Voronoi diagrams and Delaunay triangulations

Lecture 9, CS 4235 12 march 2004

Antoine Vigneron

antoine@comp.nus.edu.sg

National University of Singapore

Outline

- today: geometry, no algorithm
- two problems
 - proximity, mesh generation
 - surprisingly, they are closely related
- geometric notions
 - Voronoi diagram, Delaunay triangulation
 - planar graph duality
- references
 - D. Mount Lecture 16 (except algorithm) and 17
 - textbook chapter 7 (online!) and 9
 - demo (J. Snoeyink) at: http://www.cs.ubc.ca/spider/snoeyink/demos/crust/home.html

Voronoi diagrams

A Voronoi diagram

Proximity

- what is it?
- a dataset S of n points (called sites) in \mathbb{R}^2
- let $S = \{s_1, s_2 \dots s_n\}$
- query point q, find closest site to q (=proximity queries)

Problem

- how to address proximity?
- draw a diagram
- example with |S| = 2:

• this is the *Voronoi diagram* of $S = \{s_1, s_2\}$

Example with |S| = 3

• Voronoi diagram of $S = \{s_1, s_2, s_3\}$

- v: a Voronoi vertex. Center of the circumcircle of triangle $s_1s_2s_3$
- $\mathcal{V}(s_i)$: Voronoi cell of s_i

Example

• $\mathcal{V}(s_i) = \{x \in \mathbb{R}^2 \mid \forall j \neq i, |s_i x| < |s_j x|\}$

Half–plane $h(s_i, s_j)$

• we denote

$$h(s_i, s_j) = \left\{ x \in \mathbb{R}^2 \left| |s_i x| < |s_j x| \right\}$$

Voronoi cell

• it follows that

Properties

- the Voronoi diagram of S is not a planar straight line graph
 - reason: it has infinite edges
 - to fix this problem, we can restrict our attention to the portion of the Voronoi diagram that is within a large bounding box
- all the cells are convex, hence connected
- so the Voronoi diagram has *n* faces, one for each site
- it has O(n) edges and vertices
 - non trivial; we can use the fact that vertices have degree at least 3+double counting+Euler's relation

Algorithmic consequences

- $\mathcal{V}(s_i)$ is an intersection of n half-planes
- so it can be computed in O(n log n) time (cf linear programming)
- we can compute the Voronoi diagram of S in $O(n^2 \log n)$ time
- we associate it with a point location data structure
- so we can answer proximity queries in:
 - $O(n^2 \log n)$ preprocessing time
 - expected O(n) space usage
 - expected $O(\log n)$ query time
- next lecture: preprocessing time down to expected $\Theta(n \log n)$

Voronoi cell 2

∀x ∈ V(s_i) the disk through s_i centered at x contains no other site than s_i

Voronoi edges

- a *Voronoi edge* is an edge of the Voronoi diagram
- a point x on a Voronoi edge is equidistant to two nearest sites s_i and s_j
- hence the circle centered at x through s_i and s_j contains no site in its interior

General position assumption

- general position assumption:
 - no four sites are cocircular

• a degenerate case: 4 sites lie on the same circle

Voronoi vertices

- a Voronoi vertex v is equidistant to three nearest sites s_i, s_j and s_k
- hence the circle centered at v through s_i, s_j and s_k contains no site in its interior

 by our general position assumption, each Voronoi vertex has degree 3 (= adjacent to three edges)

Voronoi cells

- if $\mathcal{V}(s_i)$ is bounded, then it is a convex polygon
- $\mathcal{V}(s_i)$ is unbounded iff s_i is a vertex of $\mathcal{CH}(S)$

Consequence

- knowing the Voronoi diagram, we can compute the convex hull in O(n) time
- so computing a Voronoi diagram takes $\Omega(n \log n)$ time
- next lecture: an optimal $O(n \log n)$ time randomized algorithm
- there is also a deterministic $O(n \log n)$ time algorithm
 - plane—sweep algorithm
 - see Lecture 16 of D. Mount or Lecture 7 in textbook
 - you do not need to read it for CS4235

Further remarks

- sites need not be points: one can define in the same way the Voronoi diagram of a set of line segments, or any shape
- we can also use different distance functions
- the Voronoi diagram can also be defined in \mathbb{R}^d for any d
 - but it has size $\Theta\left(n^{\lceil d/2\rceil}\right)$
 - so it is only useful when d is small (say, at most 4)
 - active research line: approximate Voronoi diagrams with smaller size

Dual of a planar graph

Example

Example

Definition

- let \mathcal{G} be a graph
- dual graph \mathcal{G}^*
 - each face f of \mathcal{G} corresponds to a vertex f^* of \mathcal{G}^*
 - (f^*, g^*) is an edge of \mathcal{G}^* iff f and g are adjacent in \mathcal{G}
- property: the dual of a planar graph is planar too
- What is the dual of a Voronoi diagram?

Delaunay triangulation

Triangulation of a set of points

- we are given a set S of n points in \mathbb{R}^2
- we want to find a planar map with set of vertices S, where CH(S) is partitioned into triangles
- this is called a *triangulation* of S

The Delaunay triangulation

- the *Delaunay triangulation* of the same set
- looks nicer
- has many interesting properties

Definition

Definition

- let S be a set of n points in \mathbb{R}^2
- S is in general position: no 4 points are cocircular
- the *Delaunay triangulation* $\mathcal{DT}(S)$ of S is the embedding of the dual graph of the Voronoi diagram of S where
 - the vertices are the sites: $\forall i, \ \mathcal{V}(s_i)^* = s_i$
 - the edges of $\mathcal{DT}(S)$ are straight line segments

Remarks

- $\mathcal{DT}(S)$: is it well defined?
- we need to prove that
 - edges do not intersect (= it is a PSLG)
 - left as an exercise
 - faces are triangles
 - the number of edges in a face of $\mathcal{DT}(S)$ is the degree of the corresponding Voronoi vertex
 - general position assumption implies that Voronoi vertices have degree 3

Convex hull

• the convex hull of S is the complement of the unbounded face of $\mathcal{DT}(S)$

Circumcircle property

• the circumcircle of any triangle in $\mathcal{DT}(S)$ is empty (contains no site in its interior)

proof: let s₁s₂s₃ be a triangle in DT(S), let v be the corresponding Voronoi vertex. Property of Voronoi vertices: the circle centered at v through s₁s₂s₃ is empty

Empty circle property

• $\overline{s_i s_j}$ is an edge of $\mathcal{DT}(S)$ iff there is an empty circle through s_i and s_j

Proof (Empty circle property)

Closest pair property

• the closest two sites $s_i s_j$ are connected by an edge of $\mathcal{DT}(S)$

Proof (closest pair property)

Euclidean minimum spanning tree

- Euclidean graph
 - set of vertices= *S*
 - for all *i* ≠ *j* there is an edge between *s_i* and *s_j* with weight |*s_is_j*|
- Euclidean Minimum Spanning Tree: minimum spanning tree of the euclidean graph
- Property: the EMST is a subgraph of $\mathcal{DT}(S)$
- Corollary: it can be computed in $O(n \log n)$ time
- see D. Mount's notes pages 75–76

Angle sequence

- let \mathcal{T} be a triangulation of S
- angle sequence Θ(T): sequence of all the angles of the triangle of T in non-decreasing order
- example

- $\Theta(\mathcal{T}) = (\pi/4, \pi/4, \pi/3, \pi/3, \pi/3, \pi/2)$
- comparison: let \mathcal{T} and \mathcal{T}' be two triangulations of S
- we compare $\Theta(\mathcal{T})$ and $\Theta(\mathcal{T}')$ using lexicographic order
- example: (1, 1, 3, 4, 5) < (1, 2, 4, 4, 4)

Optimality of $\mathcal{DT}(S)$

- Theorem: the angle sequence of $\mathcal{DT}(S)$ is maximal among all triangulations of S
- in other words: the Delaunay triangulation maximizes the minimum angle
- intuition: avoids skinny triangles

Proof

- idea:
 - flip edges to ensure the circumcircle property
 - it decreases the angle sequence

Degenerate cases

- several possible Delaunay triangulations
 - equally good in terms of angle sequence
- example:

• two possibilities

Applications

- generating good meshes http://www.cs.berkeley.edu/~jrs/mesh/
 - skinny triangles are bad in numerical analysis
- statistics: natural neighbor interpolation
- textbook example: height interpolation
- shape reconstruction
- . . .

Conclusion

- next lecture: an $O(n \log n)$ time RIC of the Delaunay triangulation
- from the Delaunay triangulation, we can obtain the Voronoi diagram in O(n) time (how?)
- the converse is also true, so these two problems are equivalent in an algorithmic point of view
- there are $O(n \log n)$ time deterministic algorithms
 - divide and conquer
 - plane sweep (D. Mount lecture 16)
 - reduction to 3D convex hull (D. Mount lecture 28)
 - not presented in CS 4235
 - in practice, RIC is used