
Line Segment Intersection
Lecture 2, CS 4235
15 January 2004

Antoine Vigneron

antoine@comp.nus.edu.sg

National University of Singapore

NUS, CS4235, Lecture 2: Line Segment Intersection – p.1/37



News

• linear programming lecture is pushed later and
randomized

• midterm 1
• on week 6 (the day after lecture 5)
• covers lectures 1–4

• midterm 2
• on week 10 (the day after lecture 9)
• covers lectures 1–8
• emphasis on lectures 5–8

• see syllabus on IVLE for the details
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Outline

• reference: Dave Mount notes, lecture 5
• we study two line segments intersection problems
• intersection detection
• intersection reporting

• we introduce a computing paradigm: plane sweep
• we introduce two notions of algorithm analysis
• output–sensitive algorithm
• space complexity
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Problems

Input: a set S = {s1, s2, . . . sn} of n line segments in IR2 given
by the coordinates of their endpoints.

s4

s3

s2

s5
s1

s6

• Intersection detection: is there a pair (si, sj) ∈ S2 such
that i 6= j and si ∩ sj 6= ∅?

• Intersection reporting: find all pairs (si, sj) ∈ S2 such
that i 6= j and si ∩ sj 6= ∅
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Motivation

• Motion planning⇒ collision detection
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Motivation

• Geographic Information Systems⇒ map overlay
• More generally: spatial join in databases

ROAD MAP
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Motivation

• Geographic Information Systems⇒ map overlay
• More generally: spatial join in databases

+ RIVER MAPROAD MAP
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Motivation

• Computer Aided Design⇒ boolean operations

P
Q

P \Q
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Preliminary
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Intersection of two line segments

Finding the intersection of two line segments
• find the intersection of their two support lines⇐ linear

system, two variables, two equations
• check whether it is between the two endpoints of each

line segment. If not, the intersection is empty
• degenerate case: same support line. Intersection may

be a line segment

O(1) time

Checking whether two line segments intersect without
computing the intersection point

⇐ 4 CCW (.) tests. (see next tutorial)
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First approach

• Brute force algorithm: check all pairs of segments for
intersection.

• Running time:
(

n

2

)

· θ(1) = θ(n2)

• Can we do better?
• intersection detection⇒ maybe
• intersection reporting
⇒ if all pairs intersect there are Ω(n2) intersections
⇒ our algorithm is optimal (see later, however . . . )
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Plane sweep algorithms

• intuition: a vertical line sweeps the plane from left to
right and draws the picture

• example: last week’s convex hull algorithm

I know the upper hull Not handled yet

Sweep line

Current event point
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Plane sweep algorithms

• the sweep line moves from left to right and stops at
event points
• convex hull: the event points are just the input points
• sometimes they are not known from the start (see

intersection reporting)
• we maintain invariants
• convex hull: I know the upper hull of the points to the

left of the sweep line
• at each event, restore the invariants
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Intersection Detection
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General position assumptions

• no three endpoints are collinear

Let E be the set of the endpoints. Let I be the set of
intersection points.
• no two points in E ∪ I have same x–coordinate
• no three segments intersect at the same point

s

Degenerate Cases

same x-coordinate multiple intersection3 collinear endpoints

s
′
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Intersection Detection

Plane sweep algorithm
• let `t be the vertical line with equation x = t

• St is the sequence of the segments that intersect `t, in
vertical order of their intersection with `t

St = (s4, s5, s3)

s4

s5

`t

s1

s2

s3

s6

s7
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Intersection Detection

• Idea: maintain St while `t moves from left to right until
an intersection is found.

• invariants:
• there is no intersection to the left of `t

• we know St

• let t1 < t2 < . . . < t2n be the x–coordinates of the
endpoints

• `t stops when it reaches t = ti for some index i

• let f be the last index the sweep–line `ti
will reach

• in other words, let f be the largest index such that there
is no intersection point with abscissa smaller than tf
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Example

No intersection

`tf+1

intersection
Leftmost

`tf
= `t6

• knowing Sti
for some i < f , we can easily find Sti+1

(see
next two slides)
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First case: left endpoint

If ti+1 corresponds to the left endpoint of s, insert s into Sti

in order to obtain Sti+1
.

s4

s2

s5

`t3

s3

s1 St2
= (s2, s3, s1)

St3
= (s2, s3, s4, s1)

`t2
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Second case: right endpoint

Delete the corresponding segment in order to obtain Sti+1
.

s4

s2

s5

s3

s1 St3
= (s2, s3, s4, s1)

St4
= (s2, s3, s4)

`t3
`t4
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Data Structure

• we maintain St in a balanced binary search tree
• for i < f , we obtain Sti+1

from Sti
by performing an

insertion or a deletion
• each takes O(log n) time
• we did not check intersections. How to do it?
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A geometric observation

• Let q = s ∩ s′ be the leftmost intersection point.

`tf+1
`tf

= `t6

s

s′ q

• s and s′ are adjacent in Stf
(proof next slide)
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Proof by contradiction

• assume that Stf
= (. . . s . . . s′′ . . . s′ . . .)

• the right endpoint of s′′ cannot be to the left of q, by
definition of tf

• if q is below s′′ then s′′ intersect s′ to the left of q, which
contradicts the fact that q is the leftmost intersection

• similarly, q cannot be above s′′

• we reached a contradiction
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Checking intersection

• we store St in a balanced binary search tree T , the
order is the vertical order along `t

• given a segment in T , we can find in O(log n) time the
next and previous segment in vertical order

• when deleting a segment in T , two segments s and s′

become adjacent. We can find them in O(log n) time
and check if they intersect

• when inserting a segment si in T , it becomes adjacent
to two segments s and s′. Check if si ∩ s 6= ∅ and if
si ∩ s′ 6= ∅

• in any case, if we find an intersection, we are done
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Pseudo–code

Algorithm DetectIntersection(S)
1. (e1, e2 . . . e2n)←endpoints, ordered w.r.t. x

2. T ←empty balanced BST
3. for i = 1 to 2n
4. if ei is left endpoint of some s ∈ S

5. then insert s into T
6. if s intersects next(s) or prev(s)
7. then return TRUE
8. if ei is right endpoint of some s ∈ S

9. then delete s from T
10. if next(s) intersects prev(s)
11. then return TRUE
12. return FALSE
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Analysis

• line 1: θ(n log n) time by mergesort
• line 2: O(1) time
• line 5 and 6: O(log n) time
• ⇒ loop 3–11: O(n log n) time
• ⇒ our algorithm runs in θ(n log n) time
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Lower bound

• Element Uniqueness: given a set of n real numbers, are
they distinct?

• takes Ω(n log n) time in the algebraic decision tree
model
• we can only evaluate polynomials
• we cannot use the floor function for instance
• more details in the book by Preparata and Shamos

• it is a simpler version, in one dimension, of our problem
• thus our algorithm is optimal in this computation model
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Intersection reporting
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Intersection reporting

• brute force: θ(n2) time which is optimal in the worst case
• if there is ≤ 1 intersection, the detection algorithm does

it in O(n log n) time which is better
• ⇒ we need to look at the running time in a different way
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Output sensitive algorithm

• let k = #intersecting pairs
• here k = # intersection points since we assume general

position
• k is the output size
• sweep line algorithm reports intersections in

O((n + k) log n) time (see later)
• this is an output sensitive algorithm
• it is faster for smaller output
• Ω(n + k) is a lower bound
• ⇒ nearly optimal (within an O(log n) factor)
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Algorithm

• similar to intersection detection
• two kinds of event points: endpoints and intersection

points
• we do not know intersection points in advance
⇒we cannot sort them all in advance
⇒we will use an event queue Q

• Q contains event points
• ordered according to x–coordinates
• implementation: a min–heap
• we can insert an event point in O(log n) time
• we can dequeue the event point with smallest

x–coordinate in O(log n) time.
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Algorithm

• initially, Q contains all the endpoints
• the sweep line moves from left to right
• it stops at each event point of Q, when it does we

dequeue the corresponding event point.
• each time we find an intersection, we insert it into Q
• when we reach an intersection point, we swap the

corresponding segments in T and check for intersection
the newly adjacent segments.
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Intersection event

s2

s1

St′ = (s5, s3, s2, s4)s5

s4

`t′`t

s3

St = (s5, s2, s3, s4)

and s3 ∩ s5

Check s4 ∩ s2

At time t, the event queue Q contains all the endpoints with

abscissa larger than t and the intersection point s2 ∩ s3. At

time t′, we insert s3 ∩ s5.
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Analysis

• we insert new events and extract the next event in
O(log n) time

• problem: an intersection point may be inserted several
times into Q

s4

s2 - when we reach the right endpoint of s3

- when we reach the right endpoint of s4

- when we reach the left endpoint of s2

s1 ∩ s2 is inserted three times.

s3

s1

• when we reach an event point that is present several
times in Q, we just extract it repeatedly until a new
event is found
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Analysis

• some intersection points are inserted several times into
Q. How many times does it happen?

• at most twice at each event⇒ at most 4n + 2k times
• it follows that we insert O(n + k) events into Q
• so the algorithm runs in O((n + k) log(n + k)) time

• log(n + k) < log(n + n2) = O(log n)

• the running time is O((n + k) log n)
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Space complexity

• in the worst case Q contains Θ(n + k) points
• we say that this algorithm requires Θ(n + k) space
• can we improve this?
• yes, at time t only keep intersections between

segments that are adjacent in St

• then the algorithm requires only O(n) space, which is
optimal
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Conclusion

• new computing paradigm: Plane Sweep
• idea: a sweep line moves from left to right and draws

the picture
• it stops at a finite set of event points, where the data

structure is updated
• the event points are usually stored in a priority queue
• can be used for various algorithms and applications
• for instance, map overlay: compute a full description of

the map
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