Planar Graphs, Polygons and Triangulations

Lecture 3, CS 4235 29 January 2004

Antoine Vigneron

antoine@comp.nus.edu.sg

National University of Singapore

Tutorials

- preparation
 - you are not expected to be able to solve all the exercises
 - the most important thing is that you try to solve them
 - exercises with star are difficult
- you can write down your answers and pass them to me
 - I will mark them
 - but these marks will not count towards your final grade

Outline

- reference: Dave Mount lecture notes, lectures 6 and 7
- planar graphs
 - straight line planar graphs
 - trapezoidal map
 - polygons
- triangulation
 - existence
 - algorithm

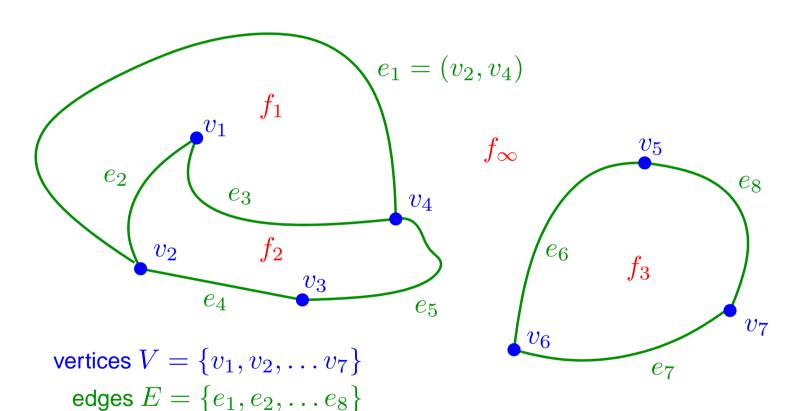
Planar Graphs

Definition

• graph embedded in \mathbb{R}^2

faces $F = \{f_1, f_2, f_3, f_{\infty}\}$

edges do not intersect in their interior

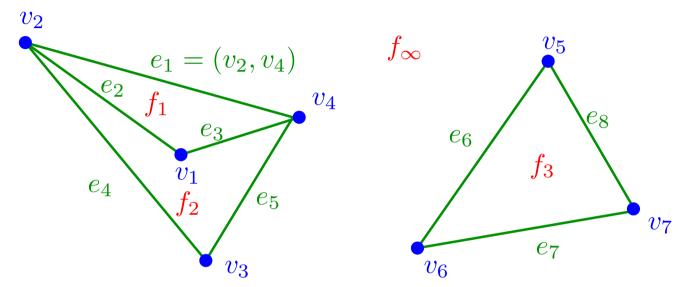


Properties of planar graphs

- 1 infinite face (f_{∞})
- Euler relation:
 - connected planar graph |V| |E| + |F| = 2
 - c connected components |V| |E| + |F| c = 1
 - proof?
- Theorem: $|E| \le 3(|V| 2)$ and $|F| \le 2(|V| 2)$
 - proof page 26 of D. Mount lecture notes

Properties (2)

every planar graph has a straight line embedding

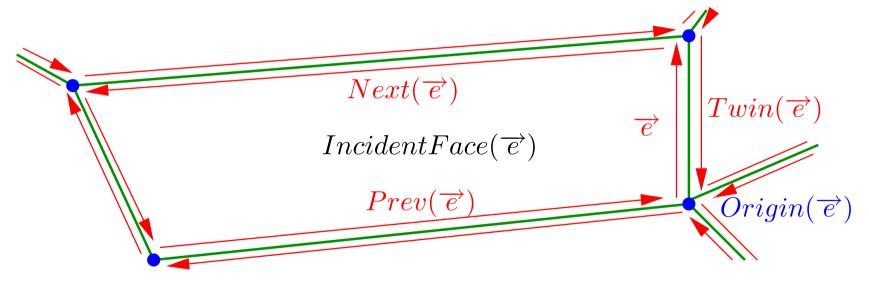


not proven here

Planar Straight Line Graphs

Planar Straight Line Graphs

- planar graph with only straight line edges
- also called planar subdivision
- a data structure: doubly connected edge list
 - each edge is replaced by two directed half-edges

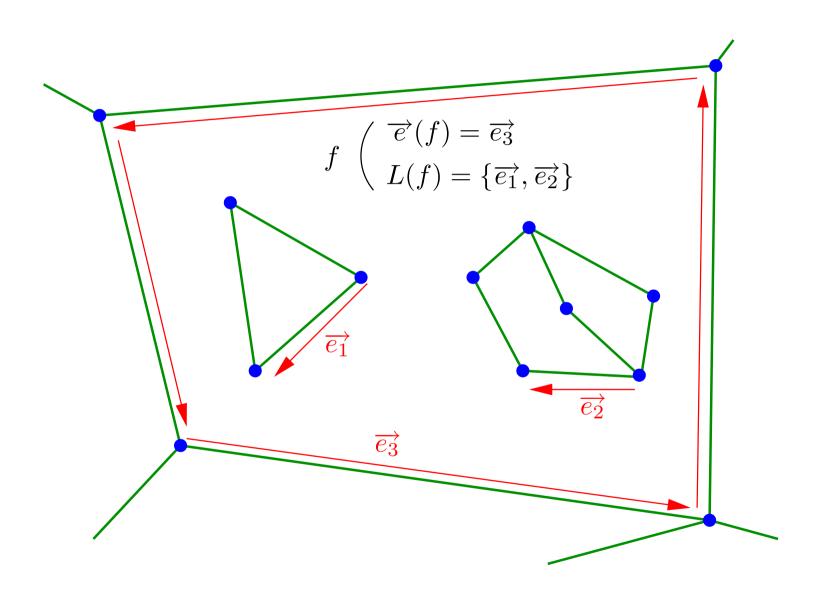


 the half-edges enclosing a face form a counterclockwise cycle

Doubly connected edge list

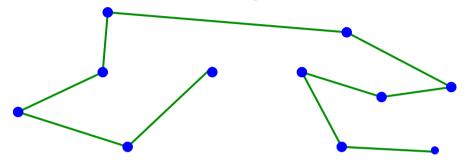
- vertex v
 - coordinates
 - an incident half-edge IncidentEdge(v) = (v, w)
- half edge \overrightarrow{e}
 - 3 edges $Twin(\overrightarrow{e})$, $Next(\overrightarrow{e})$, $Prev(\overrightarrow{e})$
 - vertex $Origin(\overrightarrow{e})$
 - a face $IncidentFace(\overrightarrow{e})$
- face f
 - a half–edge $\overrightarrow{e}(f)$ of its exterior boundary
 - a half-edge of each face contained in f; they are stored in a list L(f)

Faces in Doubly Connected Edge Lists

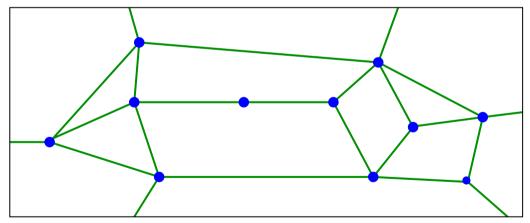


Special Cases

Polyline: the edges form a chain



Convex subdivision: all faces are convex

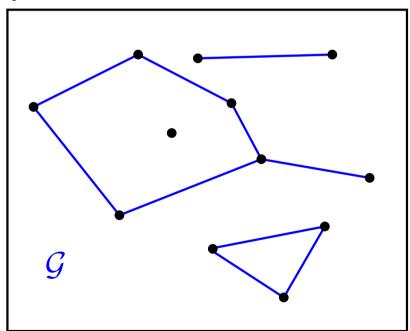


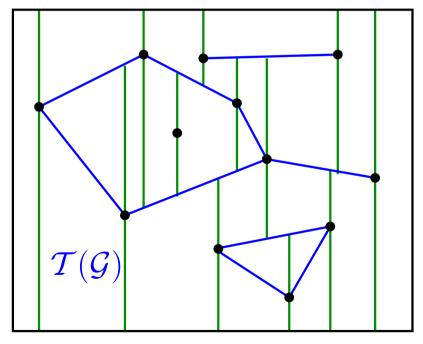
polygons: a face of a PLSG (see below)

Trapezoidal map

Trapezoidal map

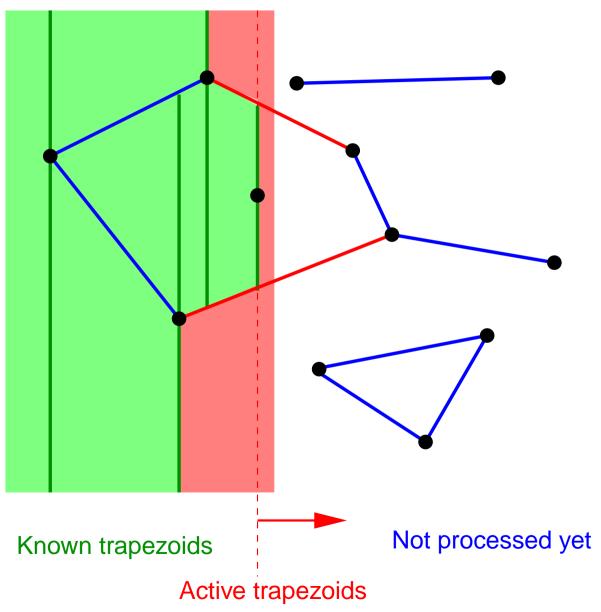
- start with a PSLG G
- the trapezoidal map $\mathcal{T}(\mathcal{G})$ is the convex subdivision obtained by drawing vertical edges downward and upward from each vertex



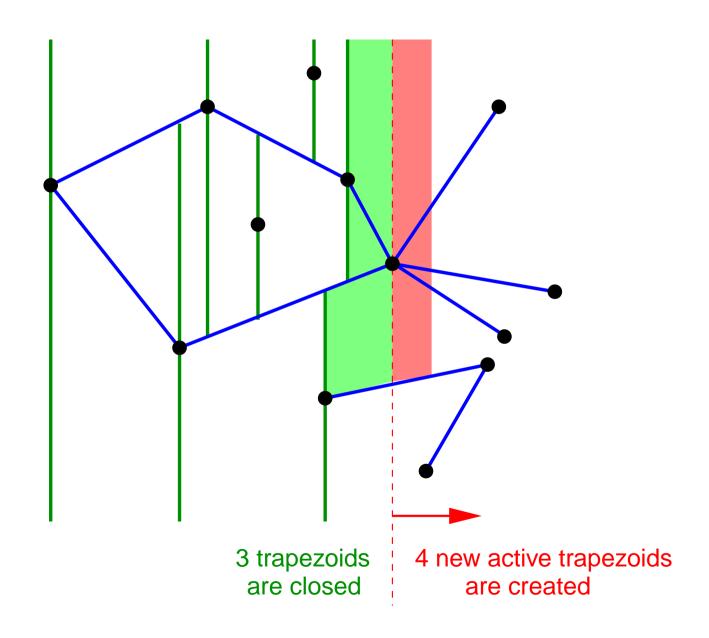


• we draw a bounding box around \mathcal{G} so that there is no infinite face, hence all faces of $\mathcal{T}(\mathcal{G})$ trapezoids

- assume G has n vertices
- input: a representation of G (for instance, a doubly connected edge list)
- output: a representation of $\mathcal{T}(\mathcal{G})$
- general position assumption: no two vertices have same x-coordinate
- idea: we will use plane sweep
- a modified version of the intersection detection algorithm
- first step: sort vertices by increasing x-coordinate
- an event: the sweep line reaches a vertex of G



- invariants
 - we know the trapezoids that lie on the left of the sweep line
 - active trapezoids: trapezoids that intersect the sweep line
 - we know the order of the active trapezoids along the sweep line
 - we know the left, top and bottom edges of each active trapezoid
- an event: close some active trapezoids and create new ones

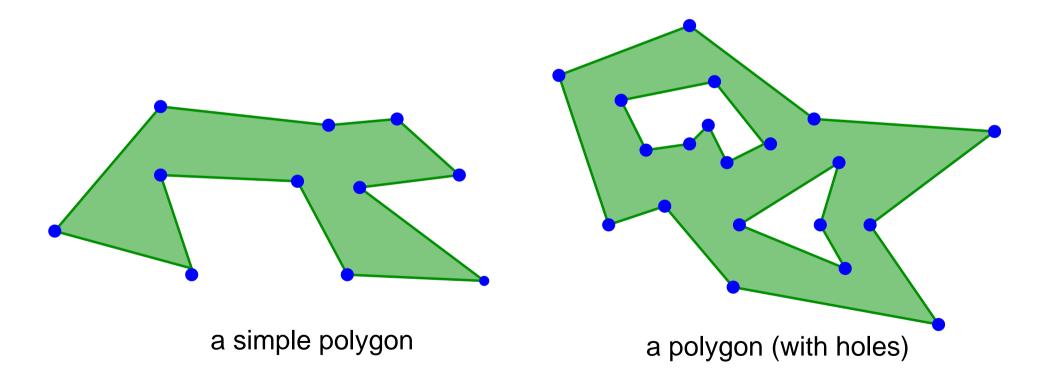


- at event i suppose ki trapezoids are closed or created
- event i can be handled in $O(k_i \log n)$ time
- amortized analysis
 - T(G) has at most 3n vertices
 - so there are O(n) trapezoids
 - each trapezoid is created and closed one time only
 - so $\sum k_i = O(n)$
- overall, the algorithm runs in $O(n \log n)$ time

Polygons and Triangulations

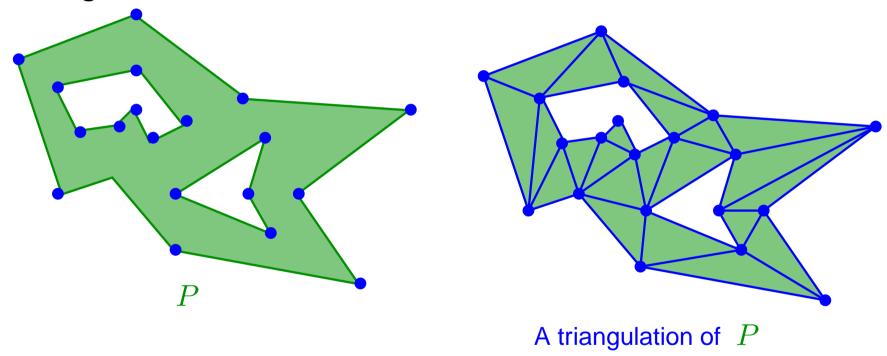
Polygons

- A polygon is a face of a Planar Straight Line Graph
- A simple polygon is the region enclosed by a simple (=non-intersecting) polyline



Triangulations

• A *Triangulation* of a polygon P is a partition of P into triangles whose vertices are the vertices of P



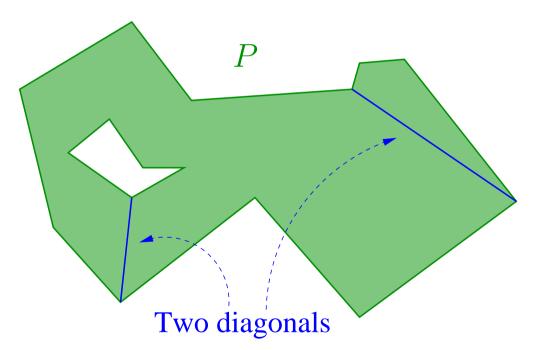
- A polygon may have several triangulations
- A triangulation is a planar straight line graph

Applications

- meshing ⇒ scientific computing
- visibility problems
 - graphics
 - art gallery problem (see Notes page 27)
- preprocessing step of many geometric algorithms

Existence of a triangulation

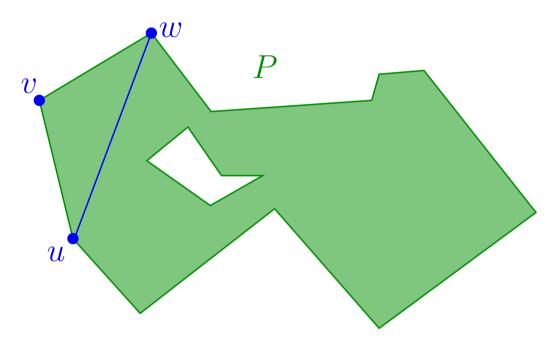
- We prove that every polygon P admits a triangulation
- definition: a *diagonal* of P is a line segment \overline{pq} such that p and q are vertices of P and the interior of \overline{pq} is in the interior of P.



 Lemma 1: every polygon P with more than three vertices admits a diagonal

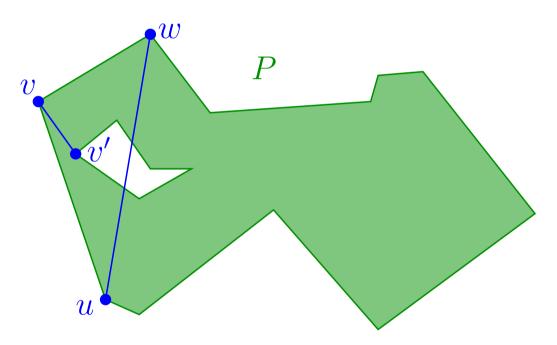
Proof of Lemma 1

- let v be the leftmost vertex of P
- let u and w be its neighbors
- if \overline{uw} is a diagonal we are done



Proof of Lemma 1

- if \overline{uw} is not a diagonal
- let v' be the vertex in triangle (u, v, w) that is farthest from \overline{uw}



• then $\overline{vv'}$ is a diagonal: if an edge was crossing it, one of its endpoints would be farther from \overline{uw} and inside (u,v,w)

Proof of existence

- Theorem: any polygon P admits a triangulation
- Proof:
 - if P has 3 vertices, then P is its own triangulation
 - otherwise insert a diagonal of f
 - if P becomes disconnected, we know by induction that the two faces can be triangulated, so we are done
 - if P is still connected, repeat the process of inserting a diagonal
 - this algorithm halts since $|E| < |V|^2$ and |V| is constant

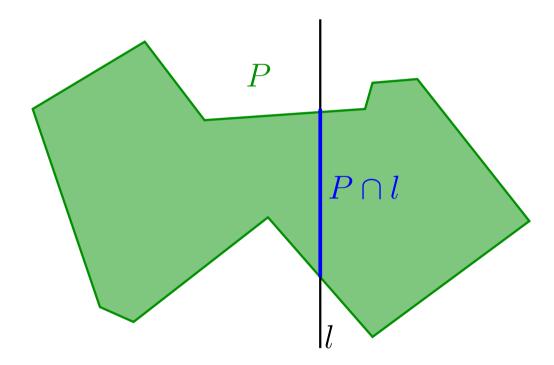
More results

- any triangulation of a simple polygon with n vertices has n-2 faces and n-3 diagonals
- we can find a diagonal in O(n) time
- we can find a triangulation in $O(n^2)$ time
- is there a faster algorithm?
 - yes, there is an optimal $O(n \log n)$ time and O(n) space algorithm
 - this is what we will see next
- there is an O(n) time algorithm for simple polygons
 - very difficult, we do not study it

Triangulating a monotone polygon

Definition

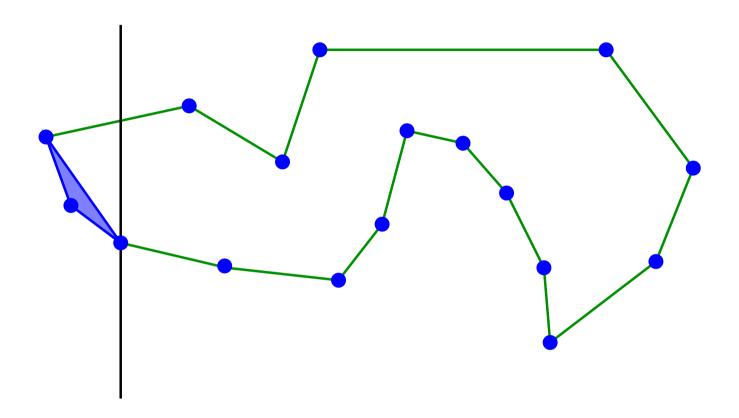
• an x-monotone polygon is a polygon such that for all vertical line l, the intersection $P \cap l$ is a line segment

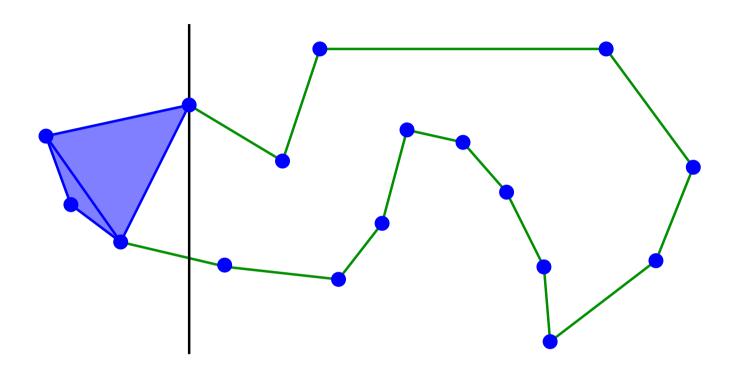


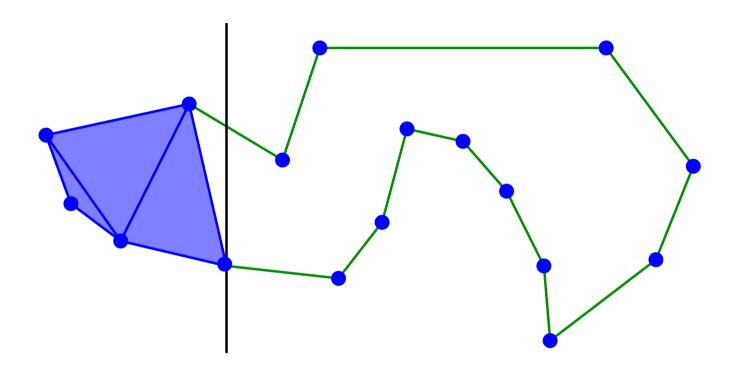
 equivalently, it is a simple polygon whose boundary consists of two x-monotone polylines

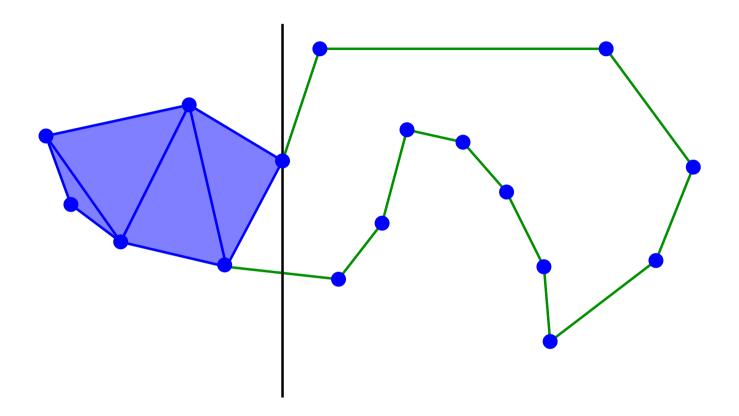
Algorithm

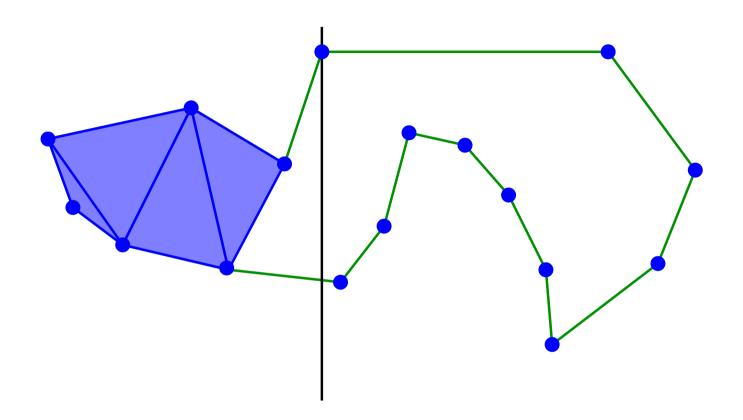
- plane sweep approach
- the sweep line l moves from left to right and stops at each vertex of P
 - we can sort these vertices in $O(n \log n)$ time
 - we can also do it in O(n) time. How?

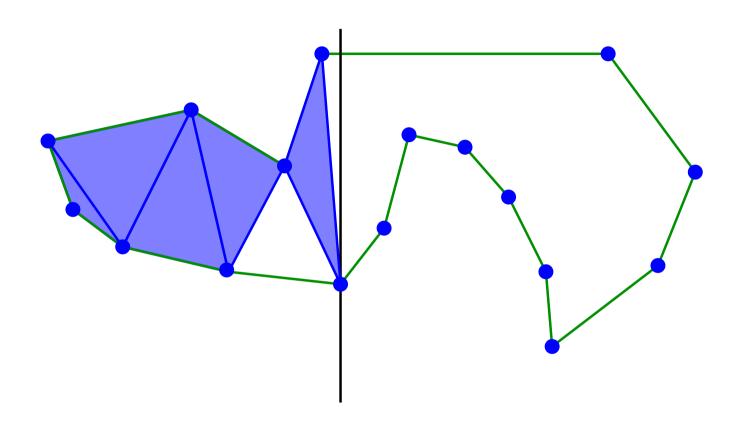


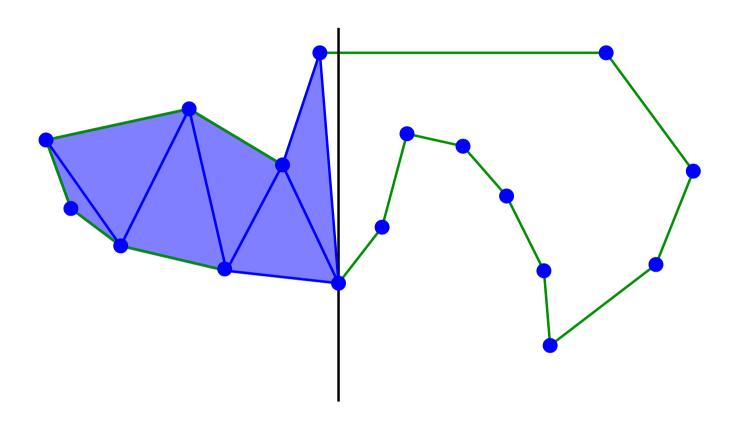


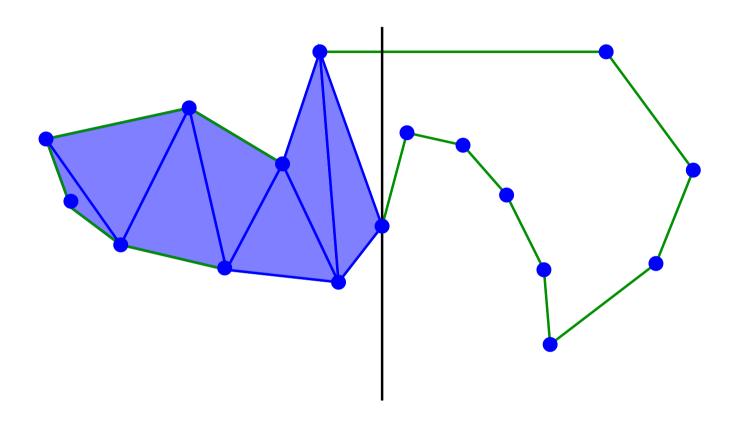


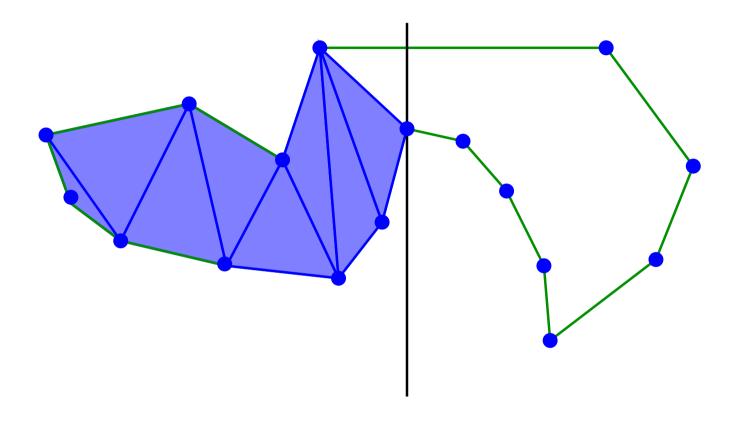


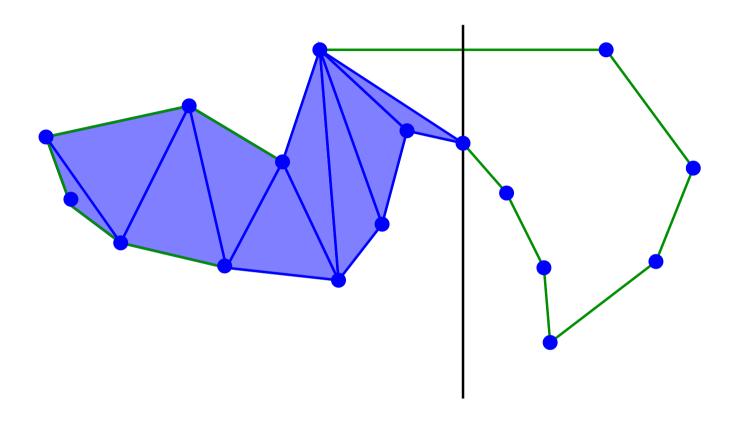


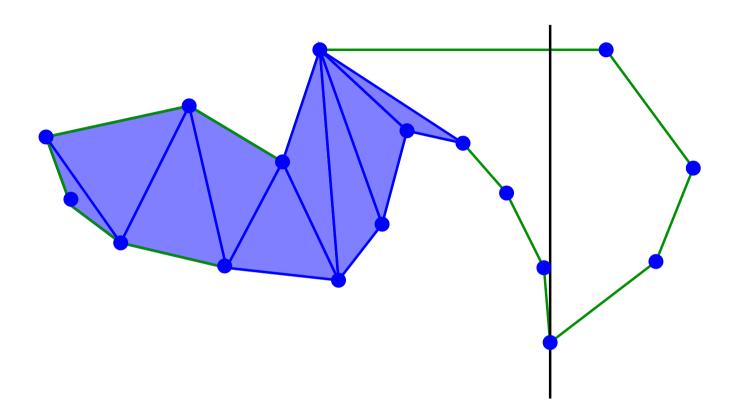


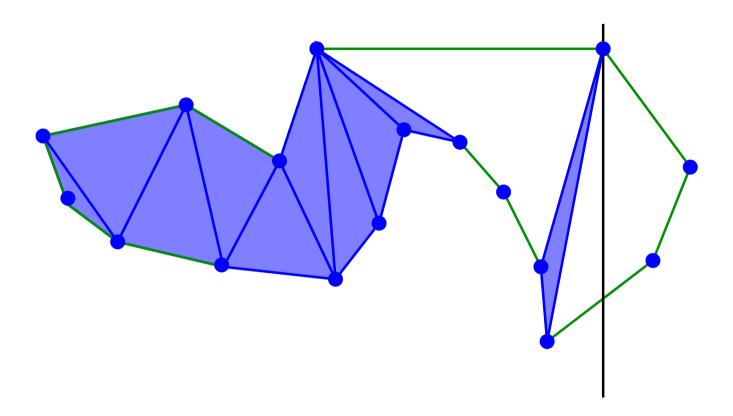


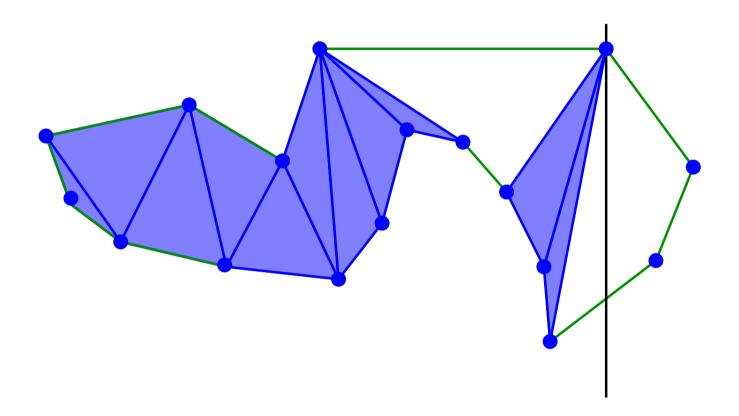


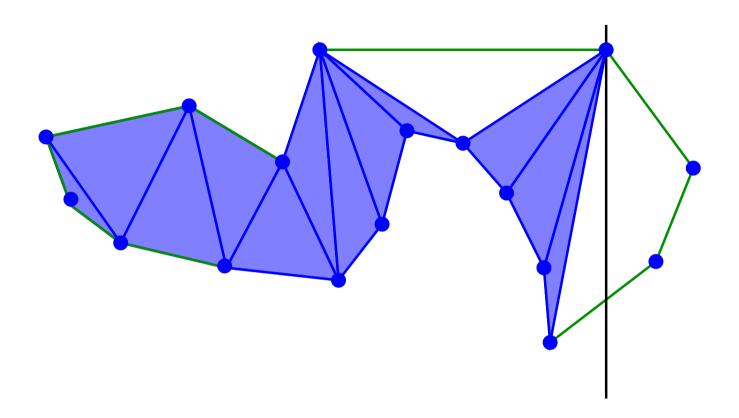


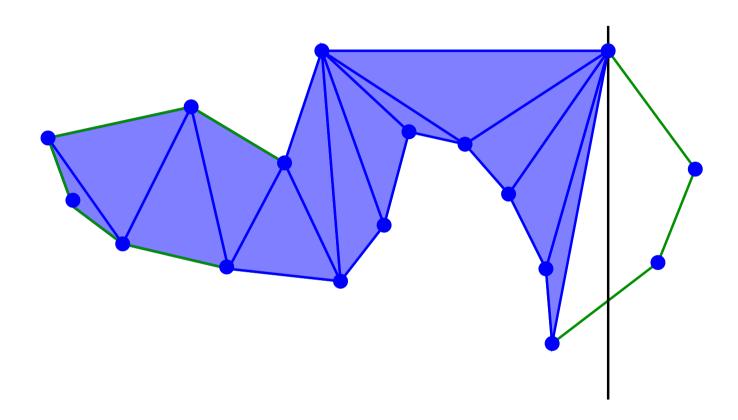


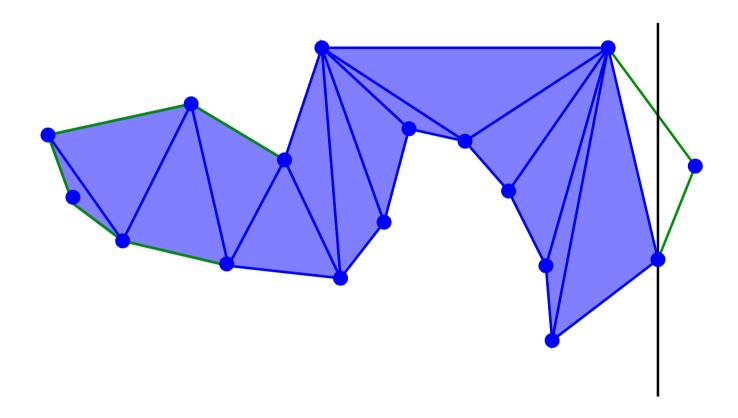


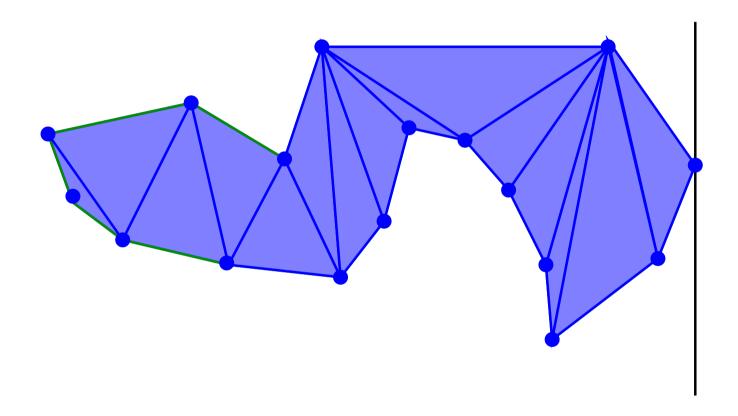






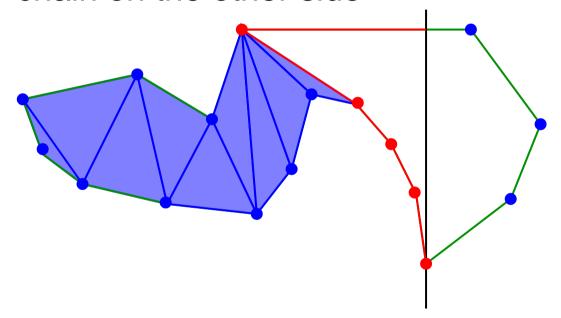






Proof of correctness

- Invariant:
 - the non triangulated region to the left of the sweep line is delimited by an edge on one side and a reflex chain on the other side



we can maintain this invariant (see D. Mount notes)

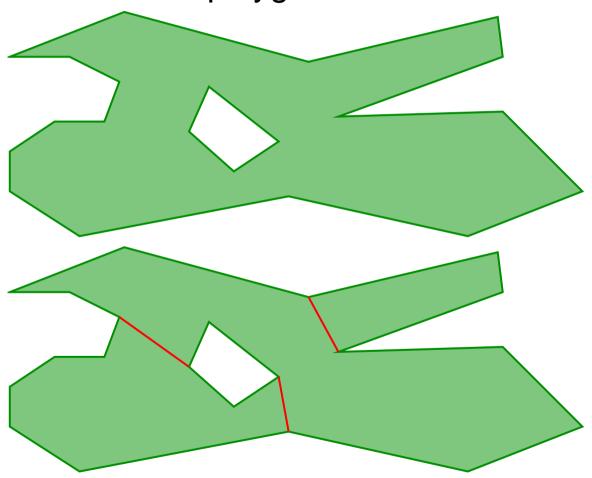
Analysis

- vertices can be sorted along the x-axis in O(n) time
- we maintain the reflex chain in a stack
 - push and pop in O(1) time
- each vertex is pushed and popped at most once
- this algorithm runs in optimal $\Theta(n)$ time
- we can use Doubly Connected Edge Lists

Partitioning a polygon into monotone pieces

Problem

 we want to partition a polygon P into a collection of x-monotone polygons with same vertex set



Algorithm

- we will find an $O(n \log n)$ time algorithm
- combined with previous section, it yields an $O(n \log n)$ time algorithm to triangulate an arbitrary polygon
- idea: first compute the trapezoidal map
 - it takes $O(n \log n)$ time
 - exercise for next week: how to obtain a monotone partition once we have the trapezoidal map?