
ACM/IOI/SuperCon 2004 Training

1

1ACM/IOI/SuperCon 2004 Training

a. Network flows
b. Local search and meta-heuristics

Further Algorithms on Graph Problems

Lau Hoong Chuin
School of Computing

2ACM/IOI/SuperCon 2004 Training

Network Flows
• One major class of real-world problems involves

moving something through a network, from a source
to a destination, subject to capacity restrictions in the
various network connections
– Moving oil from a field to a refinery
– Moving products from a factory to a warehouse
– Moving data through the Internet

3ACM/IOI/SuperCon 2004 Training

Network Flows Applications

communication

Network

telephone exchanges,
computers, satellites

Nodes Arcs

cables, fiber optics,
microwave relays

Flow

voice, video,
packets

circuits gates, registers,
processors wires current

mechanical joints rods, beams, springs heat, energy

hydraulic reservoirs, pumping
stations, lakes pipelines fluid, oil

financial stocks, currency transactions money

transportation airports, rail yards,
street intersections

highways, railbeds,
airway routes

freight,
vehicles,
passengers

chemical sites bonds energy

4ACM/IOI/SuperCon 2004 Training

Network Flows

Source
s

Sink
t

a c

b d

10

10

10

1
1

1
10

10

A network is a weighted directed graph where
There is exactly one vertex with an indegree of 0 (source)
There is exactly one vertex with an outdegree of 0 (sink)
each edge (v,w) has a capacity cap(v,w)

• Capacity constraint: A flow is a function f, that is
chosen for each edge so that

• Flow conservation: For all v except s and t,
• Objective: to maximize the flow allocation

(,), .() capf vv ww ≤
0),(=∑

∈Vv
vuf

5ACM/IOI/SuperCon 2004 Training

Example
Finding max flow by inspection

Source
s

Sink
t

a c

b d

10

10

10

1
1

1
10

10

Step 1:

Source
s

Sink
t

a c

b d
10, 10
10

10, 10

1
1

1
10

10, 10

Flow is of size 10

6ACM/IOI/SuperCon 2004 Training

Example
Finding max flow by inspection

Source
s

Sink
t

a c

b d
10, 10
10, 1

10, 10

1
1

1, 1 10, 1

10, 10

Step 2:

Flow is of size 10+1 = 11

Source
s

Sink
t

a c

b d
10, 10
10, 2

10, 9

1,1

1,1
1, 1 10, 2

10, 10

Maximum flow:

Flow is of size 10+2 = 12

Not
obvious

ACM/IOI/SuperCon 2004 Training

2

7ACM/IOI/SuperCon 2004 Training

Ford-Fulkerson Algorithm
Augmenting paths

1. initialize flow f to 0
2. while there exists an augmenting path p
3. do augment flow f along p
4. return f

8ACM/IOI/SuperCon 2004 Training

Ford-Fulkerson Algorithm
Augmenting paths

1. Set f(v,w) = -f(w,v) on all edges.
2. Define a residual network in which res(v,w) =

cap(v,w) – f(v,w)
3. Find paths from s to t for which there is

positive residue.
4. Increase the flow along the paths to

augment them by the minimum residue
along the path.

5. Keep augmenting paths until there are no
more to augment.

9ACM/IOI/SuperCon 2004 Training

Example of Residual Network

s t

a c

b d

10, 10

10

10, 10

1
1

1
10

10, 10

Flow is of size 10

t

a c

b d

10

10

10

1
1

1
10

10

s

res(v,w) = cap(v,w) – f(v,w)residual network

Augmenting path

10ACM/IOI/SuperCon 2004 Training

Example of Residual Network

s t

a c

b d

10, 10

10, 1

10, 10

1
1

1, 1 10, 1

10, 10

Step 2:

Flow is of size 10+1 = 11

s t

a c

b d

10

1

10

1
1

1

1

10

residual network

9 9

res(v,w) = cap(v,w) – f(v,w)

11ACM/IOI/SuperCon 2004 Training

Flows and Cuts
• Proof of optimality of augmenting path algorithm is

based on the notion of cuts
• A cut in a network is a partition of its vertices into

two sets, S and T, such that
– The source vertex lies in S
– The sink vertex lies in T

• The sum of capacity of all arcs crossing a vertex in
S with a vertex in T is the capacity of the cut,
cap(S,T)

• For any given cut, the flow in a transportation
network equals the total flow along arcs from S to
T, minus the total flow along arcs from T to S

12ACM/IOI/SuperCon 2004 Training

Flows and Cuts
• The maximum flow of a network cannot exceed the

capacity of *any* cut within that network
• The maximum flow of a network equals the

minimum capacity of all cuts
• Let f be a flow, and let (S, T) be a cut. If |f| =

cap(S,T), then f is a max flow and (S, T) is a min
cut.

ACM/IOI/SuperCon 2004 Training

3

13ACM/IOI/SuperCon 2004 Training

Max-Flow Min-Cut

A B

D

C

E

8

6

3

5

6

9

4
Available cuts...
A / BCDE
AC / BDE
AB / CDE
AD / BCE
ABC / DE
ABD / CE
ABCD / E

14ACM/IOI/SuperCon 2004 Training

Max-Flow Min-Cut

A B

D

C

E

8

6

3

5

6

9

4
Available cuts...
A / BCDE: 17
AC / BDE
AB / CDE
AD / BCE
ABC / DE
ABD / CE
ABCD / E

8+6+3=17

15ACM/IOI/SuperCon 2004 Training

Max-Flow Min-Cut

A B

D

C

E

8

6

3

5

6

9

4
Available cuts...
A / BCDE: 17
AC / BDE: 13
AB / CDE
AD / BCE
ABC / DE
ABD / CE
ABCD / E

4+6+3=13
16ACM/IOI/SuperCon 2004 Training

Max-Flow Min-Cut

A B

D

C

E

8

6

3

5

6

9

4
Available cuts...
A / BCDE: 17
AC / BDE: 13
AB / CDE: 22
AD / BCE
ABC / DE
ABD / CE
ABCD / E

8+5+6+3=22

17ACM/IOI/SuperCon 2004 Training

Max-Flow Min-Cut

A B

D

C

E

8

6

3

5

6

9

4
Available cuts...
A / BCDE: 17
AC / BDE: 13
AB / CDE: 22
AD / BCE: 23
ABC / DE
ABD / CE
ABCD / E

8+6+9=23
18ACM/IOI/SuperCon 2004 Training

Max-Flow Min-Cut

A B

D

C

E

8

6

3

5

6

9

4
Available cuts...
A / BCDE: 17
AC / BDE: 13
AB / CDE: 22
AD / BCE: 23
ABC / DE: 13
ABD / CE
ABCD / E

4+6+3=13

ACM/IOI/SuperCon 2004 Training

4

19ACM/IOI/SuperCon 2004 Training

Max-Flow Min-Cut

A B

D

C

E

8

6

3

5

6

9

4
Available cuts...
A / BCDE: 17
AC / BDE: 13
AB / CDE: 22
AD / BCE: 23
ABC / DE: 13
ABD / CE: 22
ABCD / E:

8+5+9=22
20ACM/IOI/SuperCon 2004 Training

Max-Flow Min-Cut

A B

D

C

E

8

6

3

5

6

9

4
Available cuts...
A / BCDE: 17
AC / BDE: 13
AB / CDE: 22
AD / BCE: 23
ABC / DE: 13
ABD / CE: 22
ABCD / E: 13

4+9=13

21ACM/IOI/SuperCon 2004 Training

Max-Flow Min-Cut

A B

D

C

E

8

6

3

5

6

9

4
Available cuts...
A / BCDE: 17
AC / BDE: 13
AB / CDE: 22
AD / BCE: 23
ABC / DE: 13
ABD / CE: 22
ABCD / E: 13

Examining all cuts, min cut is 13, max flow is 13

22ACM/IOI/SuperCon 2004 Training

Max-Flow Min-Cut

A B

D

C

E

8, 4

6, 6

3, 3

5, 0

6, 6

9, 9

4, 4

Solution

23ACM/IOI/SuperCon 2004 Training

History of Max Flow Algorithms

Dantzig

Discoverer

Simplex

Method Big-Oh

mn2U1951

Year

Ford, Fulkerson Augmenting path mnU1955
Edmonds-Karp Shortest path m2n1970

Dinitz Shortest path mn21970
Edmonds-Karp, Dinitz Capacity scaling m2 log U1972

Dinitz-Gabow Capacity scaling mn log U1973
Karzanov Preflow-push n31974

Sleator-Tarjan Dynamic trees mn log n1983
Goldberg-Tarjan FIFO preflow-push mn log (n2 / m)1986

.

Goldberg-Rao Length function m3/2 log (n2 / m) log U
mn2/3 log (n2 / m) log U1997

24ACM/IOI/SuperCon 2004 Training

Bipartite Matching as Max Flows

• Given an undirected graph G=(V, E), a matching M is a
subset of edges such that for all vertices, at most one
edge of M is incident on v.

• A bipartite graph is a graph such that the set of vertices
can be partitioned into two sets A, B and every edge has
a vertex in A and another in B.

A
B
C
D
E
F

1
2
3
4
5
6

A 1
B
C
D
E
F

2
3
4
5
6

M

ACM/IOI/SuperCon 2004 Training

5

25ACM/IOI/SuperCon 2004 Training

Bipartite Matching as Max Flows

• How to find the maximum bipartite matching?
equivalent to solving a network flow problem with capacities
of 1!

A 1

Source
s

Sink
t

B
C
D
E
F

2
3
4
5
6

26ACM/IOI/SuperCon 2004 Training

Bipartite Matching as Max Flows

A 1

s t

B
C
D
E
F

2
3
4
5
6

• If two edges (i,j) and (k,j) share a node, then either xij =
0, or xkj = 0, or both. Otherwise the arc capacity of (j,t)
will be violated.
• If two edges (i,j) and (i,k) share a node, then either xij =
0, or xik = 0, or both.

27ACM/IOI/SuperCon 2004 Training

Bipartite Matching as Max Flows

A 1
B
C
D
E
F

2
3
4
5
6

Maximum Size Matching:

28ACM/IOI/SuperCon 2004 Training

Exercise (Parallel Machines Scheduling)

Given M parallel machines, a set of n jobs, each having a
length, release time and deadline. A machine can work on
only one job at a time. A job can be served by only one
machine at a time.

Preemption allowed, i.e., service of a job can be interrupted,
and jobs can switch machines.

Is there a schedule for completing every job within its deadline?

29ACM/IOI/SuperCon 2004 Training

Exercise (The Messenger Problem)

Problem: Given a network, find the largest number of
messengers that can be sent through the network
where the paths are disjoint (except at the ends).

Example:

s t

a

b

c

d

e

s ta d
Here is an optimal solution with 2 messengers.

s tb e

30ACM/IOI/SuperCon 2004 Training

ACM/IOI/SuperCon 2004 Training

6

31ACM/IOI/SuperCon 2004 Training

Objectives:
• To learn the basic Local Search paradigm
• To apply LS to solve (NP-hard) optimization

problems
• To gain preliminary understanding of sophisticated

LS-based meta-heuristics such as tabu search and
genetic algorithms

Local Search and Meta-Heuristics

32ACM/IOI/SuperCon 2004 Training

Heuristics
• Optimization problem:

minx∈Sf(x), where S=feasible solutions space
(find a feasible x such that f is minimized)

• Heuristic algorithms do not guarantee to find an
optimal solution (as opposed to exact algorithms)

• However, they are usually designed to find a
“reasonably good” solution quickly.

• Solutions to optimization problems:
– Global Optimum: Equal/better than all other solutions
– Local Optimum: Equal/better than all solutions in a

certain neighborhood

33ACM/IOI/SuperCon 2004 Training

Global vs. Local Optimum

34ACM/IOI/SuperCon 2004 Training

Why Do We Need Heuristics?
• Many real world applications are too large to be

solved by exact methods (e.g. Branch and Bound,
Cutting Planes, etc.)

• Solutions are usually needed fast (sometimes even
in real time)
– for hard problems, the time for finding an optimal

solution is usually much greater than finding a near-
optimal solution

• Optimal solutions, although desirable, are often not
needed in the real world.

35ACM/IOI/SuperCon 2004 Training

Local Search
Definitions:
• N (neighborhood) : S→2s

• The size of a neighborhood is the number of solutions in
the neighborhood set

Algorithm:
1. Pick a starting solution s // by other algorithm
2. If f(s) < mins’ in N(s) f(s’), stop // what is the time complexity?
3. Else set s = s’ s.t. f(s’) = mins’’ in N(s) f(s’’)
4. Goto Step 2

36ACM/IOI/SuperCon 2004 Training

Local Search

An iteration in a local search

Current
Solution

Generate
Neighborhood

Evaluate
Neighborhood

Choose
Neighbor

ACM/IOI/SuperCon 2004 Training

7

37ACM/IOI/SuperCon 2004 Training

Example: Traveling Salesman Problem
Given:

A set of n cities {c1, c2, …, cn}
Cost matrix, containing cost to travel between cities

Find a minimum-cost tour.

38ACM/IOI/SuperCon 2004 Training

Solving TSP Heuristically

3 Broad Steps:
1. Construction Heuristics

– Constructing a tour from scratch

2. Local Search Algorithms
– Improving an existing tour

3. Extensions (not covered)
– “Escaping” from locally optimal tours

39ACM/IOI/SuperCon 2004 Training

Construction Heuristics
• Build a tour one city at a time in a Greedy fashion
• Popular methods:

– Nearest Neighbour heuristic
– Multiple Fragment heuristic
– Insertion heuristic
– Savings heuristic
– Spanning tree heuristic, etc.

40ACM/IOI/SuperCon 2004 Training

Nearest Neighbour

Step 1: Choose starting city p at random
Step 2: Scan remaining cities for the city NNp

nearest to p
Step 3: Add edge (p,NNp) to the sequence
Step 4: Set p = NNp

Step 5: Repeat from Step 2 until all cities are added
Step 6: Add last edge to complete a tour

41ACM/IOI/SuperCon 2004 Training

Nearest Neighbour Tours

42ACM/IOI/SuperCon 2004 Training

Some Variants of Nearest Neighbour
• Double-Sided Nearest Neighbour

– Grow the nearest neighbour sequence from both ends
• Randomized Nearest Neighbour

– Instead of using the nearest neighbour of a city, pick a
neighbour at random from the set of remaining k
nearest neighbours of the city and add it to the
sequence

ACM/IOI/SuperCon 2004 Training

8

43ACM/IOI/SuperCon 2004 Training

Multiple Fragment Heuristic
Basic Idea:

Build a tour one edge at a time, by adding the
shortest remaining available edge to the tour edge
set.

Step 1: Order the set of edges in increasing length in a list
Step 2: Pick first available edge on the list
Step 3: Remove edge from list and add it to the tour edge set
Step 4: Repeat from step 2 until there are no more available

edges on the list

Note: similarity with Kruskal’s algorithm for MSTs
44ACM/IOI/SuperCon 2004 Training

Multiple Fragment Tour:

45ACM/IOI/SuperCon 2004 Training

Insertion Heuristics
• Basic Idea:

Starting with a subtour made of 2 arbitrary chosen cities
grow a tour by inserting cities which fulfill some criteria.

• The criteria usually depends on the cities which are already
in the tour

Step 1: Form a subtour by choosing 2 cities at random
Step 2: Scan remaining cities for the city which fulfills

insertion criteria
Step 3: Insert the city to the subtour
Step 4: Repeat Step 2 until all cities are in the tour

46ACM/IOI/SuperCon 2004 Training

Some Insertion Criteria
• Nearest Insertion:

– Insert the city that has shortest distance to a tour city
• Farthest Insertion:

– Insert the city whose shortest distance to a tour city is
maximized

• Cheapest Insertion:
– Choose the city whose insertion causes the least

increase in length of the resulting subtour
• Random Insertion

– Select the city to be inserted at random

47ACM/IOI/SuperCon 2004 Training

Nearest vs Cheapest Insertion

48ACM/IOI/SuperCon 2004 Training

Analysis
Number of steps:

n-2 cities are to be inserted
For each insertion the set of remaining cities has to be
scanned : O(n)

Worst case run time: O(n2)

ACM/IOI/SuperCon 2004 Training

9

49ACM/IOI/SuperCon 2004 Training

Applications of Local Search
• Local Search Algorithms for TSP
• Local Search Algorithm for Bin Packing
• Advanced Local Search variants

– Tabu search
– Simulated annealing
– Genetic algorithms

50ACM/IOI/SuperCon 2004 Training

Local Search Algorithm for TSP
• Create an initial tour // discussed previous lecture
• Define a local search neighborhood
• Two tours are neighbors if they share most of their edges

• Edge exchange neighborhood:

Delete k edges in the current tour and then add k
edges which form a new feasible tour

This neighborhood is called k-opt.

51ACM/IOI/SuperCon 2004 Training

2-opt
• Delete 2 edges, add 2 edges to restore the tour

• 2-opt removes the “crossings” of edges in a tour

52ACM/IOI/SuperCon 2004 Training

2-opt Analysis
• How many possible ways?
• Size of the 2-opt neighborhood:

– Number of edge pairs = n(n-3)/2
– Exactly 1 way to restore tour

• At each step of Local Search, evaluate O(n2) new
tours and choose the best available.

Worst-case run time: O(n2)

53ACM/IOI/SuperCon 2004 Training

3-opt
• Delete 3 edges, add 3 edges to restore the tour

• 3-opt can remove subsequences of the tour

54ACM/IOI/SuperCon 2004 Training

3-opt Analysis
• Size of the 3-opt neighborhood:

– Number of edge triples =
– Each of which has 8 possible ways to be restored
– Some neighbors may not be valid

• At each step of Local Search, O(n3) new tours
worst case run time: O(n3)

(1) (2)









3
n

ACM/IOI/SuperCon 2004 Training

10

55ACM/IOI/SuperCon 2004 Training

k-opt
• It may seem sensible to increase k even further.
• However, once k edges of a tour have been

deleted there are O(nk) new tours. Expensive!
• Observe that some 3-opt moves are equivalent to

applying two 2-opt moves

56ACM/IOI/SuperCon 2004 Training

Lin-Kernighan Heuristic

• First observed by Lin and Kernighan
• One of most successful heuristics to solve combinatorial

optimization problems
• “Adaptive” k-Opt
• Build k-opt moves (with variable k) by a sequence of 2-opt

moves
• Take the sequence of the first k swaps that most improves

the solution

57ACM/IOI/SuperCon 2004 Training

Bin Packing Problem
• One-dimensional bin packing problem
• Given:

– n items a1, a2, …, an, 0<size(ai)≤1 ∀ i= 1,..,n
– unlimited number of bins of size 1

• Goal: Pack all items into a minimum number of
bins

58ACM/IOI/SuperCon 2004 Training

Bin Packing Algorithms
• Although the bin packing problem is an NP-hard

problem, 2 very successful heuristics have been
proposed:

1. First Fit Decreasing Heuristic
2. Best Fit Decreasing Heuristic

59ACM/IOI/SuperCon 2004 Training

The First Fit Decreasing (FFD) heuristic

Step 1: Arrange items in decreasing size
Step 2: Assign the first item on the list to the first bin

it can fit into
Step 3: Remove item from the list and reduce

capacity of the selected bin
Step 4: Repeat from step 2 until all items have been

assigned

60ACM/IOI/SuperCon 2004 Training

First Fit Strategy:

What’s wrong with this diagram?

ACM/IOI/SuperCon 2004 Training

11

61ACM/IOI/SuperCon 2004 Training

The Best Fit Decreasing (BFD) heuristic
Step 1: Arrange items in decreasing size
Step 2: Assign the first item on the list to the bin it

fits best, i.e. fills up to the highest level.
Step 3: Remove item from the list and reduce

capacity of the selected bin
Step 4: Repeat from Step 2 until all items have been

assigned

62ACM/IOI/SuperCon 2004 Training

Best Fit Strategy:

63ACM/IOI/SuperCon 2004 Training

Local Search Algorithm for Bin Packing
• Objective: decrease the number of bins needed

• “Improvement” strategy:
modify packing so that the packing height in the
emptiest bin is reduced

64ACM/IOI/SuperCon 2004 Training

Neighborhoods
For bins i and j, define:
• 1-1-exchange neighborhood:

swap one item in bin i with an item in bin j
• p-q-exchange neighborhood:

Swap p items in bin i with q items in bin j

Note: Not all exchanges lead to a feasible packing

65ACM/IOI/SuperCon 2004 Training

Local Search Algorithm
• Step 1: Create an initial packing
• Step 2: Select two bins (at random or following

some rule)
• Step 3: Scan chosen bins for a p-q-exchange that

“improves” the packing
• Step 4: Repeat from Step 2 until no improvement

is found

66ACM/IOI/SuperCon 2004 Training

Advanced Local Search Paradigms
(Meta-heuristics)

• Tabu Search
• Simulated Annealing
• Evolutionary (Genetic) Algorithms
• Ant Colony Optimization
• etc.

ACM/IOI/SuperCon 2004 Training

12

67ACM/IOI/SuperCon 2004 Training

Tabu Search

• A tabu list is maintained for forbidden (tabu)
moves, to avoid cycling

• Tabu moves are based on the short- and long-term
history of the search process.

• Aspiration criteria is the condition which allows the
tabu status of a tabu move to be overwritten so that
the move can be considered at the iteration.

• The next move is the best move among the
feasible moves from the neighborhood of the
current solution. A tabu move is taken if it satisfies
the aspiration criteria.

68ACM/IOI/SuperCon 2004 Training

Tabu Search Algorithm

1. construct an initial solution s
2. while not finished
3. compute N(s), T(s), A(s)
4. choose s’∈(N(s) - T(s)) ∪ A(s) s.t. cost(s’) is min
5. s = s’
6. endwhile

• s: current solution
• N(s): neighborhood set of s where N(s) ⊆ S
• T(s): tabu set of s where T(s) ⊆ N(s)
• A(s): aspiration set of s where A(s) ⊆ T(s)

69ACM/IOI/SuperCon 2004 Training

Tabu Search Algorithm

Step 3

Move operate on the best-
picked neighbor to
generate new solution

Step 1 Step 2

Step 4Step 5

Step 6

Tabu search
Stopped

Set Current
Solution

Define the
Neighborhood

Update the TabuList and
trigger any related events

Stopping conditions
meet

ObjectiveFunction used
to evaluate each of the
neighbors

TabuList and
AspirationCriteria are
consulted

70ACM/IOI/SuperCon 2004 Training

Example: Constrained MST Problem

x1 x2
x3

x4

x6 x7

x5

6

2 0

8 12

18
9

Constraints:

(1) x1 + x2 + x6 ≤ 1

(2) x1 ≤ x3

Penalty of each constraint
violation= 50

71ACM/IOI/SuperCon 2004 Training

Example
• Neighborhood: standard “edge swap”
• An edge is tabu if it was added within the last two

iterations
• The aspiration criteria is satisfied if the tabu move

would create a tree that is better than the best tree
so far

72ACM/IOI/SuperCon 2004 Training

Example
• Iteration 1 (initial MST)

x1 x2
x3

x4

x6 x7

x5

6

2 0

8 12

18
9

cost = 16 + 100

AddDrop

Constraints:

(1) x1 + x2 + x6 ≤ 1

(2) x1 ≤ x3

Penalty of each constraint
violation= 50

ACM/IOI/SuperCon 2004 Training

13

73ACM/IOI/SuperCon 2004 Training

Example
• Iteration 2

x1 x2
x3

x4

x6 x7

x5

6

2 0

8 12

18
9

cost = 28

Tabu

AddDrop

74ACM/IOI/SuperCon 2004 Training

Example
• Iteration 3

x1 x2
x3

x4

x6 x7

x5

6

2 0

8 12

18
9

cost = 32

Tabu

Tabu

Drop
Add

Edge x3 is aspired.

75ACM/IOI/SuperCon 2004 Training

Example
• Iteration 4

x1 x2
x3

x4

x6 x7

x5

6

2 0

8 12

18
9

cost= 23

Tabu

Tabu

76ACM/IOI/SuperCon 2004 Training

Genetic Algorithms
Components:
• Encoding / solution (gene, chromosome)

• Initialization procedure (creation)

• Evaluation function (fitness in environment)

• Selection of parents (reproduction)

• Genetic operators (mutation, crossover)

77ACM/IOI/SuperCon 2004 Training

Standard Genetic Algorithm

initialize population;
evaluate population;
while TerminationCriteriaNotSatisfied
{

select parents for reproduction;
perform genetic operations to generate

offspring (new population)
evaluate population;

}

78ACM/IOI/SuperCon 2004 Training

TSP Example
Encoding is an ordered list of city numbers

1) London 3) Dunedin 5) Beijing 7) Tokyo
2) Venice 4) Singapore 6) Phoenix 8) Victoria

CityList1 (3 5 7 2 1 6 4 8)
CityList2 (2 5 7 6 8 1 3 4)

ACM/IOI/SuperCon 2004 Training

14

79ACM/IOI/SuperCon 2004 Training

Crossover

Parent1 (3 5 7 2 1 6 4 8)
Parent2 (2 5 7 6 8 1 3 4)

Child (2 5 7 2 1 6 3 4)

Note: may generate infeasible offspring!

80ACM/IOI/SuperCon 2004 Training

Crossover
Cycle crossover:
Parent1 (2 3 5 6 4 1 7 8)
Parent2 (1 4 2 3 6 5 8 7)

Child1 (1 3 2 6 4 5 8 7)
Child2 (2 4 5 3 6 1 7 8)

• generates feasible offspring by identifying subsets of
vertices that occupy the same subset of positions in
both parents.

81ACM/IOI/SuperCon 2004 Training

Mutation involves reordering of the list:

Before: (5 8 7 2 1 6 3 4)

After: (5 8 6 2 1 7 3 4)

Mutation

82ACM/IOI/SuperCon 2004 Training

Iterated Local Search
• Problem of Local Search:

– may get stuck in a local optimum of poor quality
– very dependent on the starting tour

• Solution:
• Apply Local Search to more than one tours
• Search Diversification

83ACM/IOI/SuperCon 2004 Training

Multi-start
• Step 1: Create a feasible tour (randomly or by

using a construction heuristic)
• Step 2: Apply Local Search until local optimality
• Step 3: Repeat from Step 1 until some stopping

criteria is met
• Step 4: Output best tour found during this process

84ACM/IOI/SuperCon 2004 Training

Multi-start: Random vs Constructive Restarts
• Random:

• creating a random tour is fast O(n)
• Local Search is likely to be slow
• Local Search usually does not perform very well

• Construction Heuristics
• creating a new tour is slow (O(n2))
• Local Search is usually quite fast
• Local Search usually performs better when started from

good tours

ACM/IOI/SuperCon 2004 Training

15

85ACM/IOI/SuperCon 2004 Training

Dynamic Logistics
Server

Web Server
(virtual store front)

Customer
(web browser)

Purchase order

Delivery details

Delivery
Requirements

Rover Inc

happening in real time

Routing Plan

Exercise: Route Optimization

86ACM/IOI/SuperCon 2004 Training

Given
- k vehicles, each with fixed capacity
- a set of customers, having location,

time window, service duration and demand
- cost matrix [cij]

Find min-cost vertex-disjoint feasible routes to
cover all customers.

Finding a feasible solution is NP-hard, even k=1!

Vehicle Routing Problem with Time Windows

87ACM/IOI/SuperCon 2004 Training

Depot

Vehicle Routing Problem

88ACM/IOI/SuperCon 2004 Training

Vehicle Routing Problem with Time Windows

11:00~12:00
10units

11:30~12:30
20units

10:30~12:00
10units

11:00~11:30
30units

Depot

