
Line Segment Intersection
Lecture 2, CS 4235
15 January 2004

Antoine Vigneron

antoine@comp.nus.edu.sg

National University of Singapore

NUS, CS4235, Lecture 2: Line Segment Intersection – p.1/37



News

• linear programming lecture is pushed later and
randomized

• midterm 1
• on week 6 (the day after lecture 5)
• covers lectures 1–4

• midterm 2
• on week 10 (the day after lecture 9)
• covers lectures 1–8
• emphasis on lectures 5–8

• see syllabus on IVLE for the details

NUS, CS4235, Lecture 2: Line Segment Intersection – p.2/37



Outline

• reference: Dave Mount notes, lecture 5
• we study two line segments intersection problems
• intersection detection
• intersection reporting

• we introduce a computing paradigm: plane sweep
• we introduce two notions of algorithm analysis
• output–sensitive algorithm
• space complexity

NUS, CS4235, Lecture 2: Line Segment Intersection – p.3/37



Problems

Input: a set S = {s1, s2, . . . sn} of n line segments in IR2 given
by the coordinates of their endpoints.

s4

s3

s2

s5
s1

s6

• Intersection detection: is there a pair (si, sj) ∈ S2 such
that i 6= j and si ∩ sj 6= ∅?

• Intersection reporting: find all pairs (si, sj) ∈ S2 such
that i 6= j and si ∩ sj 6= ∅

NUS, CS4235, Lecture 2: Line Segment Intersection – p.4/37



Motivation

• Motion planning⇒ collision detection

NUS, CS4235, Lecture 2: Line Segment Intersection – p.5/37



Motivation

• Geographic Information Systems⇒ map overlay
• More generally: spatial join in databases

ROAD MAP

NUS, CS4235, Lecture 2: Line Segment Intersection – p.6/37



Motivation

• Geographic Information Systems⇒ map overlay
• More generally: spatial join in databases

+ RIVER MAPROAD MAP

NUS, CS4235, Lecture 2: Line Segment Intersection – p.7/37



Motivation

• Computer Aided Design⇒ boolean operations

P
Q

P \Q

NUS, CS4235, Lecture 2: Line Segment Intersection – p.8/37



Preliminary

NUS, CS4235, Lecture 2: Line Segment Intersection – p.9/37



Intersection of two line segments

Finding the intersection of two line segments
• find the intersection of their two support lines⇐ linear

system, two variables, two equations
• check whether it is between the two endpoints of each

line segment. If not, the intersection is empty
• degenerate case: same support line. Intersection may

be a line segment

O(1) time

Checking whether two line segments intersect without
computing the intersection point

⇐ 4 CCW (.) tests. (see next tutorial)

NUS, CS4235, Lecture 2: Line Segment Intersection – p.10/37



First approach

• Brute force algorithm: check all pairs of segments for
intersection.

• Running time:
(

n

2

)

· θ(1) = θ(n2)

• Can we do better?
• intersection detection⇒ maybe
• intersection reporting
⇒ if all pairs intersect there are Ω(n2) intersections
⇒ our algorithm is optimal (see later, however . . . )

NUS, CS4235, Lecture 2: Line Segment Intersection – p.11/37



Plane sweep algorithms

• intuition: a vertical line sweeps the plane from left to
right and draws the picture

• example: last week’s convex hull algorithm

I know the upper hull Not handled yet

Sweep line

Current event point

NUS, CS4235, Lecture 2: Line Segment Intersection – p.12/37



Plane sweep algorithms

• the sweep line moves from left to right and stops at
event points
• convex hull: the event points are just the input points
• sometimes they are not known from the start (see

intersection reporting)
• we maintain invariants
• convex hull: I know the upper hull of the points to the

left of the sweep line
• at each event, restore the invariants

NUS, CS4235, Lecture 2: Line Segment Intersection – p.13/37



Intersection Detection

NUS, CS4235, Lecture 2: Line Segment Intersection – p.14/37



General position assumptions

• no three endpoints are collinear

Let E be the set of the endpoints. Let I be the set of
intersection points.
• no two points in E ∪ I have same x–coordinate
• no three segments intersect at the same point

s

Degenerate Cases

same x-coordinate multiple intersection3 collinear endpoints

s
′

NUS, CS4235, Lecture 2: Line Segment Intersection – p.15/37



Intersection Detection

Plane sweep algorithm
• let `t be the vertical line with equation x = t

• St is the sequence of the segments that intersect `t, in
vertical order of their intersection with `t

St = (s4, s5, s3)

s4

s5

`t

s1

s2

s3

s6

s7

NUS, CS4235, Lecture 2: Line Segment Intersection – p.16/37



Intersection Detection

• Idea: maintain St while `t moves from left to right until
an intersection is found.

• invariants:
• there is no intersection to the left of `t

• we know St

• let t1 < t2 < . . . < t2n be the x–coordinates of the
endpoints

• `t stops when it reaches t = ti for some index i

• let f be the last index the sweep–line `ti
will reach

• in other words, let f be the largest index such that there
is no intersection point with abscissa smaller than tf

NUS, CS4235, Lecture 2: Line Segment Intersection – p.17/37



Example

No intersection

`tf+1

intersection
Leftmost

`tf
= `t6

• knowing Sti
for some i < f , we can easily find Sti+1

(see
next two slides)

NUS, CS4235, Lecture 2: Line Segment Intersection – p.18/37



First case: left endpoint

If ti+1 corresponds to the left endpoint of s, insert s into Sti

in order to obtain Sti+1
.

s4

s2

s5

`t3

s3

s1 St2
= (s2, s3, s1)

St3
= (s2, s3, s4, s1)

`t2

NUS, CS4235, Lecture 2: Line Segment Intersection – p.19/37



Second case: right endpoint

Delete the corresponding segment in order to obtain Sti+1
.

s4

s2

s5

s3

s1 St3
= (s2, s3, s4, s1)

St4
= (s2, s3, s4)

`t3
`t4

NUS, CS4235, Lecture 2: Line Segment Intersection – p.20/37



Data Structure

• we maintain St in a balanced binary search tree
• for i < f , we obtain Sti+1

from Sti
by performing an

insertion or a deletion
• each takes O(log n) time
• we did not check intersections. How to do it?

NUS, CS4235, Lecture 2: Line Segment Intersection – p.21/37



A geometric observation

• Let q = s ∩ s′ be the leftmost intersection point.

`tf+1
`tf

= `t6

s

s′ q

• s and s′ are adjacent in Stf
(proof next slide)

NUS, CS4235, Lecture 2: Line Segment Intersection – p.22/37



Proof by contradiction

• assume that Stf
= (. . . s . . . s′′ . . . s′ . . .)

• the right endpoint of s′′ cannot be to the left of q, by
definition of tf

• if q is below s′′ then s′′ intersect s′ to the left of q, which
contradicts the fact that q is the leftmost intersection

• similarly, q cannot be above s′′

• we reached a contradiction

NUS, CS4235, Lecture 2: Line Segment Intersection – p.23/37



Checking intersection

• we store St in a balanced binary search tree T , the
order is the vertical order along `t

• given a segment in T , we can find in O(log n) time the
next and previous segment in vertical order

• when deleting a segment in T , two segments s and s′

become adjacent. We can find them in O(log n) time
and check if they intersect

• when inserting a segment si in T , it becomes adjacent
to two segments s and s′. Check if si ∩ s 6= ∅ and if
si ∩ s′ 6= ∅

• in any case, if we find an intersection, we are done

NUS, CS4235, Lecture 2: Line Segment Intersection – p.24/37



Pseudo–code

Algorithm DetectIntersection(S)
1. (e1, e2 . . . e2n)←endpoints, ordered w.r.t. x

2. T ←empty balanced BST
3. for i = 1 to 2n
4. if ei is left endpoint of some s ∈ S

5. then insert s into T
6. if s intersects next(s) or prev(s)
7. then return TRUE
8. if ei is right endpoint of some s ∈ S

9. then delete s from T
10. if next(s) intersects prev(s)
11. then return TRUE
12. return FALSE

NUS, CS4235, Lecture 2: Line Segment Intersection – p.25/37



Analysis

• line 1: θ(n log n) time by mergesort
• line 2: O(1) time
• line 5 and 6: O(log n) time
• ⇒ loop 3–11: O(n log n) time
• ⇒ our algorithm runs in θ(n log n) time

NUS, CS4235, Lecture 2: Line Segment Intersection – p.26/37



Lower bound

• Element Uniqueness: given a set of n real numbers, are
they distinct?

• takes Ω(n log n) time in the algebraic decision tree
model
• we can only evaluate polynomials
• we cannot use the floor function for instance
• more details in the book by Preparata and Shamos

• it is a simpler version, in one dimension, of our problem
• thus our algorithm is optimal in this computation model

NUS, CS4235, Lecture 2: Line Segment Intersection – p.27/37



Intersection reporting

NUS, CS4235, Lecture 2: Line Segment Intersection – p.28/37



Intersection reporting

• brute force: θ(n2) time which is optimal in the worst case
• if there is ≤ 1 intersection, the detection algorithm does

it in O(n log n) time which is better
• ⇒ we need to look at the running time in a different way

NUS, CS4235, Lecture 2: Line Segment Intersection – p.29/37



Output sensitive algorithm

• let k = #intersecting pairs
• here k = # intersection points since we assume general

position
• k is the output size
• sweep line algorithm reports intersections in

O((n + k) log n) time (see later)
• this is an output sensitive algorithm
• it is faster for smaller output
• Ω(n + k) is a lower bound
• ⇒ nearly optimal (within an O(log n) factor)

NUS, CS4235, Lecture 2: Line Segment Intersection – p.30/37



Algorithm

• similar to intersection detection
• two kinds of event points: endpoints and intersection

points
• we do not know intersection points in advance
⇒we cannot sort them all in advance
⇒we will use an event queue Q

• Q contains event points
• ordered according to x–coordinates
• implementation: a min–heap
• we can insert an event point in O(log n) time
• we can dequeue the event point with smallest

x–coordinate in O(log n) time.

NUS, CS4235, Lecture 2: Line Segment Intersection – p.31/37



Algorithm

• initially, Q contains all the endpoints
• the sweep line moves from left to right
• it stops at each event point of Q, when it does we

dequeue the corresponding event point.
• each time we find an intersection, we insert it into Q
• when we reach an intersection point, we swap the

corresponding segments in T and check for intersection
the newly adjacent segments.

NUS, CS4235, Lecture 2: Line Segment Intersection – p.32/37



Intersection event

s2

s1

St′ = (s5, s3, s2, s4)s5

s4

`t′`t

s3

St = (s5, s2, s3, s4)

and s3 ∩ s5

Check s4 ∩ s2

At time t, the event queue Q contains all the endpoints with

abscissa larger than t and the intersection point s2 ∩ s3. At

time t′, we insert s3 ∩ s5.

NUS, CS4235, Lecture 2: Line Segment Intersection – p.33/37



Analysis

• we insert new events and extract the next event in
O(log n) time

• problem: an intersection point may be inserted several
times into Q

s4

s2 - when we reach the right endpoint of s3

- when we reach the right endpoint of s4

- when we reach the left endpoint of s2

s1 ∩ s2 is inserted three times.

s3

s1

• when we reach an event point that is present several
times in Q, we just extract it repeatedly until a new
event is found

NUS, CS4235, Lecture 2: Line Segment Intersection – p.34/37



Analysis

• some intersection points are inserted several times into
Q. How many times does it happen?

• at most twice at each event⇒ at most 4n + 2k times
• it follows that we insert O(n + k) events into Q
• so the algorithm runs in O((n + k) log(n + k)) time

• log(n + k) < log(n + n2) = O(log n)

• the running time is O((n + k) log n)

NUS, CS4235, Lecture 2: Line Segment Intersection – p.35/37



Space complexity

• in the worst case Q contains Θ(n + k) points
• we say that this algorithm requires Θ(n + k) space
• can we improve this?
• yes, at time t only keep intersections between

segments that are adjacent in St

• then the algorithm requires only O(n) space, which is
optimal

NUS, CS4235, Lecture 2: Line Segment Intersection – p.36/37



Conclusion

• new computing paradigm: Plane Sweep
• idea: a sweep line moves from left to right and draws

the picture
• it stops at a finite set of event points, where the data

structure is updated
• the event points are usually stored in a priority queue
• can be used for various algorithms and applications
• for instance, map overlay: compute a full description of

the map

NUS, CS4235, Lecture 2: Line Segment Intersection – p.37/37


	News
	Outline
	Problems
	Motivation
	Motivation
	Motivation
	Motivation
	Preliminary
	Intersection of two line segments
	First approach
	Plane sweep algorithms
	Plane sweep algorithms
	Intersection Detection
	General position assumptions
	Intersection Detection
	Intersection Detection
	Example
	First case: left endpoint
	Second case: right endpoint
	Data Structure
	A geometric observation
	Proof by contradiction
	Checking intersection
	Pseudo--code
	Analysis
	Lower bound
	Intersection reporting
	Intersection reporting
	Output sensitive algorithm
	Algorithm
	Algorithm
	Intersection event
	Analysis
	Analysis
	Space complexity
	Conclusion

