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Optimal Triangulation Problems

This paper surveys some recent solutions to triangulation problems in 2D plane and surface. In particular, it focuses
on three efficient and practical schemes in computing optimal triangulations useful in engineering and scientific
computations, such as finite element analysis and surface interpolation.

The edge-insertion paradigm can compute for a set of n vertices, with or without constraining edges, a min-
maz angle and a maz-min height triangulation in O(n?logn) time and O(n) storage, and a min-maz slope and a
min-maz eccentricity triangulation in O(n®) time and O(n?) storage.

The subgraph scheme can compute a min-maz length triangulation for a set of n vertices in O(n?) time and
storage. Length refers to edge length and is measured by some normed metric such as the Fuclidean or any other £,
metric. Additionally, the scheme provides some insight to the minimum weight triangulation problem.

The wall scheme can compute for a given set of n vertices and m constraining edges, a conforming Delaunay
triangulation of O(m?n) vertices. Additionally, an extension of the wall scheme can refine a triangulation of size

O(n) to a quality triangulation of size O(n?) that has no angle measuring more than %ﬂ'.

1. Introduction

Triangulation is a prominent meshing method that decomposes a domain into a collection of triangles for purposes
of other computations. It is used in many areas of engineering and scientific applications such as finite element
methods, approximation theory, numerical analysis, computer-aided geometric design, etc. Algorithmic problems
on computing triangulations that are optimal according to measures on the size and shape of their triangles have
been popular research topics since 1970s. Substantial advances on these problems were made recently. In this paper,
we survey some recent solutions in computing a number of optimal triangulations mentioned in engineering and
scientific computing literatures. Most of these algorithms are the first and currently the only ones that construct
the required optimal triangulations in time polynomial to the input size.

The emphasis of this paper is somewhat different from that of the detailed survey on the subject by Bern and
Eppstein [2]. We view those algorithms mentioned in the previous paragraph as examples of three general schemes
in solving optimal triangulation problems. See [3,8,9,10] for complete technical details on the material discussed in
this paper as well as many more relevant references omitted by this paper.

2. Problem Definitions

Let S be a set of n points or vertices in IR?. An edge is a closed line segment connecting two points. Let E be a
collection of edges determined by vertices of S. Then G = (S, E) is a plane geometric graph if (i) no edge contains
a vertex other than its endpoints, that is, ab NS = {a, b} for every edge ab € F, and (ii) no two edges cross, that
is, abNed € {a,b} for every two edges ab # c¢d in E. One example of a plane geometric graph is a (simple) polygon
where F forms a single cycle.

A triangulation is a plane geometric graph 7 = (5, F) so that F is maximal. By maximality, edges in F bound
the convex hull of S, i.e. the smallest convex set in IR? that contains S, and subdivide its interior into disjoint faces
bounded by triangles. With reference to a polygon, we talk about its triangulation as restricted to only within the
cycle bounding the polygon.

A plane geometric graph ¢ = (S, E) can be augmented with an edge set E’ until it is a triangulation
T = (S, E U E'), referred to as a triangulation of G. In this case, F is the set of constraining edges if it is
not empty. Besides edges, we can also augment G = (S, F') with a vertex set S'. A triangulation obtained in this
manner is called a Steiner triangulation of G, and S’ the set of Steiner vertices. We call a Steiner triangulation with
constraining edges a conforming triangulation in which each constraining edge 1s the union of some edges in the
triangulation.

A plane geometric graph G permits many augmentations, with or without Steiner vertices, to different tri-
angulations. Various shape criteria can be used to classify some as optimal triangulations. Many of these criteria
are defined as maz-min, short for maximizes the minimum, or men-maz when no Steiner vertices are used. The



first quantifier is over all triangulations of G and the second is over all measures of triangles of a triangulation. A
measure p is a function that maps a triangle zyz to a real value p(xyz). Examples of measures are largest angle and
largest edge length. When Steiner vertices are allowed, we refer to such optimal triangulation as optimal conforming
triangulations. Problems abstracted from the engineering and scientific computing literatures as addressed by this
paper are: given a plane geometric graph G = (S, E), find a specific optimal triangulation or find a specific optimal
conforming triangulations. The edge-insertion paradigm (Section 3) and the subgraph scheme (Section 4) address
optimal triangulation problems whereas the wall scheme (Section 5) solves some optimal conforming triangulation
problems.

3. The Edge-Insertion Paradigm

The edge-insertion paradigm is an iterative improvement method that computes min-max or max-min optimal tri-
angulations. In the case of a min-max criterion, we consider the construction of a triangulation of a plane geometric
graph G = (S, E') whose maximum measure p(xyz) over all its triangles zyz is the smallest among all possible trian-
gulations of G. Formally, the measure of a triangulation A is defined as p(A) = max{p(xryz) : zyz a triangle of A}.
If A and B are two triangulations of G, then B is called an improvement of A, if u(B) < p(A), or u(B) = pu(A) and
the set of triangles xyz in B with p(zyz) = u(B) is a proper subset of the set of such triangles in A. A triangulation
A is optimal for p if there is no improvement of 4. A max-min criterion can be treated analogously.

The basic idea of the edge-insertion paradigm is to improve iteratively a current triangulation .4 by a simple
edge-insertion step which adds an appropriate new edge say ¢s to A, deletes edges in A that cross ¢s, and retrian-
gulates the resulting polygons to the left and the right of ¢s. In other words, the method starts by constructing an
arbitrary triangulation A of G, then iteratively applies the edge-insertion step until no further improvement to the
current triangulation is found. Obviously, such simple idea does not work for all measures p as some may lead to
sub-optimal solutions. In fact, the paradigm is known to be applicable if the so-called Cake-Cutting Lemma that
guarantees improvement in each iteration and thus convergent to optimal solution is true; see [1,5,9] for details. The
next result is obtained by the edge-insertion paradigm.

Theorem 1. For a plane geometric graph G of n vertices,
(1) @ min-maz angle triangulation of G can be computed in time O(n?logn) and storage O(n),

(2) a maz-min height triangulation of G can be computed in time O(n*logn) and storage O(n),
(3) @ min-maz eccentricity triangulation of G can be computed in time O(n®) and storage O(n?), and
(4) a min-maz slope triangulation of G can be computed in time O(n®) and storage O(n?).

Let us define those terms mentioned in the theorem. A min-max angle triangulation of G minimizes the maximum
angle of its triangles, over all triangulations of G. The height n(xzyz) of triangle zyz is the minimum distance
from a vertex to the opposite edge. We write n(A) = min{n(zyz) : zyz a triangle of A} for the measure of a
triangulation A of G. A maz-min height triangulation of G maximizes n(A) over all triangulations A of G. The
eccentricity of triangle zyz, e(xyz), is the infimum over all distances between the center of the circumecircle of xyz
and points in the closure of zyz. Clearly, e(zyz) = 0 iff the center of the circumcircle lies in the closure of zyz. We
define €(A) = max{e(zyz) : xyz a triangle of A}. A min-max eccentricity triangulation of G minimizes ¢(A) over all
triangulations A of G. The definition of slope given in the next paragraph involves surfaces.

Consider a function f : IR? — IR defining a surface x3 = f(x1,2s) in IR®. The gradient of f is the vector
Vf= (ﬂ ﬂ), each component of which is itself a function from IR? to IR. Define V?f = (ﬂ)2 + (ﬂ)z’ and call
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/' V2f at a point (21, x2) the slope at this point. Let S be a set of n points of G in IR? and let S be the corresponding
set in IR3 where each point of S has a third coordinate called elevation. For a point x of S, we write & for the “lifted”
point, that is, the corresponding point in S, Analogous to the definitions in IR?, £ denotes the line segment with
endpoints & and y, and zyz denotes the triangle with vertices z,y, 2. We can think of #yz as a partial function f
on IR?, defined within zyz. At each point in the interior of xyz, the gradient is well defined and the same as for
any other point in the interior of zyz. We can therefore set o(xyz) equal to the slope at any point in the interior of
zyz, and call it the slope of zyz. For a triangulation A of G, we define o(A) = max{c(zyz) : zyz a triangle of A}.
A min-mazx slope triangulation of G minimizes o(A) over all triangulations A of G.

4. The Subgraph Scheme

The subgraph scheme constructs a desired optimal triangulation by first computing a sub-structure of the optimal
triangulation and then complete the computation by solving smaller problems defined by the sub-structure. This
scheme works when (i) the sub-structure can be computed efficiently and (ii) the sub-structure can subdivide
the problem into smaller problems such as polygons that can be solved efficiently. For instance, the scheme has



successfully solved the min-max length triangulation problem [6].

Theorem 2. A min-mar length triangulation of a set of n points in IR? can be constructed in O(n?) time
and storage.

A triangulation that minimizes the length of its longest edge over all possible triangulations of the same point set
is called a min-max length triangulation. Notice that the theorem is formulated with reference to a set of n points
instead of the general plane geometric graph. In fact, the theorem is valid for the latter provided the minimization
condition is defined over all edges including the constraining ones; see [9]. In any case, the correctness of the
theorem follows from the so-called Subgraph Theorem which asserts that every point set S in IR? has a min-max
length triangulation ml¢(S) so that rng(S) Uch(S) C mlt(S) where rng(S) is the relative neighborhood graph of S
and ch(S) is the set of edges bounding the convex hull of S. The next paragraph provides further details on this.

The relative neighborhood graph of S, rng(S), is a plane geometric graph with vertex set S and edge set
containing ab, for ¢ and b in S, iff dist(ab) < mingecs_{q ) max{dist(xa),dist(xb)} where dist(xy) denotes the
distance between x and y. Since rng(S) and ch(S) can each be computed in O(nlogn) time, and rng(S) U ch(S) is
a connected graph of S| the problem of computing a mlt(S) can be solved by first computing rng(S) U ch(S) and
then computing an optimal triangulation within each polygon defined by edges of rng(S) U ch(S). The latter was
also shown to be solvable in O(n?) time. Besides Euclidean metric, Theorem 2 can be extended to general normed
metrics as stated in the next theorem.

Theorem 3. LetS be aset of n points in IR? equipped with a normed metric. Given the relative neighborhood
graph, a min-maz length triangulation of S can be constructed in time O(n?).

Examples of normed metrics are the f,-metrics, for p = 1,2, 3, ..., and the so-called A-metric used in VLSI applica-
tions. The above theorem raises the question of how fast the relative neighborhood graph can be constructed for a
given normed metric. The trivial algorithm tests all () edges, each in time O(n), and therefore takes time O(n?).
Faster algorithms are known for the £,-metrics where O(nlogn) time suffices.

We note that min-max length is currently the only non-trivial length criterion known to be computable in
polynomial time. There are other related problems on length criteria whose complexities remain open. In particular
the well-known problem of minimum weight triangulation, which is a triangulation that minimizes the sum of edge
lengths over all triangulations of the same point set. The recent result of Keil shows that the so-called v/2-skeleton
of S is a subgraph of the minimum weight triangulation [8]. This subgraph, though can be computed efficiently, is
not always a connected graph of S and thus does not subdivide the problem into smaller problems that have efficient
solutions. Some experimental results in this direction can be found in [4].

5. The Wall Scheme

This scheme addresses conforming triangulation problems of a plane geometric graph G. A common difficulty of
adding Steiner vertices is as follows. Let us assume the extreme case that G is a triangulation for the discussion. We
want to refine G so that it is an optimal conforming triangulation eventually. For the non-optimality of G at some
triangle say pgr in G, the natural attempt is to add a Steiner vertex say ¢ in pgr or on one of its three edges. On the
other hand, this new vertex ¢ may in turn affect the optimality of some triangles nearby pgr or adjacent to pgr. In
other words, the trouble of non-optimality has been propagated to other triangles and the addition of other Steiner
vertices is necessary. For an approach to be successful, it has to terminate this kind of propagations in polynomial
number of steps. The wall scheme is such an approach—it first plans sufficient Steiner vertices to build some logical
walls that can stop arbitrary propagations. We illustrate this idea in the following paragraphs with the conforming
Delaunay triangulation problem and the quality conforming triangulation problem. We note that the approach of
packing disks in computing non-obtuse polygon triangulation [3] has the similar spirit.

CONFORMING DELAUNAY TRIANGULATION. A conforming Delaunay triangulation of a plane geometric graph
G = (S, EF) is a conforming triangulation 7 = (S U S’, E') of G such that each edge e¢d in E’ satisfies the so-called
empty disk property with respect to S U S’, i.e., there is a circle through ¢ and d so that all other points of S U S’
lie outside the open disk bounded by the circle. Initially, edges in E may not satisfy the empty disk property with
respect to S. So, these edges have to be subdivided with a set 5" of Steiner vertices into shorter edges so that each
one satisfies the empty disk property with respect to SUS’. In fact, the main difficulty of constructing a conforming
Delaunay triangulation of G is to find such a set S’ so as to apply some well-known method to compute a Delaunay
triangulation of S U .S’. The following theorem is obtained by [7] using the wall scheme.

Theorem 4. Let G = (S, E) be a plane geometric graph with |S| = n and |[E| = m > 1. A point set S U S
of size O(m?n) that admits a conforming Delaunay triangulation of G can be computed in time O(m*n + n?).



The solution is to construct V' = S U .S’ in two steps, the blocking and the propagation step. Initially, V is equal
to S. The goal of the blocking step is to find O(n) pairwise disjoint disks that contain no points of S so that the
union of their closures is connected and contains S. Each circle bounding such a disk is called a blocking circle.
Then, add Steiner vertices to V' at the intersections between blocking circles and edges of G, and at locations where
blocking circles touch each other. With this, edges of E are subdivided by Steiner vertices into shorter edges of two
types. Each protected edge is enclosed by a blocking circle; its endpoints lie on the blocking circle. All other edges
are unprotected. By construction, protected edges satisfy the empty disk property with respect to the current set V.
The construction will make sure that no points inside the blocking circles are later added to V' so that this property
persists with respect to all future sets V. The unprotected edges are further subdivided into shorter edges in the
propagation step. Roughly speaking, if ab is unprotected and the circle with ab as a diameter contains a point ¢ € V
then a point ¢’ subdividing ab into ac’ and ¢’b is added to V. This point ¢’ is chosen so that ¢ lies outside both the
circle with ac’ as a diameter and the circle with ¢’b as a diameter. Due to the blocking step, a logical wall exists
between two adjacent Steiner vertices in each blocking circle, and the collection of all logical walls subdivides the
problem into smaller regions where the above subdivisions with ¢’ cannot cross regions and thus bounds the size of
V' to that stated in the theorem.

QUALITY CONFORMING TRIANGULATIONS. For the discussion here, a quality conforming triangulation is
a conforming triangulation that has angle bounded away from . For a plane geometric graph G = (S, F), the
algorithm mentioned in Theorem 1 can augment G to a triangulation 7 that minimizes its maximum angle over
all possible augmentations. So, the construction is complete if 7 has angles measuring at most the targeted angle
bound. If not, then 7 will be refined as discussed in [10] with six steps. Very briefly, the solution is to first build
the so-called fences and dead-ends in the first two steps. These, as extensions to the notion of walls, can control
the propagations of vertices in later steps. Specifically, the six steps successfully bounds the propagation threads
to linear in number and each propagation thread to linear in length; the total number of Steiner vertices is, thus,
quadratic in the size of the input. The following theorem summarizes the result.

Theorem 5. Triangulating a plane geometric graph G = (S, E) of |S| = n vertices using angles no larger
than %ﬂ' requires O(n?) storage and O(n? logn) time.
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