
The Visual Computer manuscript No.
(will be inserted by the editor)

Chi-Wan Lim · Tiow-Seng Tan

Surface Reconstruction by Layer Peeling

Abstract Given an input point cloud P in <3, this pa-
per proposes a novel algorithm to identify surface neigh-
bors of each point p ∈ P respecting the underlying sur-
face S, and then to construct a piecewise linear surface
for P . The algorithm utilizes the simple k-nearest neigh-
borhood in constructing local surfaces. It makes use of
two concepts: a local convexity criterion to extract a set
of surface neighbors for each point, and a global projec-
tion test to determine an order for the reconstruction.
Our algorithm not only produces a topologically correct
surface for well-sampled point sets, but also adapts well
to handle under-sampled point sets. Furthermore, the
computational cost of the algorithm increases almost lin-
early in the size of the point cloud. It thus scales well to
deal with large input point sets.

Keywords Surface Reconstruction · Mesh Generation ·
Geometric Modeling · Sampling · Scattered data

1 Introduction

Surface reconstruction from unorganized point set is a
difficult and ill-posed problem as no surface information
is known and there is no unique solution. Existing work
can be categorized into three broad types with noisy sam-
pling having high sampling density at one end and un-
dersampling at the other end. Most existing algorithms
focus on optimal [4] and noisy sampling types [17] that
require input data to be of good sampling density that
satisfies ε-sampling criterion. Little discussion has been
made regarding the output of these algorithms when this
criterion is not fulfilled.

Indeed, the ε-sampling criterion may not be fulfilled
in practice as objects are more likely to be regularly sam-
pled than sampled at very high density. In another view,

School of Computing, National University of Singapore,
3 Science Drive 2, Singapore 117543
E-mail: {limchiwa | tants}@comp.nus.edu.sg
Webpage: www.comp.nus.edu.sg/∼tants/layerPeeling.html

these algorithms frequently employed triangulation al-
gorithms (or Voronoi diagrams) as an intermediate step.
This results in non-linear computational time in general
(though there are special cases of triangulation that runs
in linear time [9]). It is thus interesting to investigate an
almost linear time surface reconstruction algorithm to
deal with large input point clouds.

This paper proposes a novel surface reconstruction
algorithm that runs in time almost linear to the size of
the input point cloud, and well suited to handle the case
of under-sampled input. Very briefly, the algorithm em-
ploys a layer peeling approach to uncover a surface in a
layer-by-layer manner without the use of triangulation
techniques that are global in nature. At each layer, it
strives to form triangle fans for some data points in order
to determine their neighborhood points. These triangle
fans are in turn merged to form a surface for the input.

Section 2 reviews previous work in this area and iden-
tifies issues in the existing methods. Section 3 discusses
the problems that exist in reconstructing under-sampled
point sets. Section 4 describes our proposed layer peeling
algorithm. Section 5 details the construction and merg-
ing of triangle fans. Section 6 provides an analysis of the
algorithm with undersampling and with optimal sam-
pling conditions. Section 7 details our experimental re-
sults, and Section 8 concludes the paper.

2 Related Work

Among many works in surface reconstruction, we discuss
in the following a few important branches of approaches.
Other branches of theoretical works or with algebraic
patches and level set methods (such as [25,27,30,31])
are less relevant to our work here.

The use of k-nearest neighborhood is quite common
among many methods. The earliest such work is devel-
oped by Hoppe et al. [21]. For a point p, the algorithm
uses its k-nearest neighbors to compute a 3-by-3 co-
variance matrix to locally estimate the signed distance
function and then to generate a mesh output. Other

2 Lim & Tan

Fig. 1 The layer peeling algorithm is able to reconstruct
surfaces from point sets of complex topology.

works such as [1,2,6,22] have tried to fit implicit surfaces
over the sets of k-nearest neighborhood. Works such as
[12] have tried to similarly fit radial basis functions. In
general, these algorithms face difficulties during the re-
construction when the k-nearest neighborhood contains
points from disjoint portions of the surface.

Another branch of global based methods uses Voronoi
diagrams and Delaunay triangulations [3–5,16]. Amenta
et al. [5] used the concept of poles in Voronoi cells to
help estimate the point normals which are in turn used
to assist in surface reconstruction. The advantage of us-
ing Delaunay triangulation is that it provides a platform
to prove the correctness of these algorithms on ε-sampled
surfaces. However, when the ε-sampling criterion is not
met, such as in practice that point clouds are just uni-
formly sampled, there is no guarantee on the output
quality.

Bernardini et al. [11] used a ball-pivoting algorithm
to detect and form triangles to construct a surface mesh.
Another such advancing-front approach is the work pro-
posed by Scheidegger et al. [29]. Their work focuses on
meshing noisy point set surfaces, allowing users to select
an error bound. Our work is similar to their techniques
but improves upon them by taking into consideration of
point clouds possibly under-sampled and forming more
perceived layers (such as the point set shown in Figure 1).

Under-sampled point sets have only been briefly men-
tioned in a few works, such as [14]. Their work is, how-
ever, more focused towards the detection of undersam-
pling, rather than adapting to the problem.

The issue of improving the timing of triangulation al-
gorithm has been explored. Funke and Ramos [18] pro-
vided a theoretical improvement to the Cocone algorithm
[4] by performing a local search for possible candidates
for triangulation around a particular point. Our method
differs from their work by using a convexity criterion to
construct triangle fans and it runs in near linear time in
our extensive experiments. Gopi et al. [20] used a projec-
tion plane to perform a lower dimension Delaunay trian-
gulation within a local space. However, their projection
plane is determined only by local eigenanalysis, which
can be inaccurate for an under-sampled point set.

Fig. 2 The k-nearest neighbors for a point in an under-
sampled point set can contain sampled points on the same
surface, or sample points from other parts of the surfaces
that are below or above (shown within red ovals).

3 Problems of Under-Sampled Points Sets

As discussed in the previous section, there are two main
ways to perform surface reconstruction. The first one
uses k-nearest neighbors for each point. In this case, if
the k-nearest neighbors are all located around the local
surface of the point, accurate reconstruction tends to oc-
cur. However, if some of the k-nearest neighbors are from
different parts of the surface, errors during reconstruc-
tion are unavoidable. On the other hand, the second way
is a more global approach that uses Delaunay triangu-
lations. Still, the accuracy of a reconstruction (derived
from the calculation of the poles) is inevitably affected
by the same issue of nearby points coming from different
parts of the surface [4,5].

In general, there are three possible types of sampled
points in the region of interest around a single sampled
point p; see Figure 2. These are sampled points that are
on, above, or below the surface containing p. The main
challenge for any surface reconstruction algorithm is to
differentiate among them when constructing a local sur-
face for p. This is particularly hard with under-sampled
point sets as a k-nearest neighborhood generally contains
more than one type of sampled points.

4 Layer Peeling Algorithm

Our objective is to construct a piecewise linear surface
that fits the point cloud P . In Section 4.1, we explain
the rationale behind our algorithm. Section 4.2 details
one of the important procedure of the algorithm, and
Section 4.3 describes the details of our algorithm.

Surface Reconstruction by Layer Peeling 3

1. Compute k-nearest neighbors of each point using
the ANN software [8,26].

2. Perform eigenanalysis for each point so as to select
a seed to start the layer peeling process to construct
the surface mesh M .

3. Divide points that are not yet part of M into sub-
sets where two points are in the same subset when
one is a k-nearest neighbor of the other.

4. For each subset, repeatedly construct a triangle fan
at a boundary point (based on Fact 2 applied to
within each subset) to merge it into M . Note that
the orientation of a triangle fan is flipped during the
even iterations of this step (as stated by Fact 1).

5. Each point in an isolated group of three or less
points (that cannot possibly form a volume) is
merged to its nearest triangle in M .

6. Step 3 to Step 5 create a layer of the point set; we
now repeat from Step 3 to Step 5 until no more tri-
angle fans (i.e., another layer) can be constructed.

Fig. 3 Layer Peeling Algorithm.

4.1 Algorithmic Rationale

We begin with two simple observations about closed-
manifold in general and their influences on our algo-
rithm.

Fact 1 For any closed-manifold surface in 3D that is
watertight and bounds a volume, a ray intersecting the
surface is always alternating between front-facing (i.e.,
from outside the bounded volume to the inside) and back-
facing intersection.

As the manifold is closed, there exist no path that
leads from the inside of the bounded volume to the out-
side (or vice versa) without passing through the surface.
Each intersection brings the ray from outside into the
inside of the bounded volume, and another intersection
is needed to bring the ray out of the bounded volume.

Fact 2 Consider a rendering of a point set using splats
or small disc at each point. For a viewpoint aligned along
the normal of a point, the point itself is visible if, and
only if, no splats rendered at the other points intersect
with the normal ray from the point.

In rendered images, any object closer to viewpoint
occludes the other. Fact 2 thus follows. With these two
facts in mind, we approach the problem of reconstructing
surfaces from point sets as follows. We start the recon-
struction process from points that lie on the outermost
layer (i.e. points that lie on the convex hull of the point
set). By using Fact 2, we can extract the local surface
around those points. Once a layer is found, we can use
Fact 1 to recursively extract the remaining layers. An
example of a reconstructed surface from a point set with
complex topology is shown in Figure 1. The outline of
the algorithm is given in Figure 3.

4.2 Global Projection Test

A common operation needed in our algorithm is the
global projection test (based on Fact 2). It tests for in-
tersection of a ray with the surface of the point cloud,
while on the other hand the surface has yet to be con-
structed. To get around this, we determine when any
point is within a certain proximity to a ray to mean also
an intersection of the ray with the surface, i.e. such a ray
fails the global projection test. To do this, we build an
octree on the smallest bounding cube of the point set,
and we say a ray intersect the surface of the point cloud
when the ray passes through one or more leaf nodes of
the octree containing input points.

Two notes are in order. First, in constructing this
data structure, we need to decide when to stop subdi-
viding a cube to designate it as a leaf node. Our input
point sets can possibly be regularly or irregularly sam-
pled. For the former, we can fix the length of the leaf
node. However, this approach does not work for the lat-
ter. Therefore, to handle both cases, we first define the
estimated sampling distance of a point to be the dis-
tance from itself to its kth nearest neighbor. Then, we
only subdivide a cube when the estimated sampling dis-
tances of all the points in the cube is shorter than half
the length of the cube. Second, the global projection test
is performed through marching from a leaf node to an
adjacent one (using [28]), starting from the origin of the
ray and along the ray.

4.3 Layer-by-Layer Peeling

The first layer starts with constructing a triangle fan
for a point, calling it a seed. We sort all points in in-
creasing order of their eigenvalue ratios to select a seed.
We define eigenvalue ratio ep for each point p as the ra-
tio of its smallest eigenvalue to the sum of all its three
eigenvalues (as computed in the standard way from the
covariance matrix defined on the k-nearest neighbors of
p). However, we ignore points that have two out of three
eigenvalues with abnormally low values. To determine
whether a point p can be a seed, we use the ray r which
is the third (smallest) eigenvector associated with p, and
check whether it passes the global projection test. If it
does, p qualifies as a seed and r is assigned as its nor-
mal. Otherwise we repeat the test for −r to determine
whether p can still be a seed with −r as its normal.

We construct a triangle fan at the chosen seed (Sec-
tion 5). This triangle fan becomes the initial mesh M
for us to iteratively select another point which is lying
on the boundary of M to form a triangle fan to merge
into M . We term boundary points as points in M whose
triangle fans have yet to be constructed. There are gen-
erally many boundary points and thus many possible
triangle fans to consider for merging into M . As such,
we prioritize all triangle fans using a heap with prefer-

4 Lim & Tan

ence given to one with the smallest variance of dihedral
angles where each is defined between a pair of triangles
sharing an edge in the triangle fan. A triangle fan can
only be added to the heap if it passes the global pro-
jection test with its normal as the test ray. Each time a
triangle fan is merged to M , the boundary of M changes
with new points, and new triangle fans on these points
are constructed for consideration to merge into M . The
construction of this layer ends when no triangle fans can
be constructed for the boundary points of M and at the
same time no new seeds can be found.

The algorithm then moves on to the next layer of
peeling by subdividing the input points not included in
previous layers into subsets where two points are in the
same subset when one is a k-nearest neighbor of the
other. We then create a new octree (for the global pro-
jection test) for each subset to extract its next layer with
respect to the reverse side of the surface (i.e., the orien-
tations of normals are now inverted). We continue the
extraction process from all the boundary points again,
but with a reversed orientation (Fact 1). Once this is
completed, all the normals that are found in the process
are flipped (negated) back. For the subsequent layers (if
needed), we flip the normals once every alternate layer.

5 Triangle Fan

The triangle fan of a point p ∈ P is a convenient notion
for approximating a small region of the surface around p.
We use it to support the extraction of local surfaces. We
note that there are also similar notions of triangle fans in
previous work on surface reconstruction [23]. Our work
differs in the criteria of a suitable triangle fan, and its
use within a novel layer peeling approach to determine
surface neighbors. Section 5.1 details the construction of
triangle fans, and Section 5.2 merging of triangle fans.
Section 5.3 describes the generation of a closed mani-
fold. And, Section 5.4 discusses the approach to handle
irregularly sampled point sets.

5.1 Triangle Fan Construction

Let Np denote the set of k-nearest neighbors of p. A
triangle fan Tp of p is formed by a ring of triangles
t0, t1, . . . , ti where i < k. These triangles are formed
using points p0, p1, . . . , pi where p0, . . . , pi ∈ Np. For
0 ≤ j < i, tj uses vertices pj , p and pj+1, and ti uses ver-
tices pi, p and p0. The vertices p0, p1, . . . , pi form the set
Qp, which is the surface neighbors of p. By construction,
there exists a vertex q ∈ Qp whose triangle fan Tq has
already been constructed (unless p is a seed). Using q, we
can determine the facing of each triangle in the triangle
fan of p, and subsequently the approximated normal at
p. Let 6 αj denote the angle at the vertex p in triangle

tj , and tj the normal of triangle tj . We approximate the
normal n at p by normalizing

∑i
j=0(tj · 6 αj).

With this approximation, we are ready to define the
criteria of our triangle fan Tp:

– Local Convexity Criterion: Each triangle tj ∈ Tp

is such that no other point within the set Np−Qp can
be projected from above (based on normal direction
and orientation of tj) into tj . This means tj lies on
the outermost layer of its neighborhood.

– Normal Coherence Condition: For all tj ∈ Tp,
we have n ·tj > 0. This is because we want a triangle
fan to represent a local surface that is similar to a
topological disk.

– Global Projection Test: A ray from p (in the di-
rection of n) passes the global projection test. This
is in the spirit of processing the input point set from
outer layer towards inner ones.

In the construction of a triangle fan for point p, we
do not seek to construct a unique or optimum triangle
fan that best represents the local surface around p. For
our purposes, any triangle fan selecting only points from
Np and fulfilling the above three criteria is sufficient. As
stated earlier, we start the construction of Tp from point
q. Using q, we employ a greedy algorithm to search for
the next triangle (selecting another point from Np) by
giving each triangle a priority value with preference to
smaller area and dihedral angle (made with the previous
triangle) closes to 180◦. If no suitable triangle can be
found, the algorithm backtracks and searches for the tri-
angle with the next highest priority value. The construc-
tion terminates when a triangle fan is formed, or when
it backtracks to point q. The triangle fan constructed, if
any, that passes the three criteria is then a candidate for
triangle fan merging.

5.2 Triangle Fan Merging

We approximate the local surface region around p using
Tp, with the intention of forming a single piecewise linear
surface covering over the entire point set. Starting with
the first triangle fan that is created at the seed, the al-
gorithm merges each successive new triangle fan into M .
We describe the merging process in the next paragraph.
Before that, we note that a triangle fan has the normal
direction as given in Section 5.1, and the orientation by
the global projection test. Also, each face of a triangle
is considered to be two faces: the front face whose nor-
mal makes a positive dot product with the triangle fan’s
normal, and the back face otherwise.

We merge two triangle fans together based on a rule
that is similar to the global projection test. For a trian-
gle fan Tp, we project a ray from all its triangles’ front
faces along n. For any two triangle fans Tp and Tq, we
merge them together if either the ray from any triangle

Surface Reconstruction by Layer Peeling 5

T
T

p
q

(a)

T T
p

q

(b)

Fig. 4 Two triangle fans Tp and Tq are merged together. In
(a), it shows that the ray projection from Tp hits the back
face of Tq. In (b), both triangle fans are merged together.

T Tp p

(a)

T Tq q

(b)

Fig. 5 A simple triangulation process is done by adding
points (red dots) to the present triangulation. In (a), a point
is added to the triangle which it is projected onto. In (b), a
point can also be added to a triangle if it is projected within
the range of that triangle (as shown within the wedge defined
by the two dotted lines).

in Tp hits any back face of any triangle in Tq or vice
versa, where q ∈ Np. Figure 4 shows the case where
the ray from Tp hits Tq, hence a merging process is re-
quired. Merging is formed by a simple triangulation pro-
cess through the addition of points into a triangle fan
as shown in Figure 5. When a new point is added into
a triangle fan Tp, it is added into the triangle that it is
projected onto, along the direction of the normal of Tp.
This is to maintain the normal coherence.

When the above simple triangulation is performed,
we next seek to optimize the resulting mesh to fit it
more closely to the original surface. We achieve this by
performing edge flips in 3D to increase the minimum di-
hedral angle (i.e. preference on dihedral angle close to
180◦) in the mesh. Our rationale is stemmed from the
fact that as sampling density increases, every edge in
the restricted Delaunay triangulation tends to have a di-
hedral angle close to 180◦ [24].

5.3 Closed Manifold

Since Tp uses only points from Np, it is likely that holes
in M may exist after the layer peeling algorithm is com-
pleted. In order to produce a closed manifold, we use a
simple hole filling algorithm as follows. Throughout the
triangle fan construction and merging process, we main-
tain a list of boundary points. For each boundary point,
there are two boundary edges incident to it to form an
angle (outside of M). In the order of the priority with
preferences to small angles, the algorithm repeatedly in-
serts into M a triangle formed by a boundary point and

Fig. 6 The irregular sampling of points around a point p in
the Dragon point set is shown. The red dashed circle indicates
the bounds of the k -nearest neighbors of p.

its two boundary edges. In the process, the list of bound-
ary points thus changes and priorities are updated ac-
cordingly. In the event that self intersection occurs due
to an insertion, the affected triangles are removed, cre-
ating new boundary points. This new list of boundary
points is closed up in a similar fashion.

5.4 Handling Irregularly Sampled Point Sets

The success of the construction of a triangle fan Tp for
p relies on the uniform distribution of Np. For irregu-
larly sampled point sets, two problems can exist; refer
to Figure 6. The first problem occurs when some neigh-
bors (relative to the other k-nearest neighbors) are too
close to p, thereby forming non-uniformly sized trian-
gles within Tp that causes (projection) problems in the
merging process. The second problem is due to an un-
even sampling around a point, resulting in the situation
that its k -nearest neighbors are all located on one side
of the point.

To handle the first problem, we run a decimation pro-
cess after the k-nearest neighbors are calculated for each
input point. In this process, we scan through each point
in some order (such as the input order) to remove its
neighbors that are within 1

10 of its estimated sampling
distance. Those surviving points at the end of the dec-
imation process then have their k-nearest neighbors re-
calculated, and used to form the mesh M with the layer
peeling algorithm. Thereafter, those points previously re-
moved are merged into their nearest triangles in M . For
the second problem, for each point p, we augment its k-
nearest neighborhood to include points which have p in
their k-nearest neighborhood. This provides more choices
for the construction of triangles for use in the triangle fan
at p.

6 Analysis

In this section, we provide an analysis of our layer peel-
ing algorithm. Section 6.1 provides an explanation that
the proposed layer peeling algorithm can handle under-
sampled point sets well. Furthermore, Section 6.2 shows

6 Lim & Tan

that under optimal-sampling condition, the layer peeling
algorithm is also a provable surface reconstruction algo-
rithm. Section 6.3 discusses the computational time of
our algorithm.

6.1 Under-Sampled Point Sets

By the local convexity criterion used in the triangle fan
construction, we avoid very effectively the problem of
p forming a triangle fan with points in Np lying below
the surface containing p. As for the other problem of
points lying above p but in Np, we explain in the next
paragraph that the layer peeling process can resolve it
effectively too.

For each triangle fan constructed, we test whether it
passes the global projection test before adding it to the
heap for selection during the merging process. In this
way, the layer peeling algorithm can be visualized to be
progressing from the outer portion of the point set, and
then slowing moving inwards. As alluded by Theorem 1
(Section 6.2), at any instance of the algorithm, there ex-
ists a point with no triangle fan constructed yet and
is free of points lying above (or below, depending on
the current iteration) its local surface. By always choos-
ing such a point as the next candidate to construct and
merge its triangle fan, we can avoid the problem of points
within Np that lie above the local surface around p.

6.2 Optimal-Sampled Point Sets

The medial axis of the surface S is the closure of the set
of points in <3 that has two or more closest points in
S. The local feature size, f(p), at a point p on S is the
least distance of p to the medial axis. The medial balls
at p are defined as the balls that touch S tangentially
at p and have their centers on the medial axis. A point
cloud P is called an ε-sample of S (where 0 < ε < 1), if
every point p ∈ S has a point in P at distance at most
εf(p). For the purpose of our proof, we require a stricter
sampling condition, known as an (ε, δ)-sampling [15]. An
ε-sample of S is called an (ε, δ)-sample if it satisfies an
additional condition:

∀p, q ∈ P : ‖p− q‖ ≥ δf(p)

for ε
2 ≤ δ < ε < 1.

For the remaining part of this section, we assume the
point set P to be an (ε, δ)-sample. A method to obtain
an (ε, δ)-sample from an ε-sample is provided in [18].
The Delaunay triangulation of P restricted to S is the
dual complex of the restricted Voronoi diagram of P .
The restricted Voronoi diagram is the collection of all
restricted Voronoi cells, and the restricted Voronoi cell
of a sample point p ∈ P is the intersection of the Voronoi
cell of p with S. With these, we next provide the analysis
of our proposed algorithm.

We require two lemmas from [3,19]. The first lemma
bounds the maximum length of an edge in a restricted
Delaunay triangulation. The second lemma bounds the
angle of the normals between two points that are suffi-
ciently close.

Lemma 1 [19] For p, q ∈ P , if pq is an edge of the
restricted Delaunay triangulation, then

‖p− q‖ ≤ 2ε

1− ε
min{f(p), f(q)}.

Lemma 2 [3] For any two points p and q on S with
‖p − q‖ ≤ ρ min{f(p), f(q)}, for any ρ < 1

3 , the angle
between the normal to S at p and at q is at most ρ

(1−3ρ) .

Based on the above lemmas, we have the following
corollary:

Corollary 1 For p, q ∈ P , if pq is an edge of the re-
stricted Delaunay triangulation, then the angle between
the normal at p and at q is at most 38.1◦ for ε ≤ 0.1.

Proof. Combining Lemma 1 and Lemma 2, we let ρ be
2ε

1−ε to obtain ρ
1−3ρ = 2ε/(1−ε)

1−6ε/(1−ε) = 2ε
1−7ε . The maximum

angle difference of 38.1◦ is achieved with ε = 0.1. ut
In the following, we define the local region around a

point p as the space where all points within that region
is at most a distance of 2ε

1−ε away from p. For an (ε, δ)-
sample, [7] provides a formula to calculate the value of k,
such that Np contains all points within the local region
around p. The next theorem shows that the layer peeling
algorithm does not prematurely terminate before a man-
ifold is constructed. For the proof, it is sufficient to show
the existence of a seed to construct a triangle fan, though
our algorithm usually utilizes points from the boundary
of M for the purpose.

Theorem 1 At any instance during the execution of the
layer peeling algorithm on a point set P , it always exists
a point p to construct a triangle fan Tp to become a part
of M .

Proof. Let P ′ ⊆ P where each point in P ′ has no triangle
fan constructed yet. We pick p ∈ P ′ to be a vertex of the
convex hull of P ′. Next, we construct a triangle fan Tp for
p. Clearly, p with Tp passes the global projection test; we
next show that Tp satisfies the local convexity criterion
and the normal coherence condition.

Refer to Figure 7. For point p, the local region around
p (shown in dashed red circle) is bounded by two balls of
radius f(p). Now consider one of the ball B. We tilt the
ball in any arbitrary direction while pivoting at point p
until a point q is hit. Similar to [11], we now pivot the ball
on the edge pq. By rotating the ball on the edge pq, ball
B comes into contact with another point r (not shown
in the 2D Figure 7), forming a triangle pqr. Since the
surface S is ε-sampled, therefore a ball of radius εf(p)
cannot penetrate S. Thus the maximum radius of the

Surface Reconstruction by Layer Peeling 7

m m’

B

p q

local region

Surface

B’

Fig. 7 A medial ball centered at m is pivoted at point p.
The maximum deviation of the line pm is pm′.

circumcircle of pqr can be at most εf(p). The maximum
tilt of ball B happens when its surface intersects the
other medial ball’s surface to form a circle of radius at
most εf(p). (In the case when ε is 0.1, the maximum tilt
is only 12◦ by a simple calculation.) The maximum tilt
of ball B is shown as B′ in Figure 7. Furthermore, we
note that p, q, and r exist in Np as q and r are of at most
2εf(p) distance away from p. To extract the full Tp, we
continue to pivot the ball B on the edge pr and rotate
away from q to extract the next triangle. We continue in
this fashion until Tp is formed.

To prove that Tp obeys the local convexity criterion,
we consider each triangle of Tp in turn. For each triangle,
ball B is able to pivot on its three vertices. Since ball B
is empty of points, the local convexity rule is easily seen
to obey.

To show that normal coherence is obeyed by Tp, we
consider the line pm, where m is the center of ball B.
During the extraction of Tp, the line pm′ traverses within
a cone-like space. After Tp is formed, n lies within this
cone-like space. Since the tilt of pm′ never exceeds 90◦
(recall the maximum tilt for ε = 0.1 is only 12◦), normal
coherence condition is obeyed. ut

In the way we derive subsets of P (in Step 3 of Fig-
ure 3), Theorem 1 also holds for each subset. The next
lemma proves that the intersection of S with the local
region around any particular point p is a topological disk.

Lemma 3 Consider a point p ∈ P with n being the nor-
mal to S at p, and a region S′ ⊆ S where S′ is the inter-
section of S with the local region around p. Then there
exists an injective function to map S′ to a 2D plane with
a normal of n for ε ≤ 0.1.

Proof. For any q ∈ S′, we know that the maximum angle
difference between the normals to S at p and q is 38.1◦
by Corollary 1. Consider a line along the direction of n.
It can intersect S′ at most once, since for intersection to
occur twice, the normal at some part of S′ needs to be
at least more than 90◦ away from n. Thus we can define
the function µ as a linear projection from S′ using n as
the projection normal. It can be easily seen that µ is an
injective function, since no two points within S′ can be
projected to a single point. ut

From here, we can now begin to show how the output
from our layer peeling algorithm is homeomorphic to the
original surface where the point set is obtained.

Theorem 2 The piecewise linear surface constructed by
our layer peeling algorithm is homeomorphic to the sur-
face S for an (ε, δ)-sampled point set P where ε ≤ 0.1.

Proof. We aim to prove that, through a series of local
operations, we are able to transform the piecewise linear
surface constructed by our algorithm to the Delaunay
triangulation of the input point set P restricted to S.
The theorem thus follows as a Delaunay triangulation of
P restricted to S with ε ≤ 0.1 is homeomorphic to the
original surface S as proved in [4].

First, we show that the restricted Delaunay triangu-
lation within the local region of p can be projected to a
2D plane. By Lemma 3, the local region around p can
be projected into a 2D plane smoothly. Since those re-
stricted Voronoi cells are on the surface within the local
region of p, they can also be projected similarly. Thus,
it follows that those dual restricted Delaunay edges can
be projected as well.

Next, we consider the piecewise linear surface pro-
duced by our algorithm. It cannot be projected straight-
forwardly to a 2D plane as in the restricted Delaunay
triangulation case. This is because, with a small chance,
the merging of a triangle fan at p to the mesh M can
produce a triangle incident to p whose normal can be
almost orthogonal to n, where n is the normal to S at
p. Such a triangulation occurs because of badly shaped
sliver, for example a splinter or spike sliver, as classified
in [13], where edge flipping may not be able to remove.
Nevertheless, we can transform the triangulation around
the local region of p to one that minimizes the maximum
slope via the edge insertion technique [10]. Such a trian-
gulation does not have badly shaped triangles as the lo-
cal region to be constructed is known to obey Lemma 3.
With this, we can now project the triangulation around
the local region of p to a 2D plane.

With both the restricted Delaunay triangulation and
our triangulation around the local region of p projected
to a 2D plane, we can use edge flip operations in 2D to
transform from one to the other. This is because in 2D for
a fixed set of points, any triangulation is transformable to
another one through a series of edge flips. Thus, we can
transform our piecewise linear surface to the restricted
Delaunay triangulation. This completes our series of op-
erations and the proof. ut

6.3 Computational Time

In general, our algorithm is mostly local. However, there
are two portions of the algorithm with non-linear time
complexity. The first is the computation of the k-nearest
neighbors while the other is the global projection test.
For both cases, the data structures consist of spatial tree

8 Lim & Tan

decomposition approaches. Both require O(n log n) time
to construct, and O(log n) time to process for each point
where n is the number of input points. For the former, we
only construct it once at the start of the algorithm and
the actual timing taken by this process is insignificant
when compared with that by the rest of the algorithm.
For the latter case, the construction time is similarly
insignificant, but the global projection test can be ex-
pensive as each point may perform the test many times
during its triangle fan construction. However, we note
that for each subsequent layer, the size of the octree gets
progressively smaller as the point set is split into subsets.
Hence, the influence of the non-linear time complexity
portions of the algorithm is not so evident as shown in
our experimental results reported in the next section.

7 Experimental Results

We have implemented our algorithm on a Pentium IV
3.0GHz, 4GB DDR2 RAM and nVidia GeForce 6600
with 256MB DDR3 video memory. For purposes of com-
parison, we downloaded the commonly used TightCo-
cone software [16] to run on the same machine as a bench-
marking algorithm. For our implementation, we take 16
to be the value of k. Although the upper bound stated
in [7] is 32, we found that for our experiments 16 is suf-
ficient. For a comprehensive comparison, we use nine
real point sets (indicated in Figure 12) available from
www.cs.princeton.edu/gfx/proj/sugcon/models/ and
www.cyberware.com, and one artificially created point set
as shown in Figure 2. The point sets have sizes ranging
from 35,947 (Bunny) to 183,408 (Lion). In each case, we
run the algorithms on the original point sets, and then
progressively run on smaller samples of the original data
to assess the robustness of the algorithms in the presence
of undersampling. Smaller samples are obtained through
uniformly undersampling the original point sets using
Geomagic Studio software. Furthermore, we run the al-
gorithm on another three large and irregularly sampled
point sets from graphics.stanford.edu/data/3Dscanrep/.

Visual Quality. Figure 8 to Figure 10 highlight the dif-
ferences in some of the outputs of our algorithm as com-
pared to that of TightCocone; see accompanying video
for more examples. Our algorithm generally respects the
local features of the point cloud, and handles thin regions
well. It usually does not generate erroneous triangles that
span across unrelated parts of the surface. These show
that our algorithm can produce meshes that match well
with human perceptions of the point clouds.

Normal. In many cases, comparing output meshes from
TightCocone and our algorithm do not provide any in-
sight to the quality of the results as both outputs use
different sets of edges and triangles but yet looked iden-
tical visually in most parts. As such, we turn to compar-
ing normals extracted by both algorithms. To do this as

(a) (b)

Fig. 8 Meshing results of the Armadillo point data (5787
points). (a) is produced by TightCocone where abnormal tri-
angles are formed between the ear and the hand area. (b) is
produced by our layer peeling algorithm.

(a) (b)

Fig. 9 Meshing results of the Hip Bone point data (1964
points). Result (a) is produced by the TightCocone where
various deficiencies in the meshing results are highlighted.
Result (b) is produced by our layer peeling algorithm.

(a) (b)

Fig. 10 Meshing results of the Bunny point data (1220
points). The result of TightCocone is shown in (a) where
the ear of the Bunny is shown to be disconnected. Our layer
peeling algorithm result is shown in (b).

1 1/2 1/4 1/8 1/16 1/32

Ave 2.808 4.053 6.092 9.151 16.628 33.181

Min 1.602 2.712 4.158 5.642 7.274 8.802

Max 7.761 7.171 9.776 12.798 33.123 118.234

Ave 0 1.194 3.218 4.99 7.603 10.5

Min 0 1.151 1.794 2.758 4.835 6.367

Max 0 4.319 5.801 9.563 13.044 15.674

Ave 0.53 2.021 3.213 4.733 7.109 9.925

Min 0.121 1.248 1.921 2.93 4.909 6.42

Max 2.744 4.449 5.949 8.184 11.357 15.777

Fraction of Original Point Set

Hoppe [21]

TightCocone [16]

Layer Peeling

Algorithm

Table 1 Average, minimum and maximum difference (in
degree) of normals computed by the different methods for
the nine models.

presented in Table 1 for our nine sets of point data, we
fix the ground truth of the normals as one that is com-
puted by TightCocone on the original point set. (This is
the reason that the entries in the column for the original
point sets in Table 1 for TightCocone are 0.) We also
include in Table 1 the results of our implementation of
the normal computation with simple k-nearest neighbor-

Surface Reconstruction by Layer Peeling 9

(a) (b)

Fig. 11 Meshing results of the artificially created under-
sampled point set model (1728 points). The result of Tight-
Cocone is as shown in (a) having huge distortion, while our
result is as shown in (b).

hood method [21]. The result produced by [21] indicates
that by only using a simple eigenanalysis of k-nearest
neighborhood is often not desirable, especially for highly
undersampled point set. Furthermore, it highlights the
fact that our layer peeling algorithm does in fact im-
prove upon simple k-nearest neighborhood algorithm. In
addition, we observe that our algorithm matches very
well with TightCocone in terms of computed normals
for both the original point sets as well as those under-
sampled point sets.

To test the three algorithms on a point set which
have known normals, we use the data set from the ob-
ject shown in Figure 2. The result is tabulated in Table 2
and shown in Figure 11. The proximity between the op-
posite surfaces gets relatively smaller as the point set is
being gradually undersampled. When the point set is be-
ing reduced to 1

32 of its original size, [21] breaks down
while [16] suffers from some distortion as shown in Fig-
ure 11(a). On the other hand, Figure 11(b) shows that
our algorithm is still able to maintain relatively good
output.

Running Time. Our algorithm runs in general faster
than TightCocone. However, when the size of the point
set model is small, the converse is true. This is mainly
due to the overhead incurred for the calculation of the
k-nearest neighbors and the construction of the octree
for the global projection test. As the point set grows
larger in size, the advantage of using the layer peeling
algorithm becomes evident. We also notice the average
time taken per point in our case across different sizes of
each point set is roughly a constant; see Figure 12. This
means our algorithm runs in almost linear time, as it
is largely a local algorithm. This compares favorably to
TightCocone which runs in non-linear time as observed
in our experiment. Our algorithm thus scales well to large
point clouds. This can be very important as large point
clouds will be commonly used to produce high quality
models.

Irregularly Sampled Point Sets. Table 3 shows the
result of our algorithm on three large and irregularly
sampled point sets: Buddha, Dragon, and Lucy. These

1/32 1/16 1/8 1/4 1/2 1

0.8

1.2

1.6

2.0

2.4

2.8

3.2

A
ve

ra
ge

 t
im

e
ta

ke
n

pe
r

po
in

t
(m

il
li

se
co

nd
)

Fraction of original point set

 Armadillo

 Bunny

 Hipbone

 Horse

 Igea

 Lion

 Maxplanck

 RockerArm

 Santa

 E-Shaped

Layer Peeling Algorithm

1/32 1/16 1/8 1/4 1/2 1

0.8

1.2

1.6

2.0

2.4

2.8

3.2

A
ve

ra
ge

 t
im

e
ta

ke
n

pe
r

po
in

t
(m

il
li

se
co

nd
)

Fraction of original point set

 Armadillo

 Bunny

 Hipbone

 Horse

 Igea

 Lion

 Maxplanck

 RockerArm

 Santa

 E-Shaped

TightCocone

Fig. 12 The average time taken to process a point.

1 1/2 1/4 1/8 1/16 1/32

Hoppe [21] 1.608 1.83 2.386 3.954 5.515 93.929

TightCocone [16] 1.482 1.589 1.724 2.292 3.089 13.158

Layer Peeling 1.488 1.59 1.726 2.295 3.099 5.02

Algorithm
Fraction of Original Point Set

Table 2 Average difference (in degree) of normals computed
by the different methods for the E-shaped object in Figure 2.

Buddha 543652 1.505 3.882 0.013
Dragon 437626 1.297 4.154 0.107
Lucy 262909 1.94 2.675 0.283

Point Set Point Size
Time

(Layer Peeling)
Time

(TightCocone)
Computed Normals

Difference

Table 3 Results of the three irregularly sampled models.
The time taken per point is in millisecond while the average
difference in computed normals is in degree.

three point sets are much larger in size than the nine
regularly sampled point sets. Not only does the running
time of our layer peeling algorithm remains in the same
order as that for the nine regularly sampled point sets
(as shown in Figure 12), it is also much faster than the
TightCocone algorithm. Furthermore, the similarity in
the calculated normal values indicates the accuracy of
our reconstruction on irregularly sampled point sets.

8 Conclusion

We present a novel approach for constructing surfaces
from point clouds through a triangle fan construction.
Under optimal sampling conditions, we prove that our
algorithm is able to produce a homeomorphic surface to

10 Lim & Tan

the sampled surface. Our algorithm adapts well to under-
sampled point sets with the use of the convexity criterion
and the global projection test. Furthermore, the largely
local nature of the algorithm allows the computational
cost of the reconstruction process to scale almost linearly
with the size of the input. Potential future work includes
the extension of our layer peeling algorithm to handle
noisy point sets.

Acknowledgements This research is supported by the Na-
tional University of Singapore under grant R-252-000-216-
112.

References

1. Alexa, M., Adamsom, A.: On normals and projection op-
erators for surfaces defined by point sets. In: Proceedings
of 1st Symposium on Point Based Graphics, pp. 150–155
(2004)

2. Alexa, M., Behr, J., Cohen-Or, D., Fleishman, S., Levin,
D., Silva, C.T.: Point set surfaces. In: Proceedings of
IEEE Visualization, pp. 21–28 (2001)

3. Amenta, N., Bern, M.: Surface reconstruction by Voronoi
filtering. In: Proceedings of 14th Annual Symposium on
Computational Geometry, pp. 39–48 (1998)

4. Amenta, N., Choi, S., Dey, T.K., Leekha, N.: A simple
algorithm for homeomorphic surface reconstruction. In:
Proceedings of 16th Anuual Symposium on Computa-
tional Geometry, pp. 213–222 (2000)

5. Amenta, N., Choi, S., Kolluri, R.: The power crust. In:
Proceedings of 6th ACM Symposium on Solid Modelling,
pp. 249–260 (2001)

6. Amenta, N., Kil, Y.J.: Point-set surfaces. In: Proceedings
of ACM SIGGRAPH, pp. 264–270 (2004)

7. Andersson, M., Giesen, J., Pauly, M., Speckmann, B.:
Bounds on the k-nearest neighborhood for locally uni-
formly sampled surfaces. In: Proceedings of 1st Sympo-
sium on Point Based Graphics, pp. 167–171 (2004)

8. Arya, S., Mount, D.M., Natanyahu, N.S., Silverman, R.,
Wu, A.Y.: An optimal algorithm for approximate nearest
searching in fixed dimension. Journal of the ACM 45(6),
891–923 (1998)

9. Attali, D., Boissonnat, J.: A linear bound on the complex-
ity of the Delaunay triangulation of points on polyhedral
surfaces. In: Proceedings of 14th Annual Symposium on
Computational Geometry, pp. 39–48 (1998)

10. Bern, M., Edelsbrunner, H., Eppstein, D., Mitchell, S.,
Tan, T.S.: Edge insertion for optimal triangulations. Dis-
crete & Computational Geometry 10(1), 47–65 (1993)

11. Bernardini, F., Mittleman, J., Rushmeier, H., Silva, C.,
Taubin, G.: The ball-pivoting algorithm for surface re-
construction. IEEE Transactions on Visualization and
Computer Graphics 5(4), 349–359 (1999)

12. Carr, J.C., Beatson, R.K., Cherrie, J.B., Mitchell, T.J.,
Fright, W.R., McCallum, B.C., Evans, T.R.: Reconstruc-
tion and representation of 3D objects with radial basis
functions. In: Proceedings of ACM SIGGRAPH, pp. 67–
76 (2001)

13. Cheng, S.W., Dey, T.K., Edelsbrunner, H., Facello, M.A.,
Teng, S.H.: Sliver exudation. In: Proceedings of 15th
Annual Symposium of Computational Geometry, pp. 1–
13 (1999)

14. Dey, T.K., Giesen, J.: Detecting undersampling in surface
reconstruction. In: Proceedings of 17th Annual Sympo-
sium of Computational Geometry, pp. 257–263 (2001)

15. Dey, T.K., Giesen, J., Goswami, S., Zhao, W.: Shape di-
mension and approximation from samples. Discrete &
Computational Geometry 29, 419–434 (2003)

16. Dey, T.K., Goswami, S.: Tight cocone: A water-tight sur-
face reconstructor. Journal of Computing and Informa-
tion Science in Engineering 3, 302–307 (2003)

17. Dey, T.K., Goswami, S.: Provable surface reconstruction
from noisy samples. In: Proceedings of 20th Annual Sym-
posium of Computational Geometry, pp. 330–339 (2004)

18. Funke, S., Ramos, E.A.: Smooth-surface reconstruction
in near-linear time. In: Proceedings of Symposium on
Discrete Algorithms, pp. 781–790 (2002)

19. Giesen, J., Wagner, U.: Shape dimension and intrinsic
metric from samples of manifolds with high co-dimension.
In: Proceedings of 19th Annual Symposium on Compu-
tational Geometry, pp. 329–337 (2003)

20. Gopi, M., Krishnan, S., Silva, C.T.: Surface reconstruc-
tion based on lower dimensional localized Delaunay tri-
angulation. Computer Graphics Forum (Eurographics)
19(3), C467–C478 (2000)

21. Hoppe, H., DeRose, T., Duchamp, T.: Surface reconstruc-
tion from unorganized points. In: Proceedings of ACM
SIGGRAPH, pp. 71–78 (1992)

22. Levin, D.: Mesh-independent surface interpolation. In:
Geometric Modelling for Scientific Visualization, pp. 37–
49 (2003)

23. Linsen, L., Prautzsch, H.: Fan clouds - an alternative to
meshes. In: Proceedings of Dagstuhl Seminar 02151 on
Theoretical Foundations of Computer Vision - Geometry,
Morphology and Computational Imaging (2003)

24. Mederos, B., Velho, L., de Figueiredo, L.H.: Smooth sur-
face reconstruction from noisy clouds. In: Proceedings of
Eurographics Symposium on Geometry Processing, pp.
53–62 (2005)

25. Mitra, N.J., Nguyen, A.: Estimating surface normals in
noisy point cloud data. In: Proceedings of 19th Annual
Symposium on Computational Geometry, pp. 322–328
(2003)

26. Mount, D.M., Arya, S.: ANN: A library for ap-
proximate nearest neighbor searching (2005).
http://www.cs.umd.edu/∼mount/ANN/

27. Ohtake, Y., Belyaev, A., Alexa, M., Turk, G., Seidel,
H.P.: Multi-level partition of unity implicits. In: Pro-
ceedings of ACM SIGGRAPH, pp. 463–470 (2003)

28. Revelles, J., Urena, C., Lastra, M.: An efficient para-
metric algorithm for octree traversal. In: Proceedings
of WSCG, pp. 212–219 (2000)

29. Scheidegger, C.E., Fleishman, S., Silva, C.T.: Triangulat-
ing point set surfaces with bounded error. In: Proceed-
ings of Eurographics Symposium on Geometry Process-
ing, pp. 63–72 (2005)

30. Xie, H., McDonnell, K.T., Qin, H.: Surface reconstruction
of noisy and defective data sets. In: Proceedings of IEEE
Visualization, pp. 259–266 (2004)

31. Zhao, H.K., Osher, S., Fedkiw, R.: Fast surface recon-
struction using the level set method. In: Proceedings of
IEEE Workshop on Variational and Level Set Methods,
pp. 194–202 (2001)

C. W. Lim is a PhD student at the School of Computing,
National University of Singapore. His interests in computer
graphics include point based graphics and surface reconstruc-
tion.

T. S. Tan is an Associate Professor at the School of Comput-
ing, National University of Singapore. His research interests
are in interactive computer graphics and computational ge-
ometry.

