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Optimal Triangulation Problems

This paper surveys some recent solutions to triangulation problems in �D plane and surface� In particular� it focuses
on three e�cient and practical schemes in computing optimal triangulations useful in engineering and scienti�c
computations� such as �nite element analysis and surface interpolation�

The edge�insertion paradigm can compute for a set of n vertices� with or without constraining edges� a min�
max angle and a max�min height triangulation in O�n� logn� time and O�n� storage� and a min�max slope and a
min�max eccentricity triangulation in O�n�� time and O�n�� storage�

The subgraph scheme can compute a min�max length triangulation for a set of n vertices in O�n�� time and
storage� Length refers to edge length and is measured by some normed metric such as the Euclidean or any other �p
metric� Additionally� the scheme provides some insight to the minimum weight triangulation problem�

The wall scheme can compute for a given set of n vertices and m constraining edges� a conforming Delaunay
triangulation of O�m�n� vertices� Additionally� an extension of the wall scheme can re�ne a triangulation of size
O�n� to a quality triangulation of size O�n�� that has no angle measuring more than ��

��
��

�� Introduction

Triangulation is a prominent meshing method that decomposes a domain into a collection of triangles for purposes
of other computations� It is used in many areas of engineering and scienti�c applications such as �nite element
methods� approximation theory� numerical analysis� computer�aided geometric design� etc� Algorithmic problems
on computing triangulations that are optimal according to measures on the size and shape of their triangles have
been popular research topics since ���	s� Substantial advances on these problems were made recently� In this paper�
we survey some recent solutions in computing a number of optimal triangulations mentioned in engineering and
scienti�c computing literatures� Most of these algorithms are the �rst and currently the only ones that construct
the required optimal triangulations in time polynomial to the input size�

The emphasis of this paper is somewhat di
erent from that of the detailed survey on the subject by Bern and
Eppstein ��
� We view those algorithms mentioned in the previous paragraph as examples of three general schemes
in solving optimal triangulation problems� See ��������	
 for complete technical details on the material discussed in
this paper as well as many more relevant references omitted by this paper�

�� Problem De�nitions

Let S be a set of n points or vertices in IR�� An edge is a closed line segment connecting two points� Let E be a
collection of edges determined by vertices of S� Then G � �S�E� is a plane geometric graph if �i� no edge contains
a vertex other than its endpoints� that is� ab � S � fa� bg for every edge ab � E� and �ii� no two edges cross� that
is� ab � cd � fa� bg for every two edges ab �� cd in E� One example of a plane geometric graph is a �simple� polygon
where E forms a single cycle�

A triangulation is a plane geometric graph T � �S�E� so that E is maximal� By maximality� edges in E bound
the convex hull of S� i�e� the smallest convex set in IR� that contains S� and subdivide its interior into disjoint faces
bounded by triangles� With reference to a polygon� we talk about its triangulation as restricted to only within the
cycle bounding the polygon�

A plane geometric graph G � �S�E� can be augmented with an edge set E� until it is a triangulation
T � �S�E � E��� referred to as a triangulation of G� In this case� E is the set of constraining edges if it is
not empty� Besides edges� we can also augment G � �S�E� with a vertex set S�� A triangulation obtained in this
manner is called a Steiner triangulation of G� and S� the set of Steiner vertices� We call a Steiner triangulation with
constraining edges a conforming triangulation in which each constraining edge is the union of some edges in the
triangulation�

A plane geometric graph G permits many augmentations� with or without Steiner vertices� to di
erent tri�
angulations� Various shape criteria can be used to classify some as optimal triangulations� Many of these criteria
are de�ned as max�min� short for maximizes the minimum� or min�max when no Steiner vertices are used� The



�rst quanti�er is over all triangulations of G and the second is over all measures of triangles of a triangulation� A
measure � is a function that maps a triangle xyz to a real value ��xyz�� Examples of measures are largest angle and
largest edge length� When Steiner vertices are allowed� we refer to such optimal triangulation as optimal conforming
triangulations� Problems abstracted from the engineering and scienti�c computing literatures as addressed by this
paper are� given a plane geometric graph G � �S�E�� �nd a speci�c optimal triangulation or �nd a speci�c optimal
conforming triangulations� The edge�insertion paradigm �Section �� and the subgraph scheme �Section �� address
optimal triangulation problems whereas the wall scheme �Section �� solves some optimal conforming triangulation
problems�

�� The Edge�Insertion Paradigm

The edge�insertion paradigm is an iterative improvement method that computes min�max or max�min optimal tri�
angulations� In the case of a min�max criterion� we consider the construction of a triangulation of a plane geometric
graph G � �S�E� whose maximummeasure ��xyz� over all its triangles xyz is the smallest among all possible trian�
gulations of G� Formally� the measure of a triangulation A is de�ned as ��A� � maxf��xyz� � xyz a triangle of Ag�
If A and B are two triangulations of G� then B is called an improvement of A� if ��B� � ��A�� or ��B� � ��A� and
the set of triangles xyz in B with ��xyz� � ��B� is a proper subset of the set of such triangles in A� A triangulation
A is optimal for � if there is no improvement of A� A max�min criterion can be treated analogously�

The basic idea of the edge�insertion paradigm is to improve iteratively a current triangulation A by a simple
edge�insertion step which adds an appropriate new edge say qs to A� deletes edges in A that cross qs� and retrian�
gulates the resulting polygons to the left and the right of qs� In other words� the method starts by constructing an
arbitrary triangulation A of G� then iteratively applies the edge�insertion step until no further improvement to the
current triangulation is found� Obviously� such simple idea does not work for all measures � as some may lead to
sub�optimal solutions� In fact� the paradigm is known to be applicable if the so�called Cake�Cutting Lemma that
guarantees improvement in each iteration and thus convergent to optimal solution is true� see ������
 for details� The
next result is obtained by the edge�insertion paradigm�

T h e o r em �� For a plane geometric graph G of n vertices�
��� a min�max angle triangulation of G can be computed in time O�n� logn� and storage O�n��
��� a max�min height triangulation of G can be computed in time O�n� logn� and storage O�n��
�	� a min�max eccentricity triangulation of G can be computed in time O�n�� and storage O�n��� and
�
� a min�max slope triangulation of G can be computed in time O�n�� and storage O�n���

Let us de�ne those terms mentioned in the theorem� A min�max angle triangulation of G minimizes the maximum
angle of its triangles� over all triangulations of G� The height ��xyz� of triangle xyz is the minimum distance
from a vertex to the opposite edge� We write ��A� � minf��xyz� � xyz a triangle of Ag for the measure of a
triangulation A of G� A max�min height triangulation of G maximizes ��A� over all triangulations A of G� The
eccentricity of triangle xyz� ��xyz�� is the in�mum over all distances between the center of the circumcircle of xyz
and points in the closure of xyz� Clearly� ��xyz� � 	 i
 the center of the circumcircle lies in the closure of xyz� We
de�ne ��A� � maxf��xyz� � xyz a triangle of Ag� A min�max eccentricity triangulation of G minimizes ��A� over all
triangulations A of G� The de�nition of slope given in the next paragraph involves surfaces�

Consider a function f � IR� � IR de�ning a surface x� � f�x�� x�� in IR�� The gradient of f is the vector
rf � � �f

�x�
� �f

�x�
�� each component of which is itself a function from IR� to IR� De�ne r�f � � �f

�x�
���� �f

�x�
��� and call

p
r�f at a point �x�� x�� the slope at this point� Let S be a set of n points of G in IR� and let �S be the corresponding

set in IR� where each point of S has a third coordinate called elevation� For a point x of S� we write �x for the �lifted�
point� that is� the corresponding point in �S� Analogous to the de�nitions in IR�� �x�y denotes the line segment with
endpoints �x and �y� and �x�y�z denotes the triangle with vertices �x� �y� �z� We can think of �x�y�z as a partial function f

on IR�� de�ned within xyz� At each point in the interior of xyz� the gradient is well de�ned and the same as for
any other point in the interior of xyz� We can therefore set ��xyz� equal to the slope at any point in the interior of
xyz� and call it the slope of xyz� For a triangulation A of G� we de�ne ��A� � maxf��xyz� � xyz a triangle of Ag�
A min�max slope triangulation of G minimizes ��A� over all triangulations A of G�

�� The Subgraph Scheme

The subgraph scheme constructs a desired optimal triangulation by �rst computing a sub�structure of the optimal
triangulation and then complete the computation by solving smaller problems de�ned by the sub�structure� This
scheme works when �i� the sub�structure can be computed e�ciently and �ii� the sub�structure can subdivide
the problem into smaller problems such as polygons that can be solved e�ciently� For instance� the scheme has



successfully solved the min�max length triangulation problem ��
�

T h e o r em �� A min�max length triangulation of a set of n points in IR� can be constructed in O�n�� time
and storage�

A triangulation that minimizes the length of its longest edge over all possible triangulations of the same point set
is called a min�max length triangulation� Notice that the theorem is formulated with reference to a set of n points
instead of the general plane geometric graph� In fact� the theorem is valid for the latter provided the minimization
condition is de�ned over all edges including the constraining ones� see ��
� In any case� the correctness of the
theorem follows from the so�called Subgraph Theorem which asserts that every point set S in IR� has a min�max
length triangulation mlt�S� so that rng�S� � ch�S� � mlt�S� where rng�S� is the relative neighborhood graph of S
and ch�S� is the set of edges bounding the convex hull of S� The next paragraph provides further details on this�

The relative neighborhood graph of S� rng�S�� is a plane geometric graph with vertex set S and edge set
containing ab� for a and b in S� i
 dist�ab� � minx�S�fa�bgmaxfdist�xa�� dist�xb�g where dist�xy� denotes the
distance between x and y� Since rng�S� and ch�S� can each be computed in O�n logn� time� and rng�S� � ch�S� is
a connected graph of S� the problem of computing a mlt�S� can be solved by �rst computing rng�S� � ch�S� and
then computing an optimal triangulation within each polygon de�ned by edges of rng�S� � ch�S�� The latter was
also shown to be solvable in O�n�� time� Besides Euclidean metric� Theorem � can be extended to general normed
metrics as stated in the next theorem�

T h e o r em �� Let S be a set of n points in IR� equipped with a normed metric� Given the relative neighborhood
graph� a min�max length triangulation of S can be constructed in time O�n���

Examples of normed metrics are the �p�metrics� for p � �� �� �� � � �� and the so�called A�metric used in VLSI applica�
tions� The above theorem raises the question of how fast the relative neighborhood graph can be constructed for a
given normed metric� The trivial algorithm tests all

�
n

�

�
edges� each in time O�n�� and therefore takes time O�n���

Faster algorithms are known for the �p�metrics where O�n logn� time su�ces�

We note that min�max length is currently the only non�trivial length criterion known to be computable in
polynomial time� There are other related problems on length criteria whose complexities remain open� In particular
the well�known problem of minimum weight triangulation� which is a triangulation that minimizes the sum of edge
lengths over all triangulations of the same point set� The recent result of Keil shows that the so�called

p
��skeleton

of S is a subgraph of the minimum weight triangulation ��
� This subgraph� though can be computed e�ciently� is
not always a connected graph of S and thus does not subdivide the problem into smaller problems that have e�cient
solutions� Some experimental results in this direction can be found in ��
�

�� The Wall Scheme

This scheme addresses conforming triangulation problems of a plane geometric graph G� A common di�culty of
adding Steiner vertices is as follows� Let us assume the extreme case that G is a triangulation for the discussion� We
want to re�ne G so that it is an optimal conforming triangulation eventually� For the non�optimality of G at some
triangle say pqr in G� the natural attempt is to add a Steiner vertex say t in pqr or on one of its three edges� On the
other hand� this new vertex t may in turn a
ect the optimality of some triangles nearby pqr or adjacent to pqr� In
other words� the trouble of non�optimality has been propagated to other triangles and the addition of other Steiner
vertices is necessary� For an approach to be successful� it has to terminate this kind of propagations in polynomial
number of steps� The wall scheme is such an approach�it �rst plans su�cient Steiner vertices to build some logical
walls that can stop arbitrary propagations� We illustrate this idea in the following paragraphs with the conforming
Delaunay triangulation problem and the quality conforming triangulation problem� We note that the approach of
packing disks in computing non�obtuse polygon triangulation ��
 has the similar spirit�

Conforming Delaunay triangulation� A conforming Delaunay triangulation of a plane geometric graph
G � �S�E� is a conforming triangulation T � �S � S�� E�� of G such that each edge cd in E� satis�es the so�called
empty disk property with respect to S � S�� i�e�� there is a circle through c and d so that all other points of S � S�

lie outside the open disk bounded by the circle� Initially� edges in E may not satisfy the empty disk property with
respect to S� So� these edges have to be subdivided with a set S� of Steiner vertices into shorter edges so that each
one satis�es the empty disk property with respect to S�S�� In fact� the main di�culty of constructing a conforming
Delaunay triangulation of G is to �nd such a set S� so as to apply some well�known method to compute a Delaunay
triangulation of S � S�� The following theorem is obtained by ��
 using the wall scheme�

T h e o r em �� Let G � �S�E� be a plane geometric graph with jSj � n and jEj � m � �� A point set S � S�

of size O�m�n� that admits a conforming Delaunay triangulation of G can be computed in time O�m�n� n���



The solution is to construct V � S � S� in two steps� the blocking and the propagation step� Initially� V is equal
to S� The goal of the blocking step is to �nd O�n� pairwise disjoint disks that contain no points of S so that the
union of their closures is connected and contains S� Each circle bounding such a disk is called a blocking circle�
Then� add Steiner vertices to V at the intersections between blocking circles and edges of G� and at locations where
blocking circles touch each other� With this� edges of E are subdivided by Steiner vertices into shorter edges of two
types� Each protected edge is enclosed by a blocking circle� its endpoints lie on the blocking circle� All other edges
are unprotected� By construction� protected edges satisfy the empty disk property with respect to the current set V �
The construction will make sure that no points inside the blocking circles are later added to V so that this property
persists with respect to all future sets V � The unprotected edges are further subdivided into shorter edges in the
propagation step� Roughly speaking� if ab is unprotected and the circle with ab as a diameter contains a point c � V

then a point c� subdividing ab into ac� and c�b is added to V � This point c� is chosen so that c lies outside both the
circle with ac� as a diameter and the circle with c�b as a diameter� Due to the blocking step� a logical wall exists
between two adjacent Steiner vertices in each blocking circle� and the collection of all logical walls subdivides the
problem into smaller regions where the above subdivisions with c� cannot cross regions and thus bounds the size of
V to that stated in the theorem�

Quality Conforming triangulations� For the discussion here� a quality conforming triangulation is
a conforming triangulation that has angle bounded away from �� For a plane geometric graph G � �S�E�� the
algorithm mentioned in Theorem � can augment G to a triangulation T that minimizes its maximum angle over
all possible augmentations� So� the construction is complete if T has angles measuring at most the targeted angle
bound� If not� then T will be re�ned as discussed in ��	
 with six steps� Very brie�y� the solution is to �rst build
the so�called fences and dead�ends in the �rst two steps� These� as extensions to the notion of walls� can control
the propagations of vertices in later steps� Speci�cally� the six steps successfully bounds the propagation threads
to linear in number and each propagation thread to linear in length� the total number of Steiner vertices is� thus�
quadratic in the size of the input� The following theorem summarizes the result�

T h e o r em �� Triangulating a plane geometric graph G � �S�E� of jSj � n vertices using angles no larger
than ��

��
� requires O�n�� storage and O�n� logn� time�
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