Line Segment Intersection

Lecture 2, CS 4235 15 January 2004

Antoine Vigneron

antoine@comp.nus.edu.sg

National University of Singapore

NUS, CS4235, Lecture 2: Line Segment Intersection - p.1/37

News

- linear programming lecture is pushed later and randomized
- midterm 1
 - on week 6 (the day after lecture 5)
 - covers lectures 1–4
- midterm 2
 - on week 10 (the day after lecture 9)
 - covers lectures 1–8
 - emphasis on lectures 5–8
- see syllabus on IVLE for the details

Outline

- reference: Dave Mount notes, lecture 5
- we study two line segments intersection problems
 - intersection detection
 - intersection reporting
- we introduce a computing paradigm: plane sweep
- we introduce two notions of algorithm analysis
 - output—sensitive algorithm
 - space complexity

Problems

Input: a set $S = \{s_1, s_2, \dots, s_n\}$ of *n* line segments in \mathbb{R}^2 given by the coordinates of their endpoints.

- Intersection detection: is there a pair $(s_i, s_j) \in S^2$ such that $i \neq j$ and $s_i \cap s_j \neq \emptyset$?
- Intersection reporting: find all pairs $(s_i, s_j) \in S^2$ such that $i \neq j$ and $s_i \cap s_j \neq \emptyset$

• Motion planning \Rightarrow collision detection

- Geographic Information Systems ⇒ map overlay
- More generally: spatial join in databases

ROAD MAP

- Geographic Information Systems ⇒ map overlay
- More generally: spatial join in databases

ROAD MAP+ RIVER MAP

Computer Aided Design ⇒ boolean operations

Preliminary

Intersection of two line segments

Finding the intersection of two line segments

- check whether it is between the two endpoints of each line segment. If not, the intersection is empty
- degenerate case: same support line. Intersection may be a line segment

O(1) time

Checking whether two line segments intersect without computing the intersection point

 $\Leftarrow 4 \ CCW(.)$ tests. (see next tutorial)

First approach

- Brute force algorithm: check all pairs of segments for intersection.
- Running time:

$$\left(\begin{array}{c}n\\2\end{array}\right)\cdot\theta(1) = \theta(n^2)$$

- Can we do better?
 - intersection detection \Rightarrow maybe
 - intersection reporting
 - \Rightarrow if all pairs intersect there are $\Omega(n^2)$ intersections
 - \Rightarrow our algorithm is optimal (see later, however ...)

Plane sweep algorithms

- intuition: a vertical line sweeps the plane from left to right and draws the picture
- example: last week's convex hull algorithm

Plane sweep algorithms

- the sweep line moves from left to right and stops at event points
 - convex hull: the event points are just the input points
 - sometimes they are not known from the start (see intersection reporting)
- we maintain invariants
 - convex hull: I know the upper hull of the points to the left of the sweep line
- at each event, restore the invariants

Intersection Detection

General position assumptions

no three endpoints are collinear

Let E be the set of the endpoints. Let I be the set of intersection points.

- no two points in $E \cup I$ have same *x*-coordinate
- no three segments intersect at the same point

Intersection Detection

Plane sweep algorithm

- let ℓ_t be the vertical line with equation x = t
- S_t is the sequence of the segments that intersect ℓ_t , in vertical order of their intersection with ℓ_t

$$S_t = (s_4, s_5, s_3)$$

Intersection Detection

- Idea: maintain S_t while ℓ_t moves from left to right until an intersection is found.
- invariants:
 - there is no intersection to the left of ℓ_t
 - we know S_t
- let $t_1 < t_2 < \ldots < t_{2n}$ be the *x*-coordinates of the endpoints
- ℓ_t stops when it reaches $t = t_i$ for some index i
- let f be the last index the sweep–line ℓ_{t_i} will reach
- in other words, let f be the largest index such that there is no intersection point with abscissa smaller than t_f

Example

• knowing S_{t_i} for some i < f, we can easily find $S_{t_{i+1}}$ (see next two slides)

First case: left endpoint

If t_{i+1} corresponds to the left endpoint of s, insert s into S_{t_i} in order to obtain $S_{t_{i+1}}$.

Second case: right endpoint

Delete the corresponding segment in order to obtain $S_{t_{i+1}}$.

Data Structure

- we maintain S_t in a balanced binary search tree
- for i < f, we obtain $S_{t_{i+1}}$ from S_{t_i} by performing an insertion or a deletion
- each takes $O(\log n)$ time
- we did not check intersections. How to do it?

A geometric observation

• Let $q = s \cap s'$ be the leftmost intersection point.

• s and s' are adjacent in S_{t_f} (proof next slide)

Proof by contradiction

- assume that $S_{t_f} = (\dots s \dots s' \dots s' \dots)$
- the right endpoint of s'' cannot be to the left of q, by definition of t_f
- if q is below s" then s" intersect s' to the left of q, which contradicts the fact that q is the leftmost intersection
- similarly, q cannot be above s''
- we reached a contradiction

Checking intersection

- we store S_t in a balanced binary search tree T, the order is the vertical order along ℓ_t
- given a segment in \mathcal{T} , we can find in $O(\log n)$ time the next and previous segment in vertical order
- when deleting a segment in T, two segments s and s' become adjacent. We can find them in O(log n) time and check if they intersect
- when inserting a segment s_i in T, it becomes adjacent to two segments s and s'. Check if s_i ∩ s ≠ Ø and if s_i ∩ s' ≠ Ø
- in any case, if we find an intersection, we are done

Pseudo-code

Algorithm DetectIntersection(S)	
1.	$(e_1, e_2 \dots e_{2n}) \leftarrow endpoints, ordered w.r.t. x$
2.	$\mathcal{T} \leftarrow empty balanced BST$
3.	for $i = 1$ to $2n$
4.	if e_i is left endpoint of some $s \in S$
5.	then insert s into ${\mathcal T}$
6.	if s intersects $next(s)$ or $prev(s)$
7.	then return TRUE
8.	if e_i is right endpoint of some $s \in S$
9.	then delete s from \mathcal{T}
10.	if $next(s)$ intersects $prev(s)$
11.	then return TRUE
12.	return FALSE

Analysis

- line 1: $\theta(n \log n)$ time by mergesort
- line 2: O(1) time
- line 5 and 6: $O(\log n)$ time
- \Rightarrow loop 3–11: $O(n \log n)$ time
- \Rightarrow our algorithm runs in $\theta(n \log n)$ time

Lower bound

- Element Uniqueness: given a set of *n* real numbers, are they distinct?
- takes $\Omega(n\log n)$ time in the algebraic decision tree model
 - we can only evaluate polynomials
 - we cannot use the floor function for instance
 - more details in the book by Preparata and Shamos
- it is a simpler version, in one dimension, of our problem
- thus our algorithm is optimal in this computation model

Intersection reporting

Intersection reporting

- brute force: $\theta(n^2)$ time which is optimal in the worst case
- if there is ≤ 1 intersection, the detection algorithm does it in O(n log n) time which is better
- \Rightarrow we need to look at the running time in a different way

Output sensitive algorithm

- let k =#intersecting pairs
- here k = # intersection points since we assume general position
- k is the output size
- sweep line algorithm reports intersections in $O((n+k)\log n)$ time (see later)
- this is an output sensitive algorithm
- it is faster for smaller output
- $\Omega(n+k)$ is a lower bound
- \Rightarrow nearly optimal (within an $O(\log n)$ factor)

Algorithm

- similar to intersection detection
- two kinds of event points: endpoints and intersection points
- we do not know intersection points in advance
 ⇒we cannot sort them all in advance
 ⇒we will use an event queue Q
- *Q* contains event points
- ordered according to *x*-coordinates
- implementation: a min-heap
- we can insert an event point in $O(\log n)$ time
- we can dequeue the event point with smallest x-coordinate in $O(\log n)$ time.

Algorithm

- initially, \mathcal{Q} contains all the endpoints
- the sweep line moves from left to right
- it stops at each event point of Q, when it does we dequeue the corresponding event point.
- each time we find an intersection, we insert it into \mathcal{Q}
- when we reach an intersection point, we swap the corresponding segments in T and check for intersection the newly adjacent segments.

Intersection event

At time t, the event queue Q contains all the endpoints with abscissa larger than t and the intersection point $s_2 \cap s_3$. At time t', we insert $s_3 \cap s_5$.

Analysis

- we insert new events and extract the next event in $O(\log n)$ time
- problem: an intersection point may be inserted several times into \mathcal{Q}

 when we reach an event point that is present several times in Q, we just extract it repeatedly until a new event is found

Analysis

- some intersection points are inserted several times into *Q*. How many times does it happen?
- at most twice at each event \Rightarrow at most 4n + 2k times
- it follows that we insert O(n+k) events into Q
- so the algorithm runs in $O((n+k)\log(n+k))$ time
- $\log(n+k) < \log(n+n^2) = O(\log n)$
- the running time is $O((n+k)\log n)$

Space complexity

- in the worst case Q contains $\Theta(n+k)$ points
- we say that this algorithm requires $\Theta(n+k)$ space
- can we improve this?
- yes, at time t only keep intersections between segments that are adjacent in S_t
- then the algorithm requires only O(n) space, which is optimal

Conclusion

- new computing paradigm: Plane Sweep
- idea: a sweep line moves from left to right and draws the picture
- it stops at a finite set of event points, where the data structure is updated
- the event points are usually stored in a priority queue
- can be used for various algorithms and applications
- for instance, map overlay: compute a full description of the map