
10:
15:
20:
25
30:
31:
32:
33:
34
35:
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30,
35,
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Depth First Search

e Another way of traversing a graph is to do a depth first search (DFS).

e DFS can be described as follows:

dfs( v ) {
mark v as visited

for each unvisited vertex u adjacent to v do
dfs( u )
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DFS Pseudo Code

dfs_init( start ) {
for( 1 =0; i< n; i++ ) visit[il]
dfs( start );

+

dfs( start ) {
visit[start] = true; show( start );

= false;

for( 1 = adjlstart]; 1; 1 = 1->next ) {

v = 1->vertex;
if( 'visit[v] ) dfs( v );
+
}

NOI only
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DFS: The Decanting Example

e Consider the adjacency lists of the graph for the decanting example.

e What is the rooted ordered tree obtained by a depth first search starting
with 107
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35
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00
05

DFS: The Decanting Example Answer

10
30

32
02
20
25
34
04
31
01

03
33
15

2005,/05,/28

40



NUS,/SoC/CS 2005/05/28

A Remark on the Decanting Problem

e The adjacency lists are not created explicitly and statically. They are
created on the flight.

e The possible configurations from the configuration (x,y):

(1,9).2<3 — (3,1)
(%,y),$<3,y>3—£€ — (37y+33_3)
(z,9),y>0,y<3 -z — (z+y,0)

(0,9),z>0 — (0,y)
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(z,9),y <5 — (x,5)
(x,y),y<b,x>b—y — (r+y—>5,5)
(z,y), >0,z <5—y — (0,z+7v)

(z,9),y>0 — (z,0)
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Weighted Graphs

e A weighted graph G consists of a vertex set V, an edge set F/, and a
weight function w : E — R

G=(V,E,w).

e Every graph can be treated as a weighted graph by taking
w(e) =1

for any edge e € E.
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Some Observations on Weighted Graphs

e Many situations can be modeled as weighted graphs.

e For example, the highways connecting cities may be modeled as a
weighted graph with highway distance as the weight function.

e The rooted tree built by a breadth first search starting at vertex v gives
the shortest path length of all vertices from v: the shortest distance of a

vertex at level L is L.

e In other words, BFS solves the 1-to-any (single source) shortest path
problem for the specail case when w(FE) = {1}.
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Weighted Graph Representations

e A simple weighted graph can be represented as an adjacency matrix:
ali][j] = w({z, j}).

e A weighted graph can also be represented as adjacency lists:
ali] = a list of pairs (v, w(e))

where v is a vertex adjacent to ¢ and e is an edge incident on ¢ and .
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Floyd’s Algorithm: All-Pairs Shortest Path

floyd() {
for( k = 0; k < n; k++ )
for( i = 0; i< n; i++ )
for( j = 0; j < mn; j++ )
if ( ali] (k] + alk][j] < alil[j] )
alil [j] = alil k] + alk][j];

NOI only
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Floyd’s Algorithm: Comments

e \ery easy to code.
e Transform the adjacency matrix to an all-pairs shortest path matrix.
e Complexity ©(n?).

e Theory: dynamic programming subproblem structure:

(k)

1,]

(k—1) (k—1) (k:—l)).

a; ; =min(a, ; " a;, " +ap

e Programming: update in place is correct because

k k—1 k k—1
apy = agy ) = ap; .
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Dijkstra’s Algorithm for Single-Source Shortest Paths

e This is a greedy algorithm.

e Theory (skipped).
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Dijkstra’s Algorithm: Pseudo Code

for each vertex v do d[v] = MAX_VAL;
d[source] = 0; plsource] -1;
do |V| times {
let d[v] be the smallest among all undeleted vertices
x = d[v]; delete v;
for each vertex u adjacent to v do {
if u is undeleted and x+w[u] < d[u] then {
dlul] = x + wlu]; plul = v;
by
+

} // array d gives the shortest distance from source
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Implementation: Naive Versus Sophisticated

e Two pieces of information: adjacency and distance.

e If the distance information is implemented as an array d|v|, coding is
simple but may incur a time complexity of O(|V]?).

e |f the distance information is implemented as a priority queue, coding is

more involved but the time complexity is O(|E|log|V|) when the graph
is connected.
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Dijkstra’s Algorithm: Example

1.0
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Dijkstra’s Algorithm

#include <values.h>
// adjacency nodes
struct edge {
int v, wt;
struct edge *nxt;
¥

// adjacency lists

int n, m;
struct edge **adj;

NOI only

: A C Program
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// priority queue with
// priority updates and
// indirect priorities

int N;
int *delete, *heap, *dist, *where, *parent;

NOI only 53



NUS/SoC/CS

// build adjacency lists

insert( struct edge ** 1, int v, int wt ) {
struct edge *p, *q;

2005,/05,/28

p = *1;

q = (struct edge *) calloc( 1, sizeof(struct edge) );
q->v = V;

q->wt = wt,;

q->nxt = p;

*1 = q;

+

show( struct edge *1 ) {
for( ; 1; 1 = 1->nxt )
printf( " %d (4", 1->v, 1->wt );
printf( "\n" );
+

NOI only
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siftdown( int i ) {
int hi, child;

hi = heap[i];
while( 2*%i+1 <= N-1 ) {
child = 2xi+1;
if (child<N-1 && dist[heap[child+1]]<dist[heap[child]])
child++;
if ( dist[heap[child]] < dist[hi] ) {
heap[i] = heapl[child]; wherelheapl[i]] = i;
} else
break;
1 = child;
+
heap[i] = hi; wherelheapl[i]] = i;
+

NOI only 55



NUS/SoC/CS

heapify() {
int 1;

for( i = N/2-1; i >=
+

int heap_del() {
int v;
v = heap[0];
deletelv] = 1;
heap[0] = heap[N-1];
where [heap[0]] = 0;
N--;
siftdown( 0 );
return v;

NOI only

0;

i-- ) siftdown( i );
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heap_decrement( int v, int val ) {

int 1;

dist[v] = val;

i = wherel[v];

while( i > 0 && val < dist[heap[(i+1)/2 - 111 ) {
heap[i] = heap[(i+1)/2 - 1];
where[heap[i]] = i;
i = (i+1)/2 - 1;

h

heap[i] = v;

where[heap[i]] = i;
}

NOI only
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heap_show() {
int 1;

printf ( "*\n" );

for( i = 0; i < N; i++)
printf( "%d %d %d\n", i, heapl[il, dist[heapl[i]] );
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dijkstra( int start ) {

int 1, minc, v, u;

struct edge x*e;

for( i = 0; i< n; i++ ) {
dist[i] = MAXINT;
heap[i] = i;
where[i] = i;
deletel[i] = O;

+
N = n;

dist[start] = 0; parentl[start] = -1;
heapify();
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for( i = 0; i< n; i++ ) {
v = heap_del();
minc = distl[v];
for( e = adjlv]; e; e = e->nxt ) {

u = e->v;
if( !'deletel[u] && minc + e->wt < dist[u] ) {
parent [u] = v;
heap_decrement( u, minc + e->wt );
}
+
heap_show() ;
+
}
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// vertices are numbered from O

main( int ac, char *av[] ) {
int i, u, V, Wt;

scanf( "%d %d", &n, &m ); printf( "%d %d\n", n, m );
adj = (struct edge **) calloc(n, sizeof(struct edge *));

for( 1 =0; i <m; i++ ) {
scanf ( "%d %4 %d4d", &u, &v, &wt );
printf( "%d %d %d\n", u, v, wt );
insert( &adjlul, v, wt );
insert( &adjlv], u, wt );

+

for( i = 0; i < mn; i++ ) show( adjl[i] );
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delete = (int *) calloc( n, sizeof(int) );
parent = (int *) calloc( n, sizeof(int) );
heap = (int *) calloc( n, sizeof(int) );
dist = (int *) calloc( n, sizeof(int) );
where = (int *) calloc( n, sizeof(int) );

if( ac > 1)

dijkstra( atoi(av[1]) );
else

dijkstra( 0 );

for( i = 0; i < n; i++ )
printf( "%d %d %d\n", i, dist[i], parent[i] );
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Dijkstra’s Algorithm: Output

W PP P PRP P, OO O W,
NN W NN D PYW R~
_ O O O~ O - B~
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4 (9)
2 (5)
3 (1)
2 (1)
2 (9)
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3
4
4
4
3

(1)
(1)
(9)
(9)
(9)

1 (1)
0 (1)
1 (5)
0 (1)
1 (1) 0 (9)
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Exercises

1. A complete graph is a simple graph in which any two distinct vertices
are adjacent. A complete graph of n vertices is denoted K,,. Describe
the rooted ordered tree produced by a bfs and a dfs on K.

2. Code a naive Dijkstra’s algorithm to run the given example. (By naive
we mean using an array instead of a priority queue to store the distance
information.)

3. What is the role of where| | array in the given Dijkstra’s algorithm?

4. Implement Floyd's algorithm to run the given example.
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