Introduction, Convex Hulls

CS 4235, Lecture 1 8 January 2004

Antoine Vigneron

antoine@comp.nus.edu.sg

National University of Singapore

NUS, CS4235: Introduction, Convex Hulls - p.1/40

Outline

- Introduction
- Example: computing a convex hull
 - Geometry of the problem
 - A first algorithm
 - An optimal algorithm

Introduction

- Computational Geometry = Computer Science ∩ Geometry
- Algorithms, Data Structures, Geometry
- Applications:
 - Computer Graphics
 - Robotics
 - Spatial Databases, Geographic Information Systems
 - Computer Aided Design

Example 1: intersection detection

• Motion planning \Rightarrow collision detection

Example 2: linear programming

maximize the objective function

 $f(x_1, x_2 \dots x_d) = c_1 x_1 + c_2 x_2 + \dots + c_d x_d$

• under the *constraints*

$$a_{1,1}x_1 + \ldots + a_{1,d}x_d \leq b_1$$

$$a_{2,1}x_1 + \ldots + a_{2,d}x_d \leq b_2$$

$$\vdots \qquad \vdots \qquad \vdots$$

$$a_{n,1}x_1 + \ldots + a_{n,d}x_d \leq b_n$$

Example 3: range searching

- a database in a bank records transactions
- a query: find all the transactions such that
 - the amount is between \$ 1000 and \$ 2000
 - it happened between 10:40am and 11:20am
- geometric interpretation

CS 4235

- mainly algorithms in 2D
 - \leftarrow well established techniques: optimal, simple.
- no implementation issue

Students are expected to

- learn basic Computational Geometry techniques (lectures)
- apply them to design and analyze algorithms (tutorials)
- this includes writing simple proofs

Why should you take CS 4235?

- you think CS 3230 is useful/interesting
- you think geometry is useful/interesting
- applications
- work in software industry (algorithm design)
- graduate studies

Organization

- Lecture/tutorial
 - 2 hours tutorial time slots
 - two midterms (at tutorial time)
 - in fact tutorials ≤ 90 minutes
- all exams are open book
- grading
 - final: 40%
 - midterm 1: 20%
 - midterm 2: 30%
 - participation: 10%

Schedule

- tutorials: Tuesday 12-2pm
 - two midterms at tutorial time slots
 - midterm 1: week 6
 - midterm 2: week 11

Resources

- IVLE website
- slides
- lecture notes by Dave Mount
- to learn more
 - textbook by de Berg et al.
 - discrete geometry book by J. Matousek
 - randomized algorithms book by K. Mulmuley

Convex Hulls

Convexity

A set $C \subset \mathbb{R}^d$ is *convex* iff $\forall (p,q) \in C^2$ the line segment \overline{pq} is contained in C.

Convex hull

- The intersection of an arbitrary family of convex sets is convex (proof?).
- Let $S \subset \mathbb{R}^d$. Its *convex hull* $C\mathcal{H}(S)$ is the intersection of all the convex sets that contain S.
- $\mathcal{CH}(\mathcal{S})$ is the smallest convex set containing \mathcal{S} .

Convex hull

- The intersection of an arbitrary family of convex sets is convex (proof?).
- Let $S \subset \mathbb{R}^d$. Its *convex hull* $C\mathcal{H}(S)$ is the intersection of all the convex sets that contain S.
- $\mathcal{CH}(\mathcal{S})$ is the smallest convex set containing \mathcal{S}

Convex hull

- The intersection of an arbitrary family of convex sets is convex (proof?).
- Let $S \subset \mathbb{R}^d$. Its *convex hull* CH(S) is the intersection of all the convex sets that contain S.
- $\mathcal{CH}(\mathcal{S})$ is the smallest convex set containing \mathcal{S} .

Points in the plane

- Let $P = \{p_1, p_2, \dots p_n\} \subset \mathbb{R}^2$.
- $\mathcal{CH}(P)$ is a convex polygon.

Computing a convex hull

- Input: the set $P = \{p_1, p_2, \dots p_n\} \subset \mathbb{R}^2$
- Output: a sequence $\mathcal{L} = (c_1, c_2, \dots c_h)$ of vertices of $\mathcal{CH}(P)$ in counterclockwise order
- Example: $\mathcal{L} = (p_3, p_4, p_8, p_6, p_1, p_5)$

Characterization

The directed edge (p,q) is an edge of $\mathcal{CH}(P)$ iff

 $\mathcal{CH}(P)$

Characterization

The directed edge (p,q) is an edge of $\mathcal{CH}(P)$ iff

all $r \in P \setminus \{p, q\}$ lies to the left of line pq (oriented by \overrightarrow{pq}).

Characterization

The directed edge (p,q) is an edge of $\mathcal{CH}(P)$ iff

 $\forall r \in P \setminus \{p,q\}$ the triangle (p,q,r) is oriented counterclockwise.

Orientation test

• We denote

$$CCW(p,q,r) = \begin{vmatrix} x_p & x_q & x_r \\ y_p & y_q & y_r \\ 1 & 1 & 1 \end{vmatrix}$$

$$= (x_q - x_p)(y_r - y_p) - (x_r - x_p)(y_q - y_p)$$

- Triangle (p, q, r) is counterclockwise iff CCW(p, q, r) > 0.
- How fast can we perform this test?
 - 2 multiplications and 5 subtractions
 - takes O(1) time

Precision issue

- previous slide seems to imply that we use floating point numbers
- so the result is not exact
- how to find the sign of CCW(p,q,r) exactly?
- assume input coordinates are 32 bits integers
- then $(x_p x_q)$ has 33 bits
- $(x_q x_p)(y_r y_p)$ has 66 bits
- CCW(p,q,r) has 67 bits
- so it can be computed exactly in O(67) = O(1) time

First algorithm

Algorithm SlowConvexHull(P) Input: a set P of points in \mathbb{R}^2 Output: $\mathcal{CH}(P)$ 1. $E \leftarrow P^2$ 2. for all $(p,q,r) \in P^3$ such that $r \notin \{p,q\}$ 3. if $CCW(p,q,r) \leq 0$ 4. then remove (p,q) from E 5. Write the remaining edges of E into \mathcal{L} in counterclockwise order

6. Return \mathcal{L}

Comments

- Line 1: find all directed edges between two points of $P \longrightarrow O(n^2)$ time
- Lines 2-4: discard the edges that are not in the convex hull
 O(n³) time
 - $\longrightarrow O(n^3)$ time
- line 5: how fast can you do it, and how? \longrightarrow easy to do in $O(n^3)$ time

Conclusion: this algorithm runs in $O(n^3)$ time Actually, $\Theta(n^3)$ time.

Upper hull and lower hull

Computing $\mathcal{UH}(P)$

- Sort *P* according to *x*-coordinates
- Compute $\mathcal{UH}(P)$ from left to right

The upper hull of $p_1, p_2 \dots p_8$ has just been computed. We now insert p_9 .

 p_8 is not on the upper hull

move leftward along $\mathcal{UH}(\{p_1, p_2, \dots p_8\})$

 p_6p_9 is tangent to $\mathcal{UH}(\{p_1, p_2, \dots, p_8\})$

Remove the left chain, and connect the right chain to p_9 .

Algorithm

- sort P according to x coordinates
- initialization: the upper hull is (p_1, p_2)
- for i = 3 to n, insert p_i , update the upper hull
- similar algorithm to compute the lower hull
- form the boundary of the convex hull as the union of the upper hull and the lower hull

Analysis

- initial sorting takes $O(n \log n)$ time
- inserting p_i takes $\theta(n)$ time

 \implies computing $\mathcal{UH}(P)$ takes $n.O(n) = O(n^2)$ time

in fact, this algorithm runs in O(n) time
 even though inserting a particular point may take
 linear time, the overall complexity is still linear.

Amortized analysis

- n_i denotes the number of points discarded from the upper hull when we insert p_i
- inserting p_i takes time $O(n_i)$
- note that $n_1 + n_2 \dots + n_n = n h < n$ (*h* is the number of points on CH(P)).

Running time =

 $O(n \log n)$ (initial sorting)

- + O(n) (inserting $p_3, p_4 \dots p_n$ in upper hull)
- + O(n) (lower hull)
- + O(n) (forming the convex hull)

 $= O(n \log n)$

Lower bound

Our algorithm is optimal (within a constant factor), here is a proof by reduction from sorting.

- let $N = (x_1, x_2, \dots, x_n) \subset \mathbb{R}$
- for all i let $p_i = (x_i, x_i^2)$
- compute $\mathcal{CH}(P)$

Lower bound

- find the leftmost point p in $\mathcal{CH}(P)$
- starting from p, walk from left to right along $\mathcal{LH}(P)$
- the x coordinates of these points give N in sorted order
- overall, it takes time O(n) + time for computing $\mathcal{CH}(P)$
- lower bound for sorting n real numbers in general: $\Omega(n \log n)$ time
 - \implies computing a convex hull takes $\Omega(n \log n)$ time

Solution

- first algorithm OK
- upper hull: if several points have same *x*-coordinate, keep the highest

Algorithm design method:

- first assume *general position*: (here, no two points have same *x*-coordinate)
 focus on a simpler, but very general instance
- if necessary, handle degeneracies by
 - ad–hoc methods
 - general (mainly theoretical) methods

General position assumptions

Typically

- no two points have same *x*-coordinates
- no three points are collinear, that is, $\forall (p,q,r) \in P, CCW(p,q,r) \neq 0$
- no four points are cocircular
- all of the above

Reasons

- if the points of P are drawn uniformly at random from a square, it happens with probability 1
- for any degenerate P, there is a set P' in general position that is arbitrarily close to P.