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Topics

• Problem modeling by graphs

• Basic graph terminology

• Graph representations

• Graph traversal — BFS and DFS

• Shortest paths — one-to-any (single source) and any-to-any (all pairs)

• (All diagrams will be provided during the lecture.)
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Vegetarians and Cannibals Crossing River

• Two vegetarians and two cannibals want to cross a river on a boat that
can take only two persons.

• At no time must the vegetarians be outnumbered.

• How should they cross the river?
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Vegetarians and Cannibals: Hint

vvccB/

vc/Bvc vv/Bcc vvc/Bc cc/Bvv

vvcB/c

c/Bvvc

ccB/vv vcB/vc

/Bvvcc
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Wolf, Goat, Cabbage, Farmer Crossing River

• Wolf eats goat if left alone, goat eats cabbage if left alone.

• The farmer can only take one object with him at a time.

• How should the farmer bring the wolf, goat, and cabbage to the other
side of the river?
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Wolf, Goat, Cabbage, Farmer Crossing River: Hint

FWGC/

WC/FG

FWC/G

C/FWG W/FGC

FGC/W FWG/C

G/FWC

FG/WC

/FWGC
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Decanting: 3 + 5 → 1

• A 3-unit bottle and a 5-unit bottle are given.

• Each bottle can be filled from a tap, emptied into a sink, poured into
another bottle until itself is empty or the other is filled.

• How to obtain 1-unit of liquid?
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Decanting: Hint

00

30 05

35 03 32

33 02

15 20

10 25

01 34

31 04
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Decanting : BFS (To be Discussed Later)

#define N 24

int visit[4][6];

int qx[N], qy[N];

int head, tail = 0;
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check( int ox, int oy, int x, int y ) {

if( visit[x][y] ) return;

enqueue( x, y );

visit[x][y] = 1;

printf( "%d %d -> %d %d\n", ox, oy, x, y );

}

NOI only 9



NUS/SoC/CS 2005/05/28

enqueue( int x, int y ) {

if( (tail+1)%N == head ) {

printf( "queue overflow\n" ); exit( 1 );

}

qx[tail] = x; qy[tail] = y;

if( ++tail >= N ) tail = 0;

}

dequeue( int *x, int *y ) {

if( head == tail ) {

printf( "queue underflow\n" ); exit( 1 );

}

*x = qx[head]; *y = qy[head];

if( ++head >= N ) head = 0;

}
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main() {

int i, j, x, y;

for( i = 0; i < 4; i++ )

for( j = 0; j < 6; j++ )

visit[i][j] = 0;

check( 0, 0, 0, 0 );
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while( head != tail ) {

dequeue( &x, &y );

if( x < 3 ) check( x,y, 3, y ); // fill x

if( x < 3 && y >= 3-x ) check( x,y, 3, y-3+x );

if( y > 0 && y < 3-x ) check( x,y, x+y, 0 );

if( x > 0 ) check( x,y, 0, y ); // empty x

if( y < 5 ) check( x,y, x, 5 ); // fill y

if( y < 5 && x >= 5-y ) check( x,y, x-5+y, 5 );

if( x > 0 && x < 5-y ) check( x,y, 0, y+x );

if( y > 0 ) check( x,y, x, 0 ); // empty y

}

}
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0 0 -> 0 0

0 0 -> 3 0

0 0 -> 0 5

3 0 -> 3 5

3 0 -> 0 3

0 5 -> 3 2

0 3 -> 3 3

3 2 -> 0 2

3 3 -> 1 5

0 2 -> 2 0

1 5 -> 1 0

2 0 -> 2 5

1 0 -> 0 1

2 5 -> 3 4

0 1 -> 3 1

3 4 -> 0 4
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Basic Graph Terminology: Vertices and Edges

• Mathematically a graph G consists of a vertex set V and an edge set E:

G = (V,E).

• An edge has two end-points, each of which must be a vertex.

• A vertex may or may not be an end-point of an edge.

• Unless explicitly specified otherwise, a graph usually means undirected
graph.
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Incidence

• Incidence is a relation between a vertex and an edge.

• For any vertex v and any edge e,

vertex v is incident on edge e,

or

edge e is incident on vertex v,

if (and only if)

v is an end-point of e.
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Vertex Adjacency

• For any distinct vertices u and v,

u and v are adjacent

if (and only if)

they are incident on the same edge.

• Two distinct vertices are adjacent if (and only if) they are the end-points
of the same edge.
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Edge Adjacency

• For any distinct edges e and f ,

e and f are adjacent

if (and only if)

they are incident on the same vertex.

• Two distinct edges are adjacent if (and only if) they share an end-point.
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Simple Graphs

• An edge is a loop if (and only if) its two end-points are identical.

• Two edges are parallel if (and only if) they have the same end-points.

• A graph is simple if (and only if) there are no loops and parallel edges.
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Vertex Degree

• For any vertex v, the degree of v is the number of times edges incident
on v.

• If there are µ loops and ν (non-loop) edges incident on a vertex v, the
degree of v is

d(v) = 2µ + ν.
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Isolated Vertices

• A vertex is isolated if (and only if) its degree is zero.

• That is, a vertex is isolated if (and only if) no edges incident on it;
equivalently, it is incident on no edges; or no edges are incident on it.
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The Handshake Theorem

• For any graph G = (V,E),

∑

v∈V

d(v) = 2|E|

• Proof:

Each edge has two end-points.

d(v) = the number of times v labels an end-point.
∑

v∈V d(v) = number of end-points.
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A Corollary

• The number of odd-degree vertices is even.

• Proof: ∑

v∈V

d(v) =
∑

2|d(v)

d(v) +
∑

26 | d(v)

d(v) = 2|E|.
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Applications

• Is it possible that each of a group of nine people knows exactly five
others in the group?

• Is it possible to have a graph of five verices of degrees 1, 2, 3, 4, 5?

NOI only 23



NUS/SoC/CS 2005/05/28

Paths

• Let v0 and v1, not necessarily distinct, be vertices of a graph.

• A path from v0 to v1 of length n is an alternating sequence of n + 1
vertices and n edges of the form:

v0 e1 v1 · · · vn−1 en vn

such that ei is incident on vi−1 and vi for i = 1, . . . , n.

• For a simple graph, since ei is completely determined by vi and vi+1, the
path may be written simply as

v0 v1 · · · vn−1 vn
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Cycles

• A cycle is a path of nonzero length from a vertex to itself with distinct
edges.

• A length 1 cycle is a loop.

• A length 2 cycle is two parallel edges.

• A simple cycle is a cycle with distinct vertices (except the first and last).
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Connectedness

• A graph G = (V,E) is connected if (and only if) for any distinct vertices
u ∈ V and v ∈ V , there is a path from u to v.
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Acyclicity

• A graph is acyclic if (and only if) it has no cycles.
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Trees

• A tree is a connected acyclic graph.
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Graph Representation 1: Adjacency Matrices

• Number the n vertices of a graph either from 0 to n− 1 or from 1 to n.

• The graph can be represented as a matrix a[ ][ ] such that

a[i][j] = number of edges incident on vertices i, j.

• For a simple graph, we have

a[i][i] = 0

and
a[i][j] ≤ 1.
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Graph Representation 2: Adjacency Lists

• Number the n vertices of a graph either from 0 to n− 1 or from 1 to n.

• Create an array a[ ] of lists.

• Array entry a[i] lists the vertices adjacent to vertex i.

• Alternatively, create a 2-dimensional jagged array a[ ][ ]:

length of a[i] = d(i).

(Very easily done in Java.)
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Adjacency Matrices Versus Adjacency Lists

• Storage: |V |2 against |V | + 2|E|

• Access: direct against serial
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Example

• Represent the graph

G = ({1, 2, 3, 4, 5, 6}, {{1, 2}, {1, 3}, {2, 4}, {2, 5}, {2, 6}, {3, 5}})

as an adjacency matrix and as adjacency lists.

• Represent the graph

G = ({1, 2, 3, 4, 5, 6}, {e1, e2, e3, e4, e5, e6, e7})

where f(e1) = {6}, f(e2) = {1, 5}, f(e3) = {1, 5}, f(e4) = {2, 4},
f(e5) = {3, 4}, f(e6) = {3, 4}, f(e7) = {1, 1}, as an adjacency matrix
and as adjacency lists.
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Breadth First Search (BFS)

• One way of traversing a graph is to do a breadth first search (BFS).

• BFS can be described as follows:

visit a vertex

while there is a least recently visited vertex v do

visit all unvisited vertices adjacent to v

NOI only 33



NUS/SoC/CS 2005/05/28

BFS Pseudo Code

bfs( start ) {

for( i = 0; i < n; i++ ) visit[i] = false;

visit[start] = true; show( start ); enqueue( start );

while( ! empty() ) {

for( l = adj[dequeue()]; l; l = l->next ) {

v = l->vertex;

if( !visit[v] ) {

visit[v] = true; show( v ); enqueue( v );

}

}

}

}
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BFS: The Decanting Example

• A graph modeling the previous decanting example is given as adjacency
lists.

• What is the rooted ordered tree obtained by a breadth first search starting
with 00 (both bottles are empty)?

• Note that the order of the ordered tree is determined by the vertex order
in the adjacency lists.
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00: 30, 05

01: 31, 10, 05, 00

02: 32, 20, 05, 00

03: 33, 30, 05, 00

04: 34, 31, 05, 00

05: 35, 32, 00

10: 30, 00, 15, 01

15: 35, 33, 05, 10

20: 30, 00, 25, 02

25: 35, 34, 05, 20

30: 00, 35, 03

31: 01, 35, 04, 30

32: 02, 35, 05, 30

33: 03, 35, 15, 30

34: 04, 35, 25, 30

35: 05, 30
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Depth First Search

• Another way of traversing a graph is to do a depth first search (DFS).

• DFS can be described as follows:

dfs( v ) {

mark v as visited

for each unvisited vertex u adjacent to v do

dfs( u )

}
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DFS Pseudo Code

dfs_init( start ) {

for( i = 0; i < n; i++ ) visit[i] = false;

dfs( start );

}

dfs( start ) {

visit[start] = true; show( start );

for( l = adj[start]; l; l = l->next ) {

v = l->vertex;

if( !visit[v] ) dfs( v );

}

}
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DFS: The Decanting Example

• Consider the adjacency lists of the graph for the decanting example.

• What is the rooted ordered tree obtained by a depth first search starting
with 10?
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DFS: The Decanting Example Answer

10

30

00 03

05 33

/ \ 15

35 32

02

20

25

34

04

31

01
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A Remark on the Decanting Problem

• The adjacency lists are not created explicitly and statically. They are
created on the flight.

• The possible configurations from the configuration (x, y):

(x, y), x < 3 → (3, y)

(x, y), x < 3, y ≥ 3 − x → (3, y + x − 3)

(x, y), y > 0, y < 3 − x → (x + y, 0)

(0, y), x > 0 → (0, y)
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(x, y), y < 5 → (x, 5)

(x, y), y < 5, x ≥ 5 − y → (x + y − 5, 5)

(x, y), x > 0, x < 5 − y → (0, x + y)

(x, y), y > 0 → (x, 0)
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Weighted Graphs

• A weighted graph G consists of a vertex set V , an edge set E, and a
weight function w : E → R:

G = (V,E,w).

• Every graph can be treated as a weighted graph by taking

w(e) = 1

for any edge e ∈ E.
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Some Observations on Weighted Graphs

• Many situations can be modeled as weighted graphs.

• For example, the highways connecting cities may be modeled as a
weighted graph with highway distance as the weight function.

• The rooted tree built by a breadth first search starting at vertex v gives
the shortest path length of all vertices from v: the shortest distance of a
vertex at level L is L.

• In other words, BFS solves the 1-to-any (single source) shortest path
problem for the specail case when w(E) = {1}.
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Weighted Graph Representations

• A simple weighted graph can be represented as an adjacency matrix:

a[i][j] = w({i, j}).

• A weighted graph can also be represented as adjacency lists:

a[i] = a list of pairs (v, w(e))

where v is a vertex adjacent to i and e is an edge incident on i and v.

NOI only 45



NUS/SoC/CS 2005/05/28

Floyd’s Algorithm: All-Pairs Shortest Path

floyd() {

for( k = 0; k < n; k++ )

for( i = 0; i < n; i++ )

for( j = 0; j < n; j++ )

if( a[i][k] + a[k][j] < a[i][j] )

a[i][j] = a[i][k] + a[k][j];

}
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Floyd’s Algorithm: Comments

• Very easy to code.

• Transform the adjacency matrix to an all-pairs shortest path matrix.

• Complexity Θ(n3).

• Theory: dynamic programming subproblem structure:

a
(k)
i,j = min(a

(k−1)
i,j , a

(k−1)
i,k + a

(k−1)
k,j ).

• Programming: update in place is correct because

a
(k)
i,k = a

(k−1)
i,k , a

(k)
k,j = a

(k−1)
k,j .
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Dijkstra’s Algorithm for Single-Source Shortest Paths

• This is a greedy algorithm.

• Theory (skipped).
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Dijkstra’s Algorithm: Pseudo Code

for each vertex v do d[v] = MAX_VAL;

d[source] = 0; p[source] = -1;

do |V| times {

let d[v] be the smallest among all undeleted vertices

x = d[v]; delete v;

for each vertex u adjacent to v do {

if u is undeleted and x+w[u] < d[u] then {

d[u] = x + w[u]; p[u] = v;

}

}

} // array d gives the shortest distance from source
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Implementation: Naive Versus Sophisticated

• Two pieces of information: adjacency and distance.

• If the distance information is implemented as an array d[v], coding is
simple but may incur a time complexity of O(|V |2).

• If the distance information is implemented as a priority queue, coding is
more involved but the time complexity is O(|E| log |V |) when the graph
is connected.
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Dijkstra’s Algorithm: Example
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Dijkstra’s Algorithm: A C Program

#include <values.h>

// adjacency nodes

struct edge {

int v, wt;

struct edge *nxt;

};

// adjacency lists

int n, m;

struct edge **adj;
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// priority queue with

// priority updates and

// indirect priorities

int N;

int *delete, *heap, *dist, *where, *parent;
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// build adjacency lists

insert( struct edge ** l, int v, int wt ) {

struct edge *p, *q;

p = *l;

q = (struct edge *) calloc( 1, sizeof(struct edge) );

q->v = v;

q->wt = wt;

q->nxt = p;

*l = q;

}

show( struct edge *l ) {

for( ; l; l = l->nxt )

printf( " %d (%d)", l->v, l->wt );

printf( "\n" );

}
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siftdown( int i ) {

int hi, child;

hi = heap[i];

while( 2*i+1 <= N-1 ) {

child = 2*i+1;

if(child<N-1 && dist[heap[child+1]]<dist[heap[child]])

child++;

if( dist[heap[child]] < dist[hi] ) {

heap[i] = heap[child]; where[heap[i]] = i;

} else

break;

i = child;

}

heap[i] = hi; where[heap[i]] = i;

}
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heapify() {

int i;

for( i = N/2-1; i >= 0; i-- ) siftdown( i );

}

int heap_del() {

int v;

v = heap[0];

delete[v] = 1;

heap[0] = heap[N-1];

where[heap[0]] = 0;

N--;

siftdown( 0 );

return v;

}
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heap_decrement( int v, int val ) {

int i;

dist[v] = val;

i = where[v];

while( i > 0 && val < dist[heap[(i+1)/2 - 1]] ) {

heap[i] = heap[(i+1)/2 - 1];

where[heap[i]] = i;

i = (i+1)/2 - 1;

}

heap[i] = v;

where[heap[i]] = i;

}
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heap_show() {

int i;

printf( "*\n" );

for( i = 0; i < N; i++ )

printf( "%d %d %d\n", i, heap[i], dist[heap[i]] );

}
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dijkstra( int start ) {

int i, minc, v, u;

struct edge *e;

for( i = 0; i < n; i++ ) {

dist[i] = MAXINT;

heap[i] = i;

where[i] = i;

delete[i] = 0;

}

N = n;

dist[start] = 0; parent[start] = -1;

heapify();
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for( i = 0; i < n; i++ ) {

v = heap_del();

minc = dist[v];

for( e = adj[v]; e; e = e->nxt ) {

u = e->v;

if( !delete[u] && minc + e->wt < dist[u] ) {

parent[u] = v;

heap_decrement( u, minc + e->wt );

}

}

heap_show();

}

}
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// vertices are numbered from 0

main( int ac, char *av[] ) {

int i, u, v, wt;

scanf( "%d %d", &n, &m ); printf( "%d %d\n", n, m );

adj = (struct edge **) calloc(n, sizeof(struct edge *));

for( i = 0; i < m; i++ ) {

scanf( "%d %d %d", &u, &v, &wt );

printf( "%d %d %d\n", u, v, wt );

insert( &adj[u], v, wt );

insert( &adj[v], u, wt );

}

for( i = 0; i < n; i++ ) show( adj[i] );
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delete = (int *) calloc( n, sizeof(int) );

parent = (int *) calloc( n, sizeof(int) );

heap = (int *) calloc( n, sizeof(int) );

dist = (int *) calloc( n, sizeof(int) );

where = (int *) calloc( n, sizeof(int) );

if( ac > 1 )

dijkstra( atoi(av[1]) );

else

dijkstra( 0 );

for( i = 0; i < n; i++ )

printf( "%d %d %d\n", i, dist[i], parent[i] );

}
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Dijkstra’s Algorithm: Output

5 8

0 1 1

0 3 1

0 4 9

1 4 1

1 2 5

4 3 9

4 2 9

3 2 1
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4 (9) 3 (1) 1 (1)

2 (5) 4 (1) 0 (1)

3 (1) 4 (9) 1 (5)

2 (1) 4 (9) 0 (1)

2 (9) 3 (9) 1 (1) 0 (9)
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*

0 1 1

1 3 9

2 2 9

3 0 9

*

0 0 2

1 3 9

2 2 6

*

0 3 3

1 2 6

*

0 2 4

*
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0 2 1

1 1 4

2 4 3

3 3 0

4 0 -1
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Exercises

1. A complete graph is a simple graph in which any two distinct vertices
are adjacent. A complete graph of n vertices is denoted Kn. Describe
the rooted ordered tree produced by a bfs and a dfs on Kn.

2. Code a naive Dijkstra’s algorithm to run the given example. (By naive
we mean using an array instead of a priority queue to store the distance
information.)

3. What is the role of where[ ] array in the given Dijkstra’s algorithm?

4. Implement Floyd’s algorithm to run the given example.
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