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Outline

• today: geometry, no algorithm
• two problems

• proximity, mesh generation
• surprisingly, they are closely related

• geometric notions
• Voronoi diagram, Delaunay triangulation
• planar graph duality

• references
• D. Mount Lecture 16 (except algorithm) and 17
• textbook chapter 7 (online!) and 9
• demo (J. Snoeyink) at:

http://www.cs.ubc.ca/spider/snoeyink/demos/crust/home.html
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Voronoi diagrams
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A Voronoi diagram
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Proximity

• what is it?
• a dataset S of n points (called sites) in IR2

• let S = {s1, s2 . . . sn}

• query point q, find closest site to q (=proximity queries)

closest
site

S

q
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Problem

• how to address proximity?
• draw a diagram
• example with |S| = 2:

Closer to s2

s2

Closer to s1

Bisector of s1s2

s1

• this is the Voronoi diagram of S = {s1, s2}
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Example with |S| = 3

• Voronoi diagram of S = {s1, s2, s3}

s3

v

s2

V(s1)

s1

V(s3)

V(s2)

• v: a Voronoi vertex . Center of the circumcircle of
triangle s1s2s3

• V(si): Voronoi cell of si
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Example

si

V(si)

• V(si) = {x ∈ IR2 | ∀j 6= i, |six| < |sjx|}
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Half–plane h(si, sj)

• we denote

h(si, sj) =
{

x ∈ IR2

∣

∣

∣
|six| < |sjx|

}

sj

Bisector of s1s2

si

h(si, sj)

(Closer to si )
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Voronoi cell

• it follows that
V(si) =

⋂

j 6=i

h(si, sj)

si

V(si)
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Properties

• the Voronoi diagram of S is not a planar straight line
graph
• reason: it has infinite edges
• to fix this problem, we can restrict our attention to the

portion of the Voronoi diagram that is within a large
bounding box

• all the cells are convex, hence connected
• so the Voronoi diagram has n faces, one for each site
• it has O(n) edges and vertices

• non trivial; we can use the fact that vertices have
degree at least 3+double counting+Euler’s relation
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Algorithmic consequences

• V(si) is an intersection of n half–planes
• so it can be computed in O(n log n) time (cf linear

programming)

• we can compute the Voronoi diagram of S in O(n2 log n)
time

• we associate it with a point location data structure
• so we can answer proximity queries in:

• O(n2 log n) preprocessing time
• expected O(n) space usage
• expected O(log n) query time

• next lecture: preprocessing time down to expected
Θ(n log n)
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Voronoi cell 2

• ∀x ∈ V(si) the disk through si centered at x contains no
other site than si

si

V(si)

x
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Voronoi edges

• a Voronoi edge is an edge of the Voronoi diagram
• a point x on a Voronoi edge is equidistant to two

nearest sites si and sj

• hence the circle centered at x through si and sj

contains no site in its interior

x

a voronoi edge

sjsi
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General position assumption

• general position assumption:
• no four sites are cocircular

• a degenerate case: 4 sites lie on the same circle
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Voronoi vertices

• a Voronoi vertex v is equidistant to three nearest sites
si, sj and sk

• hence the circle centered at v through si, sj and sk

contains no site in its interior

sjsi

sk

v

• by our general position assumption, each Voronoi
vertex has degree 3 (= adjacent to three edges)
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Voronoi cells

• if V(si) is bounded, then it is a convex polygon
• V(si) is unbounded iff si is a vertex of CH(S)

CH(S)
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Consequence

• knowing the Voronoi diagram, we can compute the
convex hull in O(n) time

• so computing a Voronoi diagram takes Ω(n log n) time
• next lecture: an optimal O(n log n) time randomized

algorithm
• there is also a deterministic O(n log n) time algorithm

• plane–sweep algorithm
• see Lecture 16 of D. Mount or Lecture 7 in textbook
• you do not need to read it for CS4235
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Further remarks

• sites need not be points: one can define in the same
way the Voronoi diagram of a set of line segments, or
any shape

• we can also use different distance functions
• the Voronoi diagram can also be defined in IRd for any d

• but it has size Θ
(

ndd/2e
)

• so it is only useful when d is small (say, at most 4)
• active research line: approximate Voronoi diagrams

with smaller size
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Dual of a planar graph
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Example

G
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Example

G

G∗
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Definition

• let G be a graph
• dual graph G∗

• each face f of G corresponds to a vertex f ∗ of G∗

• (f∗, g∗) is an edge of G∗ iff f and g are adjacent in G

• property: the dual of a planar graph is planar too
• What is the dual of a Voronoi diagram?
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Delaunay triangulation
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Triangulation of a set of points

• we are given a set S of n points in IR2

• we want to find a planar map with set of vertices S,
where CH(S) is partitioned into triangles

• this is called a triangulation of S
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The Delaunay triangulation

DT (S)

• the Delaunay triangulation of the same set
• looks nicer
• has many interesting properties
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Definition

DT (S)
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Definition

• let S be a set of n points in IR2

• S is in general position: no 4 points are cocircular
• the Delaunay triangulation DT (S) of S is the embedding

of the dual graph of the Voronoi diagram of S where
• the vertices are the sites: ∀i, V(si)

∗ = si

• the edges of DT (S) are straight line segments
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Remarks

• DT (S): is it well defined?
• we need to prove that

• edges do not intersect (= it is a PSLG)
• left as an exercise

• faces are triangles
• the number of edges in a face of DT (S) is the

degree of the corresponding Voronoi vertex
• general position assumption implies that Voronoi

vertices have degree 3
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Convex hull

• the convex hull of S is the complement of the
unbounded face of DT (S)

CH(S)

NUS – CS4235 – Lecture 9: Voronoi diagrams and Delaunay triangulations – p.30/42



Circumcircle property

• the circumcircle of any triangle in DT (S) is empty
(contains no site in its interior)

DT (S)

v

s1

s3

s2

• proof: let s1s2s3 be a triangle in DT (S), let v be the
corresponding Voronoi vertex. Property of Voronoi
vertices: the circle centered at v through s1s2s3 is empty
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Empty circle property

• sisj is an edge of DT (S) iff there is an empty circle
through si and sj

DT (S)

si

sj
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Proof (Empty circle property)

DT (S)

si

sj
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Closest pair property

• the closest two sites sisj are connected by an edge of
DT (S)

DT (S)

si

sj
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Proof (closest pair property)

si sj

empty

empty
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Euclidean minimum spanning tree

• Euclidean graph
• set of vertices= S
• for all i 6= j there is an edge between si and sj with

weight |sisj |

• Euclidean Minimum Spanning Tree: minimum spanning
tree of the euclidean graph

• Property: the EMST is a subgraph of DT (S)

• Corollary: it can be computed in O(n log n) time
• see D. Mount’s notes pages 75–76
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Angle sequence

• let T be a triangulation of S

• angle sequence Θ(T ): sequence of all the angles of the
triangle of T in non–decreasing order

• example

π/4

π/4
π/2 π/3

π/3

π/3

• Θ(T ) = (π/4, π/4, π/3, π/3, π/3, π/2)

• comparison: let T and T ′ be two triangulations of S

• we compare Θ(T ) and Θ(T ′) using lexicographic order
• example: (1, 1, 3, 4, 5) < (1, 2, 4, 4, 4)
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Optimality of DT (S)

• Theorem: the angle sequence of DT (S) is maximal
among all triangulations of S

• in other words: the Delaunay triangulation maximizes
the minimum angle

• intuition: avoids skinny triangles
DT (P )

skinny triangle
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Proof

• idea:
• flip edges to ensure the circumcircle property
• it decreases the angle sequence

edge flip
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Degenerate cases

• several possible Delaunay triangulations
• equally good in terms of angle sequence

• example:

• two possibilities
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Applications

• generating good meshes
http://www.cs.berkeley.edu/˜jrs/mesh/
• skinny triangles are bad in numerical analysis

• statistics: natural neighbor interpolation
• textbook example: height interpolation
• shape reconstruction
• . . .
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Conclusion

• next lecture: an O(n log n) time RIC of the Delaunay
triangulation

• from the Delaunay triangulation, we can obtain the
Voronoi diagram in O(n) time (how?)

• the converse is also true, so these two problems are
equivalent in an algorithmic point of view

• there are O(n log n) time deterministic algorithms
• divide and conquer
• plane sweep (D. Mount lecture 16)
• reduction to 3D convex hull (D. Mount lecture 28)
• not presented in CS 4235
• in practice, RIC is used
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