
Introduction, Convex Hulls
CS 4235, Lecture 1

8 January 2004

Antoine Vigneron

antoine@comp.nus.edu.sg

National University of Singapore

NUS, CS4235: Introduction, Convex Hulls – p.1/40

Outline

• Introduction
• Example: computing a convex hull
• Geometry of the problem
• A first algorithm
• An optimal algorithm

NUS, CS4235: Introduction, Convex Hulls – p.2/40

Introduction

• Computational Geometry =
Computer Science ∩ Geometry

• Algorithms, Data Structures, Geometry
• Applications:
• Computer Graphics
• Robotics
• Spatial Databases, Geographic Information Systems
• Computer Aided Design

NUS, CS4235: Introduction, Convex Hulls – p.3/40

Example 1: intersection detection

• Motion planning⇒ collision detection

NUS, CS4235: Introduction, Convex Hulls – p.4/40

Example 2: linear programming

• maximize the objective function

f(x1, x2 . . . xd) = c1x1 + c2x2 + . . . + cdxd

• under the constraints

a1,1x1 + . . . + a1,dxd ≤ b1

a2,1x1 + . . . + a2,dxd ≤ b2

...
...

...
an,1x1 + . . . + an,dxd ≤ bn

NUS, CS4235: Introduction, Convex Hulls – p.5/40

Example 3: range searching

• a database in a bank records transactions
• a query: find all the transactions such that
• the amount is between $ 1000 and $ 2000
• it happened between 10:40am and 11:20am

• geometric interpretation

(not reported)

(reported)

time
10:40 11:20

$2000

$1000

a transaction

a transaction

amount

NUS, CS4235: Introduction, Convex Hulls – p.6/40

CS 4235

• mainly algorithms in 2D
⇐= well established techniques: optimal, simple.

• no implementation issue

Students are expected to
• learn basic Computational Geometry techniques

(lectures)
• apply them to design and analyze algorithms (tutorials)
• this includes writing simple proofs

NUS, CS4235: Introduction, Convex Hulls – p.7/40

Why should you take CS 4235?

• you think CS 3230 is useful/interesting
• you think geometry is useful/interesting
• applications
• work in software industry

(⇐= algorithm design)
• graduate studies

NUS, CS4235: Introduction, Convex Hulls – p.8/40

Organization

• Lecture/tutorial
• 2 hours tutorial time slots
• two midterms (at tutorial time)
• in fact tutorials ≤ 90 minutes

• all exams are open book
• grading
• final: 40%
• midterm 1: 20%
• midterm 2: 30%
• participation: 10%

NUS, CS4235: Introduction, Convex Hulls – p.9/40

Schedule

• tutorials: Tuesday 12-2pm
• two midterms at tutorial time slots
• midterm 1: week 6
• midterm 2: week 11

NUS, CS4235: Introduction, Convex Hulls – p.10/40

Resources

• IVLE website
• slides
• lecture notes by Dave Mount
• to learn more
• textbook by de Berg et al.
• discrete geometry book by J. Matousek
• randomized algorithms book by K. Mulmuley

NUS, CS4235: Introduction, Convex Hulls – p.11/40

Convex Hulls

NUS, CS4235: Introduction, Convex Hulls – p.12/40

Convexity

A set C ⊂ IRd is convex iff ∀(p, q) ∈ C2 the line segment pq is
contained in C.

Non convexConvex

p

q

p

q

NUS, CS4235: Introduction, Convex Hulls – p.13/40

Convex hull

• The intersection of an arbitrary family of convex sets is
convex (proof?).

• Let S ⊂ IRd. Its convex hull CH(S) is the intersection of
all the convex sets that contain S.

• CH(S) is the smallest convex set containing S.

S

NUS, CS4235: Introduction, Convex Hulls – p.14/40

Convex hull

• The intersection of an arbitrary family of convex sets is
convex (proof?).

• Let S ⊂ IRd. Its convex hull CH(S) is the intersection of
all the convex sets that contain S.

• CH(S) is the smallest convex set containing S

NUS, CS4235: Introduction, Convex Hulls – p.15/40

Convex hull

• The intersection of an arbitrary family of convex sets is
convex (proof?).

• Let S ⊂ IRd. Its convex hull CH(S) is the intersection of
all the convex sets that contain S.

• CH(S) is the smallest convex set containing S.

CH(S)

NUS, CS4235: Introduction, Convex Hulls – p.16/40

Points in the plane

• Let P = {p1, p2, . . . pn} ⊂ IR2.
• CH(P) is a convex polygon.

P CH(P)

NUS, CS4235: Introduction, Convex Hulls – p.17/40

Computing a convex hull

• Input: the set P = {p1, p2, . . . pn} ⊂ IR2

• Output: a sequence L = (c1, c2, . . . ch) of vertices of
CH(P) in counterclockwise order

• Example: L = (p3, p4, p8, p6, p1, p5)

CH(P)

p1

p2

p6

p8

p4

p3

p5

p7

NUS, CS4235: Introduction, Convex Hulls – p.18/40

Characterization

The directed edge (p, q) is an edge of CH(P) iff

�����

CH(P)

q

p

NUS, CS4235: Introduction, Convex Hulls – p.19/40

Characterization

The directed edge (p, q) is an edge of CH(P) iff

�����

q

p

r

all r ∈ P \ {p, q} lies to the left of line pq (oriented by −→pq).

NUS, CS4235: Introduction, Convex Hulls – p.20/40

Characterization

The directed edge (p, q) is an edge of CH(P) iff

�����

q

p

r

∀r ∈ P \ {p, q} the triangle (p, q, r) is oriented counterclock-

wise.

NUS, CS4235: Introduction, Convex Hulls – p.21/40

Orientation test

• We denote

CCW (p, q, r) =

∣

∣

∣

∣

∣

∣

∣

xp xq xr

yp yq yr

1 1 1

∣

∣

∣

∣

∣

∣

∣

= (xq − xp)(yr − yp)− (xr − xp)(yq − yp)

• Triangle (p, q, r) is counterclockwise iff CCW (p, q, r) > 0.
• How fast can we perform this test?
• 2 multiplications and 5 subtractions
• takes O(1) time

NUS, CS4235: Introduction, Convex Hulls – p.22/40

Precision issue

• previous slide seems to imply that we use floating point
numbers

• so the result is not exact
• how to find the sign of CCW (p, q, r) exactly?
• assume input coordinates are 32 bits integers
• then (xp − xq) has 33 bits

• (xq − xp)(yr − yp) has 66 bits

• CCW (p, q, r) has 67 bits
• so it can be computed exactly in O(67) = O(1) time

NUS, CS4235: Introduction, Convex Hulls – p.23/40

First algorithm

Algorithm SlowConvexHull(P)

Input: a set P of points in IR2

Output: CH(P)

1. E ←P 2

2. for all (p, q, r) ∈ P 3 such that r /∈ {p, q}
3. if CCW (p, q, r) ≤ 0
4. then remove (p, q) from E
5. Write the remaining edges of E into L in

counterclockwise order
6. Return L

NUS, CS4235: Introduction, Convex Hulls – p.24/40

Comments

• Line 1: find all directed edges between two points of P

−→ O(n2) time
• Lines 2-4: discard the edges that are not in the convex

hull
−→ O(n3) time

• line 5: how fast can you do it, and how?
−→ easy to do in O(n3) time

Conclusion: this algorithm runs in O(n3) time

Actually, Θ(n3) time.

NUS, CS4235: Introduction, Convex Hulls – p.25/40

Upper hull and lower hull

upper hull UH(P)

lower hull LH(P)

x

y

O

NUS, CS4235: Introduction, Convex Hulls – p.26/40

Computing UH(P)

• Sort P according to x–coordinates
• Compute UH(P) from left to right

�����

�����

�����

�����

		�

p1

p2

p4

p5

p3

p6

p7

p8

p9

p10

p11

p12

UH({p1, p2 . . . p8})

NUS, CS4235: Introduction, Convex Hulls – p.27/40

Inserting p9

�����

�����

�����

�����

		�

p1

p2

p4

p5

p3

p6

p7

p8

p9

p10

p11

p12

UH({p1, p2 . . . p8})

The upper hull of p1, p2 . . . p8 has just been computed. We

now insert p9.

NUS, CS4235: Introduction, Convex Hulls – p.28/40

Inserting p9

�����

�����

�����

�����

		�

�����

p1

p2

p4

p5

p3

p6

p7

p8

p9

p10

p11

p12

UH({p1, p2 . . . p8})

p8 is not on the upper hull

NUS, CS4235: Introduction, Convex Hulls – p.29/40

Inserting p9

�����

�����

�����

�����

		�

�����

p1

p2

p4

p5

p3

p8

p9

p10

p11

p12

UH({p1, p2 . . . p8})

p7

p6

move leftward along UH({p1, p2, . . . p8})

NUS, CS4235: Introduction, Convex Hulls – p.30/40

Inserting p9

�����

�����

�����

�����

		�

�����

p1

p2

p4

p5

p3

p8

p9

p10

p11

p12

UH({p1, p2 . . . p8})

p7

p6

p6p9 is tangent to UH({p1, p2, . . . p8})

NUS, CS4235: Introduction, Convex Hulls – p.31/40

Inserting p9

�����

�����

�����

�����

		�

�����

p1

p2

p4

p5

p3

p8

p9

p10

p11

p12

UH({p1, p2 . . . p9})

p7

p6

Remove the left chain, and connect the right chain to p9.

NUS, CS4235: Introduction, Convex Hulls – p.32/40

Algorithm

• sort P according to x coordinates
• initialization: the upper hull is (p1, p2)

• for i = 3 to n, insert pi, update the upper hull
• similar algorithm to compute the lower hull
• form the boundary of the convex hull as the union of the

upper hull and the lower hull

NUS, CS4235: Introduction, Convex Hulls – p.33/40

Analysis

• initial sorting takes O(n log n) time
• inserting pi takes θ(n) time

=⇒ computing UH(P) takes n.O(n) = O(n2) time
• in fact, this algorithm runs in O(n) time
⇐= even though inserting a particular point may take
linear time, the overall complexity is still linear.

NUS, CS4235: Introduction, Convex Hulls – p.34/40

Amortized analysis

• ni denotes the number of points discarded from the
upper hull when we insert pi

• inserting pi takes time O(ni)

• note that n1 + n2 . . . + nn = n− h < n
(h is the number of points on CH(P)).

Running time =
O(n log n) (initial sorting)
+ O(n) (inserting p3, p4 . . . pn in upper hull)
+ O(n) (lower hull)
+ O(n) (forming the convex hull)

=O(n log n)

NUS, CS4235: Introduction, Convex Hulls – p.35/40

Lower bound

Our algorithm is optimal (within a constant factor), here is a
proof by reduction from sorting.
• let N = (x1, x2, . . . xn) ⊂ IR

• for all i let pi = (xi, x
2
i)

• compute CH(P)

p1

p3

P : y = x2

CH(P)

p4

p2

NUS, CS4235: Introduction, Convex Hulls – p.36/40

Lower bound

• find the leftmost point p in CH(P)

• starting from p, walk from left to right along LH(P)

• the x coordinates of these points give N in sorted order
• overall, it takes time O(n) + time for computing CH(P)

• lower bound for sorting n real numbers in general:
Ω(n log n) time
=⇒ computing a convex hull takes Ω(n log n) time

NUS, CS4235: Introduction, Convex Hulls – p.37/40

Degeneracies

��
�
��

�

����� � �� �� �
��

�

����� 		�

����� ��� �����

�����
�����

�����
�����

����� �����
�����

���
!!�""

##
#
$$

$

%%�&&

''�((

)))))))))))))))

* * ** * ** * ** * ** * *

+ + + ++ + + ++ + + ++ + + +

, , , ,, , , ,, , , ,, , , ,

CH(P) CH(P)

Better

P

NUS, CS4235: Introduction, Convex Hulls – p.38/40

Solution

• first algorithm OK
• upper hull: if several points have same x–coordinate,

keep the highest

Algorithm design method:
• first assume general position: (here, no two points have

same x–coordinate)
⇐= focus on a simpler, but very general instance

• if necessary, handle degeneracies by
• ad–hoc methods
• general (mainly theoretical) methods

NUS, CS4235: Introduction, Convex Hulls – p.39/40

General position assumptions

Typically
• no two points have same x–coordinates
• no three points are collinear, that is,
∀(p, q, r) ∈ P, CCW (p, q, r) 6= 0

• no four points are cocircular
• all of the above

Reasons
• if the points of P are drawn uniformly at random from a

square, it happens with probability 1
• for any degenerate P , there is a set P ′ in general

position that is arbitrarily close to P .

NUS, CS4235: Introduction, Convex Hulls – p.40/40

	Outline
	Introduction
	Example 1: intersection detection
	Example 2: linear programming
	Example 3: range searching
	CS 4235
	Why should you take CS 4235?
	Organization
	Schedule
	Resources
	Convex Hulls
	Convexity
	Convex hull
	Convex hull
	Convex hull
	Points in the plane
	Computing a convex hull
	Characterization
	Characterization
	Characterization
	Orientation test
	Precision issue
	First algorithm
	Comments
	Upper hull and lower hull
	Computing $mathcal {UH}(P)$
	Inserting p_9
	Inserting p_9
	Inserting p_9
	Inserting p_9
	Inserting p_9
	Algorithm
	Analysis
	Amortized analysis
	Lower bound
	Lower bound
	Degeneracies
	Solution
	General position assumptions

