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Abstract 

This paper discusses an efficient and effective framework to 
decompose polygon meshes into components. This is useful in 
various interactive graphics applications, such as, mesh editing, 
establishing correspondence between objects for morphing,  
computation of bounding volume hierarchy for collision detection 
and ray tracing. In this paper, we formalize the notion of a 
component as a sub-volume of an object with homogeneous 
geometric and topological features. Next, we describe the 
proposed framework, which adapts the idea of edge contraction 
and space sweeping to decompose an object automatically. 
Finally, we demonstrate an application of this framework to 
improve bounding volume hierarchies constructed by state-of-the-
art collision detection systems such as RAPID and QuickCD.  
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1 Introduction 

The polygon mesh is among the most common data structures 
used for representing objects in computer graphics. 
Geometrically, it is a piecewise linear surface consisting of a 
collection of polygons pasted along the edges. Its popularity stems 
from: (1) simplicity for fast rendering; (2) efficiency in interactive 
applications such as collision detection; (3) versatility in easy 
transformation to other representations; and (4) providing a good 
approximation of real world objects. Recent advances in 3D 
scanning and acquisition technology have also ascertained the 
importance of polygon meshes in representing complex objects. 
Thus, the polygon mesh is often used as a common denominator 
for digital models.  

 

Unfortunately, a polygon mesh does not capture high-level 
structures. In general, high-level abstractions are useful for 
managing data in applications. However, it remains a challenge to 
define useful high-level structures for arbitrary meshes, not to 
mention computing them automatically.  

In searching for good high-level structures, psychological studies 
have provided some useful guidelines. They have shown that 
human shape perception is partly based on decomposition, and 
any complex object can be regarded as an arrangement of simple 
primitives, or components [BIED87]. Representation of an 
arbitrary object in terms of a few components has long been a 
tradition in interactive graphics, CAD, and virtual simulation. 
Hence, we aim to decompose a polygon mesh into components 
that accord to human shape perception, and more importantly, are 
beneficial to interactive graphics applications.  

To decompose a polygon mesh where only the connectivity of 
polygons is known, we address three key issues: (1) What features 
can be used to delineate components reliably? (2) How should 
these features be computed? and (3) How should components be 
extracted automatically based on these features? The contribution 
of this paper is a framework for decomposing polygon meshes 
into components by treating them as surfaces of a volume. The 
results are components that are homogenous in geometric and 
topological features. This decomposition can benefit many 
applications, such as level of detail control, collision detection, 
ray tracing, mesh editing, shape interpolation and morphing. To 
demonstrate its efficiency and effectiveness, we have integrated 
our framework into several collision detection engines. The 
results of our findings have been encouraging. 

The remaining paper is organized as follows. Section 2 reviews 
related previous work. Section 3 gives a definition of a 
component. Sections 4 to 6 describe details of the major steps in 
the proposed framework. Section 7 demonstrates one possible use 
of the framework in improving collision detection results. Finally, 
section 8 concludes the paper. 

2 Related Previous Work 

Decomposition of shape is studied extensively in the computer 
vision community. Approaches, such as generalized cylinders 
[BINF71], [NB77], geons [BIED87], superquadric [PENT86] and 
their extensions were used in 2D images and range data. Though 
these approaches also focus on acquiring components with 
homogeneous characteristics as in our approach, there are no 
trivial extensions to work on 3D polygon meshes. Decomposition 
of 3D (volume) digital shapes based on a hierarchical 
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decomposition method was discussed by [BBS99], and may be 
extended to work on polygon meshes. Their work used the 
intuitive notion of local thickness to guide the decomposition and 
addressed the issue of robustness due to the translation of a model. 
Another work on volumetric objects was presented recently by 
Gagvani and Silver [GS00]. Our approach focuses on a more 
formal treatment of decomposition applied to polygon meshes.  

In [FS92], Falcidieno and Spagnuolo proposed an algorithm to 
classify polygon meshes into curvature regions. Chazelle et al. 
[CDST95] addressed the problem of dividing a polyhedron 
surfaces into a collection of convex pieces. Recently, Mangan and 
Whitaker extended the 2D watershed method to 3D polygon 
meshes [MW99]. Gregory et al. proposed decomposing the 
boundary of a polyhedron into the same number of morphing 
patches from the interactively defined feature nets [GSLM99]. 
Our approach differs from these, in that we consider volume as a 
part of the homogeneous characteristics in decomposition. 

Tan et al. [TCL99] recently achieved good results in decomposing 
objects through the use of vertex-based simplification. The 
approach works well for the geometric or inorganic models such 
as helicopters. However, it is not robust in that the results are 
sensitive to user specified parameters. In particular, it is not 
suitable for organic models that have no clear boundaries among 
their parts or components, such as that between the limbs and 
torso of a human. In addition, a homogeneous part of the object 
may be undesirably partitioned into different components, as there 
is no good control provided by simplification models in 
identifying boundaries among components. Our paper presents an 
approach that solves the mentioned problems, in particular when 
applied to organic models. 

3 Preliminaries 

By decomposition, we refer to the process of breaking down an 
object to arrive at a collection of meaningful components. By 
meaningful, we mean that a component can be distinguished 
perceptually from the rest of the object. From the cow model of 
Figure 1, we can easily see that it consists of horns, ears, legs, 
head, body, tail etc., that make up the object. There are clearly 
some characteristics that distinguish one part from the others. 
From observation and experiment, we found that two important 
distinguishing characteristics are geometry and topology. The 
notion of component is thus formulated using these two measures. 

 

Figure 1: Polygon Mesh 

Geometric and Topological Functions. Among the many ways of 
defining a 3D volume, one way is through space sweeping. Some 

examples of space sweeping are, (1) rotating a constant 2D region 
(e.g. (x-5)2+(y-5)2< 2 ) around an axis (e.g. y), or more generally,  
(2) sweeping a parameterized 2D region along a 3D space curve. 
The notion of a component in our framework is based on the 
latter. For each component of a 3D object, we can imagine it to be 
the result of some sweep of a varying planar region (cross-
section) along some path.  

An object (or a component) can be represented as a sweep of 
some parameterized function of cross-sections along some path as 
follows: 

U
end

start

t

tt
tG

=
)(  

where t ∈  [tstart, tend] denotes a particular point on the path, and 
G(t) is the cross-section at t. Next, we define two functions F(t) 
and T(t): 

 (1) The geometric function F(t) is given by 

 F(t) = measure( G(t) ),  

where measure is the measurement, such as the area or 
perimeter of cross-section G(t). 

(2) The topological function T(t) is given by 
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where ε is an arbitrarily small positive number.  

In order to obtain components that conform to the idea of a simple 
primitive, some restrictions are placed on the values of functions 
F(t) and T(t) by introducing the concept of a critical point.  

Critical Points and Components. A critical point in [tstart, tend] is a 
boundary point between components that captures change in 
either geometry, topology or both.  

Figure 2 shows some sample profiles of F(t). Other possible 
profiles such as symmetric ones or a combination of the given 
examples are considered in a similar way. At tc as indicated by 
dashed lines, each of the profiles is divided into two segments. 
Naturally, it is desirable to allocate the intervals [t1, tc] and [tc, t2] 
to two distinct components. By computing a few derivatives of the 
profiles, we note that the common characteristic of all profiles at 
tc is that F(n)( tc) = 0, where F(n) is the first vanishing derivative of 
F(t) for some n, and F(n) crosses zero at tc.  
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Figure 2: Sample Profiles of F(t) 



 

In order to restrict components to simple shapes, there is an 
additional constraint that topology must be constant, i.e. T(t) must 
be non-zero in each component. From these conditions, we define 
a critical point at t as: 
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 Thus we can define a component as follows:  
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where ta, tb ∈  [tstart, tend].  

In practice, we would like the interval (ta, tb) to be as large as 
possible. With this definition, the problem of decomposing an 
object into components is thus transformed to one that locates 
critical points.  

Proposed Framework. We adapt the space-sweep technique 
commonly used in computational geometry [HMMN84] to sweep 
the given polygon mesh with a plane, called the sweep plane, 
along some sweep path. The sweep path is approximated through 
the skeleton of the mesh, which we define in the next section. 
During sweeping, the geometric and topological functions are 
computed. Whenever a consecutive pair of critical points {ta, tb} 
are found, the part of the polygon mesh between ta and tb is 
extracted as a component.  

The following sections address technical issues of this approach. 
Section 4 describes the derivation of skeleton from edge 
contraction based simplification.  Section 5 describes how to 
augment this skeleton to form a tree for deriving a sweep path. 
Finally, Section 6 describes space sweeping for component 
extraction. For the purpose of discussion, the subsequent sections 
assume that triangular meshes are used instead of the more 
general polygon meshes. This does not affect the discussion in 
any way since it is straightforward to convert from one to the 
others [RR94]. We also assume that suitable preprocessing – like 
welding of very close vertices – is performed prior to applying the 
method. 

4 Skeletonization 

As described in section 3, a volume may be obtained through 
space sweeping of a cross-section function over some path. To 
solve the inverse problem, we must first determine the sweep path 
of a given object. This section justifies the use of skeletal edges 
from simplification as the basis for deriving the sweep path and 
then describes how they are computed.  

Related Structures. A suitable sweep path should be one that 
maintains the constancy or gradual change of the sizes of the 
cross-sections. The notions of generalized cylinder [BINF71], 
[NB77], [NCS94] and medial axis [CKM99] describe very well 
the structural features of a 3D object. But these features are non-
trivial and expensive to compute. In the case of the medial axis, 
complicated structures (involving quadric surfaces among others) 
are produced. In many cases they are not suitable to be used in 
sweeping. Similarly, other (generalized) Voronoi diagrams 
[BOIS84], [VO95] are not appropriate for our purposes. We seek 

some one-dimensional structure to guide our sweep path as 
discussed next. 

Verroust and Lazarus [VL00] proposed a method of extracting 
skeletal curves from polygon meshes. Their method computes 
skeletal curves through sample points on the surface of the given 
mesh. The success of the method relies on the sampling rate and 
the locations of source points (that are origins of skeletal curves) 
among other user specifications. Though this may also be 
applicable to our framework, it is unnecessarily complex and 
requires user input. Our method, based on [HOPP96], is 
automated and simpler to implement.  

Skeletal Edge and Skeleton. In edge contraction, edges of 
polygons in a mesh are ranked according to some cost function, 
which usually measures an error based on the effect of the 
removal of an edge. Unlike [HOPP96], we do not require an 
elaborate and expensive cost function, as our objective is not to 
preserve appearance. Instead we can make use of the Euclidean 
length of the edge as the cost. In each step, the edge with the 
minimal cost is selected to collapse into a vertex at the average 
location of its endpoints, and triangles incident to the edge are 
removed. Each edge (u, v) is associated with a list of triangles 
called the associated triangle list, ATL(u, v) that collapsed to this 
edge or its endpoints u and v. During the process, whenever an 
edge (u, v) is not incident to any triangle, it is designated as a 
skeletal edge and vertices u and v maintain their positions until the 
end of the process. The process iterates until all triangles have 
been collapsed to edges or vertices. In other words, we are left 
with only skeletal edges, whose union is the skeleton of the mesh. 
Figure 3 is a skeleton for the cow model, and Appendix A 
illustrates a detailed 2D example of the process. 

        

Figure 3: Skeleton 

Besides avoiding the complexity of other methods, the proposed 
method is able to work with uniformly subdivided as well as non-
uniformly subdivided surfaces. For convex simple shapes, the 
skeleton converges toward the medial axis. As the algorithm 
approximates simplification, smaller features are extracted first. 
For meshes with a bounded number of edges incident to each of 
its n vertices, the algorithm has an efficient runtime of O(n log n) 
where each iteration requires O(log n) time in searching for the 
shortest edge to collapse and O(1) time in updating all the relevant 
data structures.  

5 Sweep Order 

Skeletal edges provide a good basis for sweeping, but before that 
can be done we need to organize the set of skeletal edges (that are 



 

disjoint in general) into a linear order for sweeping. To do this, we 
define a skeletal tree from the skeletal edges by adding virtual 
edges to connect disjoint skeletal edges. Then we define a 
traversal order of the edges of the skeletal tree by grouping them 
into branches. The ordering of space sweeping and the sweeping 
paths are then determined by the ordering and position of the 
branches. 

Virtual Edge and Skeletal Tree. During skeletonization, a triangle 
is either contracted to a skeletal edge or an endpoint on a skeletal 
edge. Consider triangles ∆1 and ∆2 that are incident to a same 
edge. Suppose ∆1 is contracted to b and ∆2 is contracted to d 
where (a, b) and (c, d) are two disjoint skeletal edges. To connect 
them, we add a virtual edge (b, d) to the collection of skeletal 
edges. For the 2D example in the appendix, ∆v5v6v8 and ∆v5v2v6 
sharing (v5, v6) are contracted to v12 and v9 respectively; we thus 
have the virtual edge (v12, v9).  

On the other hand, suppose ∆1 is contracted to b and ∆2 is 
contracted to (c, d), where (a, b) and (c, d) are two disjoint 
skeletal edges. We have the issue as to whether (b, c) or (b, d) 
should be a virtual edge. This is resolved because the computation 
of virtual edges is in fact an integral part of the skeletonization 
process mentioned in the previous section. The skeletonization 
process creates a virtual edge whenever two disjoint parts are the 
result of an edge contraction (rather than after the whole process). 
That is (b, c) should be a virtual edge if b was a result of 
contracting some edge incident to c, and likewise for (b, d). 

For a connected mesh, the result of adding virtual edges is a 
connected graph. Such a graph is called a skeletal tree if it has no 
cycles. Otherwise, cycles are removed by applying a standard 
minimal spanning tree algorithm [CLR90]. The cost between each 
pair of nodes u and v is defined as the inverse of the size of 
ATL(u, v). Figure 4 shows a skeletal tree where the skeletal edges 
are drawn in bold strokes and virtual edges in thin strokes.  

 

Figure 4: Skeletal Tree 

Branch. From a leaf vertex of the skeletal tree, we can define a 
branch – starting with the edge incident to the leaf vertex – as the 
maximal chain of edges whose vertices (excluding the first and 
the last) are incident to exactly two edges in the skeletal tree. Each 
branch corresponds to one continuous part of the whole sweep 
path [tstart, tend], with the leaf vertex as the starting point, and the 
last vertex of the chain as the ending point. In general, there are, 
as many branches as the number of leaves.  

Ordering of Branch. The union of the ATL over the edges of a 
branch, with first vertex u and last vertex v, corresponds to a part 
of the object. Its surface area can be approximated as:  
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v

u
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where f(t) measures the perimeter of the cross-section at t. 
Assuming f(t) varies linearly over the branch, we can simplify the 
computation to the following: 

2
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Note that this approximation is used, as skeletonization results in 
fairly uniform branches. 

Branches are then ordered for sweeping based on surface area of 
their ATL. Those branches having a smaller area are favored for 
sweeping first. This ordering allows small but significant 
components to be extracted first so that they are not absorbed into 
larger components. During sweeping, edges of the skeletal tree 
that have been swept are removed. 

Note that the collection of triangles in an ATL seem to 
approximate a component. Likewise, the union of associated 
triangles of a branch also approximate a component. However, 
they are only able to capture coarse features and may not have a 
clear boundary between different parts. Hence space sweeping, 
clarified in the next section, is necessary to ensure that each 
component conforms to the definition in section 3.   

6 Space Sweeping  

In the course of sweeping, the geometric and topological functions 
are computed and analyzed. When a consecutive pair of critical 
points is found, the part of the polygon mesh that is swept is 
extracted as a component. 

To begin a space sweep, we have a branch and its corresponding 
set of triangles, which are obtained from the union of the ATL’s of 
edges from the branch. The sweep plane, given by P(t) = P(v, n), 
is determined by a reference point v and a normal vector n as 
shown in Figure 5. For any given vertex u from the mesh, we can 
compute its direction from v. If (v − u) ⋅ n < 0, we say that u is 
below the sweep plane. If it is equal to zero, u lies on the plane. 
Otherwise u is above the sweep plane. 
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Figure 5: Sweep Plane 

Sweep Plane Movement. The reference point v is either a vertex of 
the mesh or a point on an edge of the mesh. Specifically, v is on 



 

the boundary of the cross-section G(t). Initially, n is the normal 
vector along the first skeletal edge of a given branch B. v is then 
an arbitrary point along the intersection of the mesh and the sweep 
plane passing through the first endpoint of B. Since a polygon 
mesh is a discrete representation, we need only to approximate the 
sweep path by advancing in discrete steps. To advance P(v, n) to a 
new v, one way is to move it to the next nearest vertex above the 
sweep plane. In this way, the total number of cross-sections will 
be proportional to the number of vertices of the mesh. For dense 
meshes, this is an expensive operation. For such cases, a more 
pragmatic approach is to advance in fixed steps. In order not to 
over- or underestimate the step size, we can compute the amount 
as a function of the edge length distribution. 

Cross-section G(t). An edge in the polygon mesh is an 
intersecting edge of P(t) if one of its endpoints is either on or 
above P(t), and the other endpoint is on or below P(t). An 
intersecting triangle of P(t) is a triangle incident to one or more 
intersecting edges of P(t). The set of intersecting triangles of P(t) 
is denoted as ∆ = { ∆i | i = 1, 2,  … , k}. The intersection of P(t) 
with ∆ is a collection of line segments forming the boundary of 
G(t). This boundary is either a single simple polygon (see t1 of 
Figure 6) or a collection of simple polygons (see t2 of Figure 6).  
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Figure 6: Cross-section 

Sweep Plane Orientation.  Each branch comprises a set of skeletal 
edges which provide a general direction for the sweep plane 
movement. However, the orientation of the skeletal edge is not 
necessarily correct, as it is dependent on the result of edge 
contraction. Figure 7 shows an example where the object is 
straight but the branch is crooked. To account for this error, the 
orientation of the sweep plane is not entirely based on the skeletal 
edges but computed adaptively.  

 

 

 

Figure 7: Skeletal Edges Orientation 

Hence, when the sweep plane advances from P(u, n) to P(v, n’), 
its orientation is subjected to change. To compute n’, we first set it 
to n. It is then adjusted so that the sweep path will follow the 
natural orientation (ns) of the volume, and the cross-sections can 

approximate those obtainable through sweeping along the medial 
axis. Figure 8 illustrates this idea where (b) is a better orientation 
than (a). 
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Figure 8: Sweep Plane Orientations 

Specifically, we would like to have n’ oriented based on the 
normal vectors of triangles ∆i in ∆. The simple approach of 
summing the normals does not work as it gives a meaningless 
direction for a cylindrical object. We present a more robust 
formula for ns as follows: 
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where N(∆i) and N(∆i+1) are normal vectors of consecutive 
triangles in  ∆ (with ∆k+1 = ∆1), ordered in an anticlockwise 
manner about n’. Intuitively, the cross product of N(∆i) and 
N(∆i+1) captures the essence of a local optimal direction for the 
sweep plane with respect to the shared edges of ∆i and ∆i+1. Thus, 
a sum over all such cross products points to an aggregated 
direction. 

F(t) and T(t) Computation. With intersecting triangles of P(t) in ∆, 
it is easy to compute the geometric function F(t). It can be defined 
as either the perimeter or the area of the cross-section. To 
approxiamte the derivatives of F(t) (up to third order in practice), 
we use previous values (up to five) of F(t) to find delta differences 
in the computation. Also, standard filters, such as Gaussian or 
median [GW93], can be used to smooth out the values.  

To compute T(t), we first define H, a function of the cross-section 
G(t), as the number of simple polygons in G(t). Note that G(t − ε) 
and G(t) are homotopic if G(t − ε) can be deformed continuously 
into G(t) and vice versa. This property implies that their 
boundaries are also homotopic, that is, H( G(t) ) = H( G(t − ε) ). 
With that, we arrive at the following definition of T(t):  
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Since we only need to compare between G(t − ε) and G(t), only 
two cross-sections need to be stored throughout the computation.  

Component Extraction. From T(t) and the approximate derivatives 
of F(t), we can determine whether t is a critical point as defined in 



 

Section 3. Figure 9 illustrates a simple example with a critical 
point at b. When a critical point is reached, triangles swept so far 
that are not part of other components are extracted as a new 
component. For intersecting triangles in ∆, we could either 
include them in the new component, or split them up along their 
intersection with the sweep plane, depending on the application. 
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Figure 9: Profile of F(t) 

 

7 Application to Collision Detection  

As a way to show the usefulness of our decomposition technique, 
we have applied our framework to the problem of building 
hierarchical data structures for collision detection. The problem of 
collision detection is to determine whether moving objects (or 
rays for ray tracing application) are in collision with other objects 
in a simulated computer environment [LG98].  

Collision Detection Systems. RAPID [GLM96] and QuickCD 
[KHMS98] are state-of-the-art collision detection systems 
available from the web. Both of these systems are based on 
constructing hierarchies of tight-fitting bounding volumes of 
oriented bounding boxes (OBB) and discrete oriented polytopes 
(k-DOPs) for polygon meshes or soup. In [TCL99], Tan et al. use 
outputs of simplification procedures to guide the construction of 
bounding volume hierarchies. In particular, their UCOLLIDE 
system builds the top few levels of the bounding volume hierarchy 
with simplification, and applies RAPID for the lower levels. 

Hierarchy Building. Our application to collision detection adopts 
the same strategy as [TCL99]. In particular, we make use of the 
components derived from our procedure to build the top few 
levels of the bounding volume hierarchy, and then apply a native 
collision framework like RAPID or QuickCD for the lower levels.  

The construction of the top few levels of the hierarchy is 
performed as follows. We start by adding components as the 
leaves of the bounding volume hierarchy B. These nodes also 
form the initial set N. Let ni and nj be members of N such that they 
form the minimal bounding volume (either OBB or k-DOP) 
among all possible pairs in N. Create a new node nk in B as the 

parent of ni and nj, and replace ni and nj in N by nk. Repeat this 
until N has only one node, which is actually the root of B. 

Experimental Setup. Our experiment was conducted with an Intel 
Pentium II 450MHz PC. To compare RAPID and UCOLLIDE 
with our additional framework, we used the same experimental 
setup for each test model and environment. The number of 
simulation steps was set to 5000, the environment was populated 
with models where the number of triangles was over 200000, and 
the size of the environment was set to simulate sparse, normal or 
dense situations. In a sparse environment, the sum of the topmost 
bounding volumes of all the instances is about 25% of the volume 
of the environment. For normal and dense environments it is 
around 50% and 100% respectively.   

To compare with QuickCD, we used a similar setup. The 
environment was populated with a number of static copies of the 
input model so that the number of triangles in the environment 
was over 70000. In addition, there was a moving copy of the 
model with random speed and orientation. The number of 
simulation steps was set at 5000. Note that fewer copies of the 
model were used in comparison with RAPID and UCOLLIDE. 
This is due to the way environments are represented in QuickCD. 
Copies of the static model are represented in multiple times in the 
environment, as compared to RAPID or UCOLLIDE, where only 
position, orientation and direction need to be stored for each copy. 
In order to prevent disk swapping due to the limit on main 
memory, only a small number of copies were instantiated. 

Results. Some of our decomposition results are shown in Figure 
13 (color plate). Each row consists of four images, namely, the 
derived skeletal tree, two views of the extracted components and 
the cross-section. Each component is shown in a different color. 
Note that in our implementation of the space sweeping, we 
advance sweep plane to the nearest vertex among those vertices 
that are in the intersecting triangle set ∆ and above the current 
sweep plane P(t). This is a simplified version of the space 
sweeping but suffices for our experiments. Also, we use the 
simple perimeter measure for the geometric function F(t). The 
time taken to compute components is only a few seconds for our 
largest model (the chicken wing model).  

The results of the comparisons with RAPID and UCOLLIDE are 
shown in Figure 10 to 11. In terms of average time taken for each 
step of simulation, our method is 13-20% (average 16%) and 5-
11% (average 8%) faster than RAPID and UCOLLIDE 
respectively in a sparse environment. In a normal environment, it 
is faster by 8-22% (average 14%) and 2-15% (average 6.9%), 
respectively; in a dense environment, it is faster by 8-23% 
(average 14%) and 1-11% (average 6%), respectively. For 
comparison with QuickCD (Figure 12), our improvement is 6-
26% (average 12%) faster in terms of average time taken for each 
step of the simulation.  

On the whole, results show that better bounding volume 
hierarchies are constructed with our approach. In terms of total 
volume of bounding volume hierarchies for each model, our 
improvement as compared to RAPID is 2-21% (average 11%), to 
UCOLLIDE 2-11% (average 7%), and to QuickCD 4-12% 
(average 8%). In addition, they also indicate that our space-
sweeping decomposition method performs better than that of the 
decompositions used in [TCL99] for organic objects.  
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Figure 10: Comparison with RAPID 
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Figure 11: Comparison with UCOLLIDE 
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Figure 12: Comparison with QuickCD 

 

8 Concluding Remarks 

In this paper, we present a formal notion of components and a 
framework to decompose objects, represented as polygon meshes, 
into such components using space sweeping. The framework 
consists of steps to compute the sweep path, prioritize the 
sweeping order of segments of the sweep path, calculate 
geometric and topological features along the sweep path, and 
extract components of homogeneous features. On the whole, the 
decomposition is performed efficiently with no user intervention. 

Furthermore, we have implemented the framework with 
application to collision detection, as a demonstration of its 
effectiveness in improving collision detection timing for state-of-
the-art collision detection systems such as RAPID and QuickCD. 
Possible future work includes applications of the framework to 3D 
object morphing among others.   
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Appendix A: A 2D example of the skeletonization process 
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 (a) Original mesh 
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(b) After contracting edge (v5, v6) to vertex v9 
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(c) After contracting edge (v2, v3) to vertex v10 
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  v9 
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ATL(8,  9)= { 2 } 
ATL(9, 10)= { 3, 4 } 
ATL(9, 11)= { 0 } 
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(d) After contracting edge (v4, v7) to vertex v11 

 
 

 v11  v12 
 

 
 
  v9 
 
 
 
  v10 

ATL( 9, 10)= { 3, 4 } 
ATL(11, 12)= { 0, 1, 2 } 
 
 
Skeletal edges are  

v9 v10 and v11 v12 

 

(e) After contracting edge (v8, v9) to vertex v12 
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Figure 13:  Decomposition Results 

.  Leftmost column – Skeletal tree of model (the red lines are skeletal edges, whereas white lines are virtual edges) 

.  Second and third columns – two different views of components, represented in different colors 

.  Rightmost column – view on some cross-sections of space sweeping 
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