

Decomposing Polygon Meshes for Interactive Applications

Xuetao Li, Tong Wing Woon, Tiow Seng Tan and Zhiyong Huang

School of Computing
National University of Singapore

{ lixuetao | woontw | tants | huangzy }@comp.nus.edu.sg

Abstract

This paper discusses an efficient and effective framework to
decompose polygon meshes into components. This is useful in
various interactive graphics applications, such as, mesh editing,
establishing correspondence between objects for morphing,
computation of bounding volume hierarchy for collision detection
and ray tracing. In this paper, we formalize the notion of a
component as a sub-volume of an object with homogeneous
geometric and topological features. Next, we describe the
proposed framework, which adapts the idea of edge contraction
and space sweeping to decompose an object automatically.
Finally, we demonstrate an application of this framework to
improve bounding volume hierarchies constructed by state-of-the-
art collision detection systems such as RAPID and QuickCD.

Keywords
Geometric Modeling, Shape, Components, Collision Detection,
Morphing, Ray Tracing, Spatial Data Structures.

1 Introduction

The polygon mesh is among the most common data structures
used for representing objects in computer graphics.
Geometrically, it is a piecewise linear surface consisting of a
collection of polygons pasted along the edges. Its popularity stems
from: (1) simplicity for fast rendering; (2) efficiency in interactive
applications such as collision detection; (3) versatility in easy
transformation to other representations; and (4) providing a good
approximation of real world objects. Recent advances in 3D
scanning and acquisition technology have also ascertained the
importance of polygon meshes in representing complex objects.
Thus, the polygon mesh is often used as a common denominator
for digital models.

Unfortunately, a polygon mesh does not capture high-level
structures. In general, high-level abstractions are useful for
managing data in applications. However, it remains a challenge to
define useful high-level structures for arbitrary meshes, not to
mention computing them automatically.

In searching for good high-level structures, psychological studies
have provided some useful guidelines. They have shown that
human shape perception is partly based on decomposition, and
any complex object can be regarded as an arrangement of simple
primitives, or components [BIED87]. Representation of an
arbitrary object in terms of a few components has long been a
tradition in interactive graphics, CAD, and virtual simulation.
Hence, we aim to decompose a polygon mesh into components
that accord to human shape perception, and more importantly, are
beneficial to interactive graphics applications.

To decompose a polygon mesh where only the connectivity of
polygons is known, we address three key issues: (1) What features
can be used to delineate components reliably? (2) How should
these features be computed? and (3) How should components be
extracted automatically based on these features? The contribution
of this paper is a framework for decomposing polygon meshes
into components by treating them as surfaces of a volume. The
results are components that are homogenous in geometric and
topological features. This decomposition can benefit many
applications, such as level of detail control, collision detection,
ray tracing, mesh editing, shape interpolation and morphing. To
demonstrate its efficiency and effectiveness, we have integrated
our framework into several collision detection engines. The
results of our findings have been encouraging.

The remaining paper is organized as follows. Section 2 reviews
related previous work. Section 3 gives a definition of a
component. Sections 4 to 6 describe details of the major steps in
the proposed framework. Section 7 demonstrates one possible use
of the framework in improving collision detection results. Finally,
section 8 concludes the paper.

2 Related Previous Work

Decomposition of shape is studied extensively in the computer
vision community. Approaches, such as generalized cylinders
[BINF71], [NB77], geons [BIED87], superquadric [PENT86] and
their extensions were used in 2D images and range data. Though
these approaches also focus on acquiring components with
homogeneous characteristics as in our approach, there are no
trivial extensions to work on 3D polygon meshes. Decomposition
of 3D (volume) digital shapes based on a hierarchical

NC, March 19—21, 2001

ACM Symp. on Interactive 3D Graphics,
pp35—42, pp. 243

decomposition method was discussed by [BBS99], and may be
extended to work on polygon meshes. Their work used the
intuitive notion of local thickness to guide the decomposition and
addressed the issue of robustness due to the translation of a model.
Another work on volumetric objects was presented recently by
Gagvani and Silver [GS00]. Our approach focuses on a more
formal treatment of decomposition applied to polygon meshes.

In [FS92], Falcidieno and Spagnuolo proposed an algorithm to
classify polygon meshes into curvature regions. Chazelle et al.
[CDST95] addressed the problem of dividing a polyhedron
surfaces into a collection of convex pieces. Recently, Mangan and
Whitaker extended the 2D watershed method to 3D polygon
meshes [MW99]. Gregory et al. proposed decomposing the
boundary of a polyhedron into the same number of morphing
patches from the interactively defined feature nets [GSLM99].
Our approach differs from these, in that we consider volume as a
part of the homogeneous characteristics in decomposition.

Tan et al. [TCL99] recently achieved good results in decomposing
objects through the use of vertex-based simplification. The
approach works well for the geometric or inorganic models such
as helicopters. However, it is not robust in that the results are
sensitive to user specified parameters. In particular, it is not
suitable for organic models that have no clear boundaries among
their parts or components, such as that between the limbs and
torso of a human. In addition, a homogeneous part of the object
may be undesirably partitioned into different components, as there
is no good control provided by simplification models in
identifying boundaries among components. Our paper presents an
approach that solves the mentioned problems, in particular when
applied to organic models.

3 Preliminaries

By decomposition, we refer to the process of breaking down an
object to arrive at a collection of meaningful components. By
meaningful, we mean that a component can be distinguished
perceptually from the rest of the object. From the cow model of
Figure 1, we can easily see that it consists of horns, ears, legs,
head, body, tail etc., that make up the object. There are clearly
some characteristics that distinguish one part from the others.
From observation and experiment, we found that two important
distinguishing characteristics are geometry and topology. The
notion of component is thus formulated using these two measures.

Figure 1: Polygon Mesh

Geometric and Topological Functions. Among the many ways of
defining a 3D volume, one way is through space sweeping. Some

examples of space sweeping are, (1) rotating a constant 2D region
(e.g. (x-5)2+(y-5)2< 2) around an axis (e.g. y), or more generally,
(2) sweeping a parameterized 2D region along a 3D space curve.
The notion of a component in our framework is based on the
latter. For each component of a 3D object, we can imagine it to be
the result of some sweep of a varying planar region (cross-
section) along some path.

An object (or a component) can be represented as a sweep of
some parameterized function of cross-sections along some path as
follows:

U
end

start

t

tt
tG

=
)(

where t ∈ [tstart, tend] denotes a particular point on the path, and
G(t) is the cross-section at t. Next, we define two functions F(t)
and T(t):

 (1) The geometric function F(t) is given by

 F(t) = measure(G(t)),

where measure is the measurement, such as the area or
perimeter of cross-section G(t).

(2) The topological function T(t) is given by



 −

=
 otherwise ,1
)(fromdifferent is)(of topology,0

)(
tGtG

tT
ε

where ε is an arbitrarily small positive number.

In order to obtain components that conform to the idea of a simple
primitive, some restrictions are placed on the values of functions
F(t) and T(t) by introducing the concept of a critical point.

Critical Points and Components. A critical point in [tstart, tend] is a
boundary point between components that captures change in
either geometry, topology or both.

Figure 2 shows some sample profiles of F(t). Other possible
profiles such as symmetric ones or a combination of the given
examples are considered in a similar way. At tc as indicated by
dashed lines, each of the profiles is divided into two segments.
Naturally, it is desirable to allocate the intervals [t1, tc] and [tc, t2]
to two distinct components. By computing a few derivatives of the
profiles, we note that the common characteristic of all profiles at
tc is that F(n)(tc) = 0, where F(n) is the first vanishing derivative of
F(t) for some n, and F(n) crosses zero at tc.

tc

tc tc

tc

t1 t2

t1 t2

t1 t2

t1 t2

F

F

F

F

Figure 2: Sample Profiles of F(t)

In order to restrict components to simple shapes, there is an
additional constraint that topology must be constant, i.e. T(t) must
be non-zero in each component. From these conditions, we define
a critical point at t as:

0)(or)0)()(and 0)(()()()(=<+⋅−= tTtFtFtF nnn εε

 Thus we can define a component as follows:

()ba

b

a
tttGC

t

tt
,in point critical no is theresuch that),(

=
= U

where ta, tb ∈ [tstart, tend].

In practice, we would like the interval (ta, tb) to be as large as
possible. With this definition, the problem of decomposing an
object into components is thus transformed to one that locates
critical points.

Proposed Framework. We adapt the space-sweep technique
commonly used in computational geometry [HMMN84] to sweep
the given polygon mesh with a plane, called the sweep plane,
along some sweep path. The sweep path is approximated through
the skeleton of the mesh, which we define in the next section.
During sweeping, the geometric and topological functions are
computed. Whenever a consecutive pair of critical points {ta, tb}
are found, the part of the polygon mesh between ta and tb is
extracted as a component.

The following sections address technical issues of this approach.
Section 4 describes the derivation of skeleton from edge
contraction based simplification. Section 5 describes how to
augment this skeleton to form a tree for deriving a sweep path.
Finally, Section 6 describes space sweeping for component
extraction. For the purpose of discussion, the subsequent sections
assume that triangular meshes are used instead of the more
general polygon meshes. This does not affect the discussion in
any way since it is straightforward to convert from one to the
others [RR94]. We also assume that suitable preprocessing – like
welding of very close vertices – is performed prior to applying the
method.

4 Skeletonization

As described in section 3, a volume may be obtained through
space sweeping of a cross-section function over some path. To
solve the inverse problem, we must first determine the sweep path
of a given object. This section justifies the use of skeletal edges
from simplification as the basis for deriving the sweep path and
then describes how they are computed.

Related Structures. A suitable sweep path should be one that
maintains the constancy or gradual change of the sizes of the
cross-sections. The notions of generalized cylinder [BINF71],
[NB77], [NCS94] and medial axis [CKM99] describe very well
the structural features of a 3D object. But these features are non-
trivial and expensive to compute. In the case of the medial axis,
complicated structures (involving quadric surfaces among others)
are produced. In many cases they are not suitable to be used in
sweeping. Similarly, other (generalized) Voronoi diagrams
[BOIS84], [VO95] are not appropriate for our purposes. We seek

some one-dimensional structure to guide our sweep path as
discussed next.

Verroust and Lazarus [VL00] proposed a method of extracting
skeletal curves from polygon meshes. Their method computes
skeletal curves through sample points on the surface of the given
mesh. The success of the method relies on the sampling rate and
the locations of source points (that are origins of skeletal curves)
among other user specifications. Though this may also be
applicable to our framework, it is unnecessarily complex and
requires user input. Our method, based on [HOPP96], is
automated and simpler to implement.

Skeletal Edge and Skeleton. In edge contraction, edges of
polygons in a mesh are ranked according to some cost function,
which usually measures an error based on the effect of the
removal of an edge. Unlike [HOPP96], we do not require an
elaborate and expensive cost function, as our objective is not to
preserve appearance. Instead we can make use of the Euclidean
length of the edge as the cost. In each step, the edge with the
minimal cost is selected to collapse into a vertex at the average
location of its endpoints, and triangles incident to the edge are
removed. Each edge (u, v) is associated with a list of triangles
called the associated triangle list, ATL(u, v) that collapsed to this
edge or its endpoints u and v. During the process, whenever an
edge (u, v) is not incident to any triangle, it is designated as a
skeletal edge and vertices u and v maintain their positions until the
end of the process. The process iterates until all triangles have
been collapsed to edges or vertices. In other words, we are left
with only skeletal edges, whose union is the skeleton of the mesh.
Figure 3 is a skeleton for the cow model, and Appendix A
illustrates a detailed 2D example of the process.

Figure 3: Skeleton

Besides avoiding the complexity of other methods, the proposed
method is able to work with uniformly subdivided as well as non-
uniformly subdivided surfaces. For convex simple shapes, the
skeleton converges toward the medial axis. As the algorithm
approximates simplification, smaller features are extracted first.
For meshes with a bounded number of edges incident to each of
its n vertices, the algorithm has an efficient runtime of O(n log n)
where each iteration requires O(log n) time in searching for the
shortest edge to collapse and O(1) time in updating all the relevant
data structures.

5 Sweep Order

Skeletal edges provide a good basis for sweeping, but before that
can be done we need to organize the set of skeletal edges (that are

disjoint in general) into a linear order for sweeping. To do this, we
define a skeletal tree from the skeletal edges by adding virtual
edges to connect disjoint skeletal edges. Then we define a
traversal order of the edges of the skeletal tree by grouping them
into branches. The ordering of space sweeping and the sweeping
paths are then determined by the ordering and position of the
branches.

Virtual Edge and Skeletal Tree. During skeletonization, a triangle
is either contracted to a skeletal edge or an endpoint on a skeletal
edge. Consider triangles ∆1 and ∆2 that are incident to a same
edge. Suppose ∆1 is contracted to b and ∆2 is contracted to d
where (a, b) and (c, d) are two disjoint skeletal edges. To connect
them, we add a virtual edge (b, d) to the collection of skeletal
edges. For the 2D example in the appendix, ∆v5v6v8 and ∆v5v2v6
sharing (v5, v6) are contracted to v12 and v9 respectively; we thus
have the virtual edge (v12, v9).

On the other hand, suppose ∆1 is contracted to b and ∆2 is
contracted to (c, d), where (a, b) and (c, d) are two disjoint
skeletal edges. We have the issue as to whether (b, c) or (b, d)
should be a virtual edge. This is resolved because the computation
of virtual edges is in fact an integral part of the skeletonization
process mentioned in the previous section. The skeletonization
process creates a virtual edge whenever two disjoint parts are the
result of an edge contraction (rather than after the whole process).
That is (b, c) should be a virtual edge if b was a result of
contracting some edge incident to c, and likewise for (b, d).

For a connected mesh, the result of adding virtual edges is a
connected graph. Such a graph is called a skeletal tree if it has no
cycles. Otherwise, cycles are removed by applying a standard
minimal spanning tree algorithm [CLR90]. The cost between each
pair of nodes u and v is defined as the inverse of the size of
ATL(u, v). Figure 4 shows a skeletal tree where the skeletal edges
are drawn in bold strokes and virtual edges in thin strokes.

Figure 4: Skeletal Tree

Branch. From a leaf vertex of the skeletal tree, we can define a
branch – starting with the edge incident to the leaf vertex – as the
maximal chain of edges whose vertices (excluding the first and
the last) are incident to exactly two edges in the skeletal tree. Each
branch corresponds to one continuous part of the whole sweep
path [tstart, tend], with the leaf vertex as the starting point, and the
last vertex of the chain as the ending point. In general, there are,
as many branches as the number of leaves.

Ordering of Branch. The union of the ATL over the edges of a
branch, with first vertex u and last vertex v, corresponds to a part
of the object. Its surface area can be approximated as:

∫=
v

u
dttfA)(

where f(t) measures the perimeter of the cross-section at t.
Assuming f(t) varies linearly over the branch, we can simplify the
computation to the following:

2
)()(branch) oflength (vfufA +∗=

Note that this approximation is used, as skeletonization results in
fairly uniform branches.

Branches are then ordered for sweeping based on surface area of
their ATL. Those branches having a smaller area are favored for
sweeping first. This ordering allows small but significant
components to be extracted first so that they are not absorbed into
larger components. During sweeping, edges of the skeletal tree
that have been swept are removed.

Note that the collection of triangles in an ATL seem to
approximate a component. Likewise, the union of associated
triangles of a branch also approximate a component. However,
they are only able to capture coarse features and may not have a
clear boundary between different parts. Hence space sweeping,
clarified in the next section, is necessary to ensure that each
component conforms to the definition in section 3.

6 Space Sweeping

In the course of sweeping, the geometric and topological functions
are computed and analyzed. When a consecutive pair of critical
points is found, the part of the polygon mesh that is swept is
extracted as a component.

To begin a space sweep, we have a branch and its corresponding
set of triangles, which are obtained from the union of the ATL’s of
edges from the branch. The sweep plane, given by P(t) = P(v, n),
is determined by a reference point v and a normal vector n as
shown in Figure 5. For any given vertex u from the mesh, we can
compute its direction from v. If (v − u) ⋅ n < 0, we say that u is
below the sweep plane. If it is equal to zero, u lies on the plane.
Otherwise u is above the sweep plane.

n

branch

v

sweep plane

direction of sweep

above the
sweep plane

below the
sweep plane

Figure 5: Sweep Plane

Sweep Plane Movement. The reference point v is either a vertex of
the mesh or a point on an edge of the mesh. Specifically, v is on

the boundary of the cross-section G(t). Initially, n is the normal
vector along the first skeletal edge of a given branch B. v is then
an arbitrary point along the intersection of the mesh and the sweep
plane passing through the first endpoint of B. Since a polygon
mesh is a discrete representation, we need only to approximate the
sweep path by advancing in discrete steps. To advance P(v, n) to a
new v, one way is to move it to the next nearest vertex above the
sweep plane. In this way, the total number of cross-sections will
be proportional to the number of vertices of the mesh. For dense
meshes, this is an expensive operation. For such cases, a more
pragmatic approach is to advance in fixed steps. In order not to
over- or underestimate the step size, we can compute the amount
as a function of the edge length distribution.

Cross-section G(t). An edge in the polygon mesh is an
intersecting edge of P(t) if one of its endpoints is either on or
above P(t), and the other endpoint is on or below P(t). An
intersecting triangle of P(t) is a triangle incident to one or more
intersecting edges of P(t). The set of intersecting triangles of P(t)
is denoted as ∆ = { ∆i | i = 1, 2, … , k}. The intersection of P(t)
with ∆ is a collection of line segments forming the boundary of
G(t). This boundary is either a single simple polygon (see t1 of
Figure 6) or a collection of simple polygons (see t2 of Figure 6).

cross-section

sweep plane

sweep path

t1

t2

polygon mesh

Figure 6: Cross-section

Sweep Plane Orientation. Each branch comprises a set of skeletal
edges which provide a general direction for the sweep plane
movement. However, the orientation of the skeletal edge is not
necessarily correct, as it is dependent on the result of edge
contraction. Figure 7 shows an example where the object is
straight but the branch is crooked. To account for this error, the
orientation of the sweep plane is not entirely based on the skeletal
edges but computed adaptively.

Figure 7: Skeletal Edges Orientation

Hence, when the sweep plane advances from P(u, n) to P(v, n’),
its orientation is subjected to change. To compute n’, we first set it
to n. It is then adjusted so that the sweep path will follow the
natural orientation (ns) of the volume, and the cross-sections can

approximate those obtainable through sweeping along the medial
axis. Figure 8 illustrates this idea where (b) is a better orientation
than (a).

 n'
ns

ns

n'

cross
section

 (a) (b)

Figure 8: Sweep Plane Orientations

Specifically, we would like to have n’ oriented based on the
normal vectors of triangles ∆i in ∆. The simple approach of
summing the normals does not work as it gives a meaningless
direction for a cylindrical object. We present a more robust
formula for ns as follows:

∑
=

+∆×∆=
k

i
iis NNn

1
1)()(

where N(∆i) and N(∆i+1) are normal vectors of consecutive
triangles in ∆ (with ∆k+1 = ∆1), ordered in an anticlockwise
manner about n’. Intuitively, the cross product of N(∆i) and
N(∆i+1) captures the essence of a local optimal direction for the
sweep plane with respect to the shared edges of ∆i and ∆i+1. Thus,
a sum over all such cross products points to an aggregated
direction.

F(t) and T(t) Computation. With intersecting triangles of P(t) in ∆,
it is easy to compute the geometric function F(t). It can be defined
as either the perimeter or the area of the cross-section. To
approxiamte the derivatives of F(t) (up to third order in practice),
we use previous values (up to five) of F(t) to find delta differences
in the computation. Also, standard filters, such as Gaussian or
median [GW93], can be used to smooth out the values.

To compute T(t), we first define H, a function of the cross-section
G(t), as the number of simple polygons in G(t). Note that G(t − ε)
and G(t) are homotopic if G(t − ε) can be deformed continuously
into G(t) and vice versa. This property implies that their
boundaries are also homotopic, that is, H(G(t)) = H(G(t − ε)).
With that, we arrive at the following definition of T(t):





≠−
=−

=
point a tosdegenerate)(or))(())((,0

))(())((,1
)(

tGtGHtGH
tGHtGH

tT
ε
ε

Since we only need to compare between G(t − ε) and G(t), only
two cross-sections need to be stored throughout the computation.

Component Extraction. From T(t) and the approximate derivatives
of F(t), we can determine whether t is a critical point as defined in

Section 3. Figure 9 illustrates a simple example with a critical
point at b. When a critical point is reached, triangles swept so far
that are not part of other components are extracted as a new
component. For intersecting triangles in ∆, we could either
include them in the new component, or split them up along their
intersection with the sweep plane, depending on the application.

b

b

measure of
cross section

sweeping

a

a
direction
of sweep

F

F(1)

F(2)

F(3)

Figure 9: Profile of F(t)

7 Application to Collision Detection

As a way to show the usefulness of our decomposition technique,
we have applied our framework to the problem of building
hierarchical data structures for collision detection. The problem of
collision detection is to determine whether moving objects (or
rays for ray tracing application) are in collision with other objects
in a simulated computer environment [LG98].

Collision Detection Systems. RAPID [GLM96] and QuickCD
[KHMS98] are state-of-the-art collision detection systems
available from the web. Both of these systems are based on
constructing hierarchies of tight-fitting bounding volumes of
oriented bounding boxes (OBB) and discrete oriented polytopes
(k-DOPs) for polygon meshes or soup. In [TCL99], Tan et al. use
outputs of simplification procedures to guide the construction of
bounding volume hierarchies. In particular, their UCOLLIDE
system builds the top few levels of the bounding volume hierarchy
with simplification, and applies RAPID for the lower levels.

Hierarchy Building. Our application to collision detection adopts
the same strategy as [TCL99]. In particular, we make use of the
components derived from our procedure to build the top few
levels of the bounding volume hierarchy, and then apply a native
collision framework like RAPID or QuickCD for the lower levels.

The construction of the top few levels of the hierarchy is
performed as follows. We start by adding components as the
leaves of the bounding volume hierarchy B. These nodes also
form the initial set N. Let ni and nj be members of N such that they
form the minimal bounding volume (either OBB or k-DOP)
among all possible pairs in N. Create a new node nk in B as the

parent of ni and nj, and replace ni and nj in N by nk. Repeat this
until N has only one node, which is actually the root of B.

Experimental Setup. Our experiment was conducted with an Intel
Pentium II 450MHz PC. To compare RAPID and UCOLLIDE
with our additional framework, we used the same experimental
setup for each test model and environment. The number of
simulation steps was set to 5000, the environment was populated
with models where the number of triangles was over 200000, and
the size of the environment was set to simulate sparse, normal or
dense situations. In a sparse environment, the sum of the topmost
bounding volumes of all the instances is about 25% of the volume
of the environment. For normal and dense environments it is
around 50% and 100% respectively.

To compare with QuickCD, we used a similar setup. The
environment was populated with a number of static copies of the
input model so that the number of triangles in the environment
was over 70000. In addition, there was a moving copy of the
model with random speed and orientation. The number of
simulation steps was set at 5000. Note that fewer copies of the
model were used in comparison with RAPID and UCOLLIDE.
This is due to the way environments are represented in QuickCD.
Copies of the static model are represented in multiple times in the
environment, as compared to RAPID or UCOLLIDE, where only
position, orientation and direction need to be stored for each copy.
In order to prevent disk swapping due to the limit on main
memory, only a small number of copies were instantiated.

Results. Some of our decomposition results are shown in Figure
13 (color plate). Each row consists of four images, namely, the
derived skeletal tree, two views of the extracted components and
the cross-section. Each component is shown in a different color.
Note that in our implementation of the space sweeping, we
advance sweep plane to the nearest vertex among those vertices
that are in the intersecting triangle set ∆ and above the current
sweep plane P(t). This is a simplified version of the space
sweeping but suffices for our experiments. Also, we use the
simple perimeter measure for the geometric function F(t). The
time taken to compute components is only a few seconds for our
largest model (the chicken wing model).

The results of the comparisons with RAPID and UCOLLIDE are
shown in Figure 10 to 11. In terms of average time taken for each
step of simulation, our method is 13-20% (average 16%) and 5-
11% (average 8%) faster than RAPID and UCOLLIDE
respectively in a sparse environment. In a normal environment, it
is faster by 8-22% (average 14%) and 2-15% (average 6.9%),
respectively; in a dense environment, it is faster by 8-23%
(average 14%) and 1-11% (average 6%), respectively. For
comparison with QuickCD (Figure 12), our improvement is 6-
26% (average 12%) faster in terms of average time taken for each
step of the simulation.

On the whole, results show that better bounding volume
hierarchies are constructed with our approach. In terms of total
volume of bounding volume hierarchies for each model, our
improvement as compared to RAPID is 2-21% (average 11%), to
UCOLLIDE 2-11% (average 7%), and to QuickCD 4-12%
(average 8%). In addition, they also indicate that our space-
sweeping decomposition method performs better than that of the
decompositions used in [TCL99] for organic objects.

0

5

10

15

20

25

Buc
kh

orn Calf

Chic
ke

n W
ing Cow

Dino
pe

t

Fem
ale

Han
d

Lu
pu

s
Sha

rk

Wom
an

Models

Im
pr

ov
em

en
t o

n
Ti

m
in

g
(%

)

Sparse Environment Normal Environment Dense Environment

Figure 10: Comparison with RAPID

0

2

4

6

8

10

12

14

16

Buc
kh

orn Calf

Chic
ke

n W
ing Cow

Dino
pe

t

Fem
ale

Han
d

Lu
pu

s
Sha

rk

Wom
an

Models

Im
pr

ov
em

en
t o

n
Ti

m
in

g
(%

)

Sparse Environment Normal Environment Dense Environment

Figure 11: Comparison with UCOLLIDE

0

5

10

15

20

25

30

Buc
kh

orn Calf

Chic
ke

n W
ing Cow

Dino
pe

t

Fem
ale

Han
d

Lu
pu

s
Sha

rk

Wom
an

Models

Im
pr

ov
em

en
t o

n
Ti

m
in

g
(%

)

Figure 12: Comparison with QuickCD

8 Concluding Remarks

In this paper, we present a formal notion of components and a
framework to decompose objects, represented as polygon meshes,
into such components using space sweeping. The framework
consists of steps to compute the sweep path, prioritize the
sweeping order of segments of the sweep path, calculate
geometric and topological features along the sweep path, and
extract components of homogeneous features. On the whole, the
decomposition is performed efficiently with no user intervention.

Furthermore, we have implemented the framework with
application to collision detection, as a demonstration of its
effectiveness in improving collision detection timing for state-of-
the-art collision detection systems such as RAPID and QuickCD.
Possible future work includes applications of the framework to 3D
object morphing among others.

Acknowledgements

The authors would like to thank the anonymous referees for their
valuable comments and suggestions on improving the paper.

References

[BBS99] Borgefors G., di Baja G. S., and Svensson S.,
“Decomposition Digital 3D Shape Using a Multiresolution
Structure”, in Bertrand G., Couprie L., and Perroton L., eds.,
“DGCI’99, LNCS 1568”, Springer Verlag, pp. 19-30.

[BIED87] Biederman I., “Recognition-by Components: A Theory
of Human Image Understanding”, “Psychological Review”, vol.
94(2), pp.115-147, 1987.

[BINF71] Binford T. O., “Visual Perception by Computer”,
“IEEE conference on Systems and Control”, December 1971.

[BOIS84] Boissonnat J.D., “Geometric structures for three-
dimensional shape reconstruction”, “ACM Transactions on
Graphics”, vol. 3, pp. 266-286, 1984.

[CDST95] Chazelle B., Dobkin, D. P., Shouraboura N, and Tal A,
“Strategies for Polyhedral Surface Decomposition an
Experimental Study”, “Proceedings of the eleventh annual
symposium on Computational geometry”, pp. 297-305, 1995.

[CKM99] Culver T., Keyser J., and Manocha D., “Accurate
Computation of the Medial Axis of a Polyhedron”, “Fifth ACM
Symposium on Solid Modeling”, pp. 179-190, 1999.

[CLR90] Cormen T. H., Leiserson C. E., and Rivest R. L.,
“Introduction to Algorithms”, The MIT Press, pp. 498-513, 1990.

[FS92] Falcidieno B. and Spagnuolo M., “Polyhedral Surface
Decomposition Based on Curvature Analysis”, in Kunii T. L. and
Shinagawa Y. eds., “Modern Geometric Computing for
Visualization”, Springer Verlag, pp. 57-72, 1992.

[GLM96] Gottschalk S., Lin M. and Manocha D., “OBB-Tree: A
Hierarchical Structure for Rapid Interference Detection”,
“Proceeding of ACM SIGGRAPH”, pp. 171-180, 1996.

http://www.acm.org/pubs/citations/proceedings/compgeom/220279/p297-chazelle/
http://www.acm.org/pubs/citations/proceedings/compgeom/220279/p297-chazelle/

[GS00] Gagvani N. and Silver D., “Shape-based Volumetric
Collision Detection”, “IEEE Volume Visualization and Graphics
Symposium”, 2000.

[GSLM99] Gregory A., State A., Lin M., Manocha D., Livingston
M. A., “Interactive Surface Decomposition for Polyhedral
Morphing”, “The Visual Computer”, vol. 15(9), pp. 453-470,
1999

[GW93] Gonzalez R. C. and Woods R. E., “Digital Image
Processing”, Addison-Wesley, pp. 189-195, 1993

[HMMN84] Hertel S., Mehlhorn K., Mantyla M., and Nievergelt
J., “Space Sweep Solves Intersection of Two Convex Polyhedra”,
ACTA INFORMATICA 21, pp. 501-519, 1984.

[HOPP96] Hoppe H., “Progressive Mesh”, “Proceeding of ACM
SIGGRAPH”, pp. 99-108, 1996.

[KHMS98] Klosowski J. T., Held M., Mitchell J. S. B., Sowizral
H., and Zikan K., “Efficient Collision Detection Using Bounding
Volume Hierarchies of k-DOPs”, “IEEE Trans. on Visualization
and Computer Graphics”, vol. 4(1), pp. 21-36, 1998.

[LG98] Lin M. and Gottschalk S., “Collision Detection between
Geometric Models: A Survey”, “Proceedings of IMA Conference
on Mathematics of Surfaces”, 1998.

[MW99] Mangan A. P., Whitaker R. T., “Partitioning 3D Surface
Meshes Using Watershed Segmentation”, “IEEE Transactions on
Visualization and Computer Graphics”, vol. 5, pp. 308-321, 1999.

[NB77] Nevatia R., Binford T. T., “Description and Recognition
of Curved Objects”, “Artificial Intelligence”, vol. 8, pp.77-98,
1977.

[NCS94] Nazarian B., Chédot C., and Sequeira J., “Interactivity
and Delaunay Triangulation for the Reconstruction of Tubular
Anatomical Structures”, “IEEE conference on Engineering in
Medicine and Biology Society”, pp. 706-707, 1994.

[PENT86] Pentland A. P., “Perceptual Organization and the
Representation of Natural Form”, “Artificial Intelligence”, vol.
28, pp. 293-331, 1986.

[RR94] Ronfard R., and Rossignac J., “Triangulating Multiply-
Connected Polygons: A Simple, Yet Efficient Algorithm”,
“Computer Graphics Forum”, vol. 13(3), pp. 281-292, 1994.

[TCL99] Tan T. S., Chong K. F., and Low K. L., “Computing
Bounding Volume Hierarchy using Simplified Models”,
“Proceedings of ACM Symposium on Interactive 3D Graphics”,
pp. 63-69, 1999.

[VL00] Verroust A. and Lazarus F., “Extracting Skeletal Curves
from 3D Scattered Data”, “The Visual Computer”. vol. 16, pp.
15-25, 2000.

[VO95] Vleugels J. and Overmars M., “Approximating
Generalized Voronoi Diagrams in Any Dimension”, “Technique
Report UU-CS-1995-14”, Department of Computer Science,
Utrecht University, 1995.

Appendix A: A 2D example of the skeletonization process

 v7 v8

 v4 v5 v6

 v2 v3

1

0 2

3

4

 (a) Original mesh

 v7 v8

 v4 v9

 v2 v3

ATL(8, 9)= { 2 }
ATL(2, 9)= { 3 }

1

0

4

(b) After contracting edge (v5, v6) to vertex v9

 v7 v8

 v4 v9

 v10

ATL(8, 9)={ 2 }
ATL(9, 10)={ 3, 4 }

1

0

(c) After contracting edge (v2, v3) to vertex v10

 v8

 v11

 v9

 v10

ATL(8, 9)= { 2 }
ATL(9, 10)= { 3, 4 }
ATL(9, 11)= { 0 }

1

(d) After contracting edge (v4, v7) to vertex v11

 v11 v12

 v9

 v10

ATL(9, 10)= { 3, 4 }
ATL(11, 12)= { 0, 1, 2 }

Skeletal edges are

v9 v10 and v11 v12

(e) After contracting edge (v8, v9) to vertex v12

http://cgrl2/research/references/pdf/partitioning 3D surface meshes using watershed segmentation.pdf
http://cgrl2/research/references/pdf/partitioning 3D surface meshes using watershed segmentation.pdf

B
uc

kh
or

n

C
hi

ck
en

 W
in

g

C
ow

 D
in

op
et

 H
an

d

Figure 13: Decomposition Results

. Leftmost column – Skeletal tree of model (the red lines are skeletal edges, whereas white lines are virtual edges)

. Second and third columns – two different views of components, represented in different colors

. Rightmost column – view on some cross-sections of space sweeping

Decomposing Polygon Meshes for Interactive Applications
 Xuetao Li, Tong Wing Woon, Tiow Seng Tan and Zhiyong Huang

	Abstract
	Introduction
	Related Previous Work
	Preliminaries
	Skeletonization
	Sweep Order
	Space Sweeping
	Application to Collision Detection
	Concluding Remarks
	Acknowledgements
	References

