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Abstract 

Visibility computation and level of detail modeling are two impor- 
tant components of efficient scene rendering algorithms. Both aim 
to lessen the graphics load by lowering polygon count. This paper 
presents a novel framework that integrates the two techniques to 
optimize rendering. To improve the efficiency of occlusion compu- 
tation for densely tessellated models, we introduce the use of sim- 
plification to automatically deduce virtual occluders. This paper 
illustrates the use of the technique to efficiently preprocess occlu- 
sion for outdoor scenes. Using virtual occluders to pre-compute 
visibility, only visible surfaces may be refined for real-time selec- 
tive refinement. Compared to selective refinement without incor- 
porating occlusion culling, our implementation of the framework 
demonstrates significant polygon count reduction and speedup in 
frame rate. 

CR Categories and Subject Descriptors: 1.35 [Computer Graph- 
ics]: Computer Geometry and Object Modeling - surfaces and ob- 
ject representations, object hierarchies. 

Additional Keywords: occlusion culling, level of detail modeling, 
occlusion preserving simplification, cell, selective refinement. 

1 INTRODUCTION 

Visibility computation and level of detail (LOD) modeling are two 
important graphics acceleration techniques used to reduce the com- 
putational requirement of rendering complex 3D scenes. There are 
three kinds of visibility culling: view f?ustum culling, back-face 
culling and occlusion culling. These techniques avoid processing 
invisible portions of a scene by discarding polygons that are off- 
screen, oriented away from the viewer or occluded respectively. 
LOD modeling lowers polygon count by replacing distant models 
with appropriate approximations without significant loss in image 
quality. 

Visibility culling and LOD modeling complement each other 
to achieve the common goal of speeding up visualization through 
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polygon count reduction. For objects that are visible but far away 
from the viewpoint, simplification can be used to generate substi- 
tuting models with low LODs. However, objects near the viewpoint 
but are invisible will still be represented with high LODs. In this 
case, visibility culling is helpful in lowering the polygon count. 
Some recent work on selective refinement algorithms takes into 
consideration view frustum culling and back-face culling [8, lo]. 
Yet, none has incorporated LOD modeling with occlusion culling. 

This paper proposes a framework that accelerates interactive vi- 
sualization through both occlusion culling and LOD modeling. The 
contributions of this paper are: 

l It introduces the use of simplification to automatically deduce 
big virtual occluders from densely tessellated models to have 
more efficient and effective occlusion culling. 

l It presents a framework to pre-compute occlusion information 
(with no assumption on the convexity of occluders) to guide 
real-time selective refinement in achieving significant poly- 
gon count reduction. 

l It offers a uniform treatment on the cell-based visibility pre- 
processing for architectural models as well as outdoor envi- 
ronments. 

The rest of the paper is organized as follows. Section 2 reviews 
some related work and Section 3 gives an overview of our frame- 
work. Section 4 explains how simplification helps in yielding vir- 
tual occluders. Next, Section 5 describes the occlusion preprocess- 
ing algorithm and Section 6 discusses the steps to incorporate se- 
lective refinement with occlusion culling. Section 7 presents our 
experimental results. Lastly, Section 8 concludes the paper. 

2 RELATED WORK 

2.1 Occlusion Culling 

We are interested in practical means of speeding up rendering by 
performing efficient software checking to overestimate the set of 
visible polygons. The general approach of these conservative visi- 
bility algorithms is to select some polygons to act as occluders and 
check if they occlude any objects as seen from the viewer. To re- 
duce the cost of checking, occludees (culled objects) are usually 
approximated by bounding volumes. 

Teller and Sequin [ll] present an object space algorithm for 
fast architectural walkthrough system which divides a database into 
cells, roughly corresponding to rooms in a building. Cell-to-cell 
visibility can be computed in a preprocessing phase. 

Conservative visibility testing for general polygonal models 
in [3] performs object space culling by introducing the notion of 
separating and supporting planes. Visibility testing is performed 
between a pair of occluder and occludee by determining the regions 
of partial and fhll occlusion. A kD-tree is used to organize a scene. 
During run-time, the algorithm dynamically selects a subset of con- 
vex objects near the viewpoint as occluders and recursively applies 
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the conservative visibility test to the nodes of kD-tree (which are 
treated as occludees). 

Cohen-Or et nl. [2] outline a conservative visibility preprocess- 
ing method for outdoor environment by partitioning the viewspace 
into cells. A conservative superset of visible objects is computed 
for each cell by searching for a strong occluder for each object such 
that it cannot be seen ti-om any point in the cell. 

In the case of image space algorithms, the fundamental idea is 
to perform visibility computation for each frame by scan convert- 
ing some potential occluders and checking if the projections of the 
bounding volumes of occludees fall entirely within the image area 
covered by the occluders. Hierarchical Z-buffer algorithm [5], hi- 
erarchical tiling algorithm [6] and hierarchical occlusion maps [ 141 
are examples of such recent developments. 

2.2 LOD Modeling 

Many recent work on simplification emphasizes on achieving con- 
tinuous LOD with view-dependent selective refinement for real- 
time applications. LOD hierarchies are used to organize models 
with various LODs in a hierarchical manner to achieve selective 
refinement. The real-time continuous levels of detail simplifica- 
tion algorithm in [9] uses quadtree data structure to structure a 
uniformly-grided height field into blocks. During visualization, dis- 
crete LOD is first determined for each block and vertices within 
each block are further considered for removal to obtain continuous 
resolution. Grouping data into blocks also facilitates efficient view 
frustum culling. 

An algorithm for performing simplification dependent on view- 
ing direction, lighting and surface orientation is proposed by Xia 
and Varshney [ 121. A merge tree is first constructed off-line and 
used at run-time to guide the selection of appropriate triangles for 
display. 

Hierarchical dynamic simplification works by clustering vertices 
together in a hierarchical fashion [lo]. Nodes of the vertex tree to 
be collapsed or expanded are continuously chosen based on their 
screen projected size. Thus, the entire system operates dynamically, 
retessellating the scene continuously as the view position shifts. 

Hoppe presents the idea of achieving selective refinement for 
progressive meshes by constructing vertex hierarchies based on 
edge collapse information [7, 81. Selective refinement according 
to changing view parameters is done by moving the vertex fronts 
up and down through the hierarchies. A bounding volume and a 
normal cone are associated with each vertex for view frustum and 
back-face culling respectively. 

3 PROPOSED FRAMEWORK 

This section gives an overview of the proposed framework which 
assists real-time selective refinement with a cell-base visibility pm- 
processing to accelerate real-time display. The steps of the frame- 
work is outlined in Figure 1. 

Given a scene, our t&rework constructs a cell hierarchy which 
divides the viewspace into regions. Simplilication is applied to 
models of the scene to generate LOD hierarchies. As each node 
of the LOD hierarchies corresponds to some part of the scene, it 
can be considered as occludee for occlusion culling. Thus, visibil- 
ity for each cell is computed by fhrding those nodes of the LOD 
hierarchies that are occluded for all the viewpoints in the cell. 

As considerable amount of time is required to process mauy 
small polygons for occlusion culling of densely tessellated models, 
we alleviate the problem by introducing the use of simplification 
to generate approximated polygons. These polygons are ensured 
to be occlusion preserving to act as virtual occluders through our 
proposed edge error correction method. By having fewer but larger 

Figure 1: Steps of our framework. 

occluders, computational efficiency and effectiveness can be im- 
proved for any occlusion culling algorithm. 

The pre-computed visibility information is used to guide selec- 
tive refinement during run-time. In general, selective refinement 
algorithms maintain a list of current active nodes of the LOD hier- 
archies to exploit view coherence. For each frame, the active list 
is traversed to evaluate the refinement criteria for each active node. 
To include occlusion as one of the refinement criteria, we first ob- 
tam a list of occluded nodes by locating the viewpoint in the cell 
hierarchy. The list of occluded nodes is then used to check against 
the active list of the LOD hierarchies to determine the visibility of 
each active node. Only those unoccluded nodes are considered for 
refinement. 

4 VIRTUAL OCCLUDERS 

The demand for accurate graphical representation leads to an in- 
crease in the use of densely tessellated models. However, process- 
ing many small polygons for occlusion checking is time consuming 
and ineffective for both object space and image space algorithms. 
Potential occlusion may not even be identified as them is no big oc- 
eluder. As a result, it is of utmost importance to be able to replace 
each occlusive polygon set with a large, simplified virtual occluder. 

4.1 Occlusion Preserving Simplification 

Simplification provides an efficient automatic means of obtaining 
large polygons which closely resemble the original model. Current 
polygonal simplification algorithms can be used to reduce polygon 
count of complex models with tight error bounds. However, none 
has occlusion preserving as one of the criteria in simplification. 

A simplified polygon is occlusion preserving and thus can act as 
a virtual occluder if it gives correct visibility information. For any 
viewing position, let the set of objects occluded by the simplified 
polygon be A and the set of occludees found using the correspond- 
ing original occlusive polygon set be B. The condition A 2 B 
should always hold. 

A polygon generated by a simplification algorithm cannot act as 
a virtual occluder if certain part of the polygon is larger in extent 
than the original surface and gives more occlusion than the origi- 
nal. Therefore, to guarantee conservative approximation of occlu- 
sion, the basic idea is to modify the simplification algorithm or ap- 
proximated output such that the screen projection of the fmal poly- 
gons obtained are within that of the original model as seen from the 
viewer. Note that to satisfy the condition, the simplification process 
must not mse holes of the original model. 

4.2 Possible Attempts 

An intuitive solution to obtain occlusion preserving simplification 
is to make sure that the final approximation obtained is within the 
original. That is, the simplified model is entirely enclosed by the 
original mesh. For simplification adopting decimation approach, 
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we can enforce the constraint at each step of the algorithm. Each 
transformation (e.g. vertex removal or edge collapse) is legal only 
if the newly formed polygons are still within the original surface. 
However, considerable amount of checking may be required and re- 
stricting the possible choice of transformation may adversely affect 
the fidelity of the simplified model. 

A more efficient method is to first simplify a surface within a 
specified error which bounds the deviation of an approximation 
from the original. Then, the resultant model is shrunk by the 
amount of the specified error. Another equivalent alternative is to 
shrink the original surface first before performing simplification. 
For example, with simplification envelopes technique, occlusion 
preserving simplification can be achieved by forcing the outer en- 
velope to be the original mesh [ 131. In either way, the final result 
may be unnecessarily small as the specified error only indicate the 
overall maximum error of the simplified model and thus cannot dis- 
tinguish between positive and negative errors nor identify the parts 
that are responsible for the error. 

Ideally, instead of adjusting the whole simplified model, only 
those parts that violate the occlusion preserving constraint should 
be corrected. One implementation is to compare each simplified 
polygon against the original such that only polygons having some 
parts outside the original mesh are identified and adjusted. How- 
ever, inspecting every polygon against the original model for er- 
ror checking is computationally expensive. Therefore, next section 
presents a general approach which adjusts only edges of a simpli- 
fied polygon and does not restrict the whole polygon to be within 
the original model. 

4.3 Edge Error Correction 

We propose to only correct error of edges of simplified polygons to 
yield valid virtual occluders. Error ofun edge of a simplified poly- 
gon is the maximum positive deviation of the edge from the original 
mesh in the direction of the edge’s normal. Normal of an edge is 
the average of the normals of two or less adjacent polygons sharing 
the edge. To guarantee occlusion preserving, an edge is shifted in 
the direction opposite to its normal by the amount of error. This 
approach is based on the observation that only edges are sufficient 
to determine visibility. This is because edges define the extent of a 
polygon which in turns defines how much the polygon can occlude. 

For a simplified polygon to be occlusion preserving, its screen 
space projection, S, must be a subset of the screen space projection, 
M, of the original model for any given viewpoint. This condition, 
S 5 M, holds if the silhouette of S is within M and S does not 
intersect with any hole inside M. 

To obtain simplified polygons that are occlusion preserving, edge 
error correction can be applied to polygons generated from existing 
simplification algorithms. This is because majority of the existing 
simplification algorithms generate approximations with small de- 
viations from original models, usually through local modifications. 
Thus, we can visualize a positive and a negative offset surfaces from 
an original model such that they enclose both the original and sim- 
plified model. There may be variation of distance between the two 
offset surfaces due to varying deviation error of the simplified sur- 
face &om the original at different parts. For a simplified polygon, 
by shifting edges which are between the original and positive off- 
set surfaces to correct the errors, it is guaranteed that the silhouette 
of S is within M. In addition, given that the edges of the simpli- 
fied polygon are within the original, it is impossible for S to cover 
any hole of M as this will violate the fact that the simplihed poly- 
gon falls completely within the volume enclosed by the two offset 
surfaces. Hence, occlusion preserving constraint is enforced. 

After edge error correction, an occluder may no longer be a 
valid polygon as moving edges may change the connectivity and 
the edges may not be coplanar. However, this does not affect the 

Figure 2: An example of edge error correction. A cmss section view 
of a 3D original object and its simplified model with the viewpoint 
directed into the paper. Silhouette of original object is drawn in 
dashed line and that of the simplified one in solid line. 
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Figure 3: A case where a simplified polygon is “flipped” after edge 
error correction. 

correctness of visibility results. This is because each edge con- 
tributes to defining the extend of occlusion independent of other 
edges. Thus, occlusion culling performs computation for each edge 
separately without requiring other knowledge such as whether the 
edges are coplanar or connected. 

Our approach has several advantages. It works with many sim- 
plification algorithms which produce simplified surfaces that can 
be enveloped by positive and negative offset surfaces of the original 
models. It gives largest possible occluders for visibility checking as 
compared to the other alternatives mentioned in Section 4.2. This is 
because it does not restrict simplified polygons to be completely in- 
side the original surface and keeps those simplified polygons which 
are already occlusion preserving intact. More importantly, by re- 
placing many small polygons with a few large virtual occluders, it 
can greatly reduce the amount of computation for both image space 
and object space occlusion culling algorithms. 

Implementation. The steps of edge error correction are as follows. 
Vertices of the simplified model are shifted in the reverse direc- 
tion of their normals such that all the vertices are on or within the 
original model. We are done if the original model is convex. Other- 
wise, error of each edge is then obtained by finding the maximum 
distance the edge is outside the original surface on the plane con- 
taining the edge and its normal. Finally, each edge is corrected by 
shifting it along the reverse direction of its normal by the amount of 
error. Figure 2 shows a cross section view of a simple 3D example 
to illustrate the steps of edge error correction. Note that in general, 
simplified polygons after correction are not necessary completely 
within the original models. In addition, not all simplified polygons 
after edge error correction are good occluders. Figure 3 gives a 
case (in cross section view of 3D) where a simplified polygon is 
“flipped” after adjusting the edges and thus cannot occlude any ob- 
jects - it is still considered as a valid occluder and does not give 
wrong result. 

In using edge collapsing simplification, error of au edge can be 
decided by tracking the set of related original edges. Set of original 
edges for an original vertex are its outgoing edges. When two ver- 
tices are collapsed into one, their set of original edges are combined 
as well. The set of original edges for an edge of the simplified mesh 
is thus the union of the sets of its two endpoints. These original 
edges are used to check against the simplified edge to determine 
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the error. As maximum deviation of a simplified edge from the 
original surface can only occur at the edges, using original edges 
for edge error checking is sufficient. 

5 VISIBILITY PREPROCESSING 

To minimize the computation needed during run-time, obtaining 
visibility information as much as possible with a preprocessing 
stage is justifiable. Cell division for architectural walkthrough 
to pre-compute cell-to-cell visibility is an excellent example [ 111. 
Our framework applies the same concept to outdoor environments 
with large occluding objects. An outdoor scene is partitioned into 
cells and visibility of each cell is calculated off-line. Locating the 
cell containing the viewpoint during visualization gives the details 
about parts of the scene that are visible or occluded. 

Cohen-Or et al. present a similar idea of viewspace partition- 
ing to pre-compute conservative visibility for outdoor scenes [2]. 
Our framework differs by incorporating simplification to accelerate 
visibility preprocessing and achieve selective refinement based on 
occlusion information. 

5.1 Cell Hierarchy 

For visibility checking of building interiors, it is reasonable to treat 
each mom as a single cell with walls as natural occluders. However, 
due to the lack of apparent cell structure of outdoor environments, 
defining rules for cell identification is not as straight-forward. For 
city walkthrough with architectural models appear to “randomly” 
sitting on a terrain, there is no distinct boundary for cell identiflca- 
tion. 

Ideally, an outdoor scene should also be subdivided into cells 
according to occlusion information. Nearby regions with same vis- 
ibility sets are grouped together to form one cell. However, it is 
not practical to have such partitioning based on precise visibility 
information. This is because results of cell division is highly scene- 
dependent. As such, there is no control over the shape or size of a 
cell. Locating a viewpoint in cells with irregular shape may require 
substantial checking (e.g. a cell may be represented as a many-sided 
non-convex polygon). Hence, controlled viewspace partitioning is 
preferred. That is, cell identification is determined before perform- 
ing visibility computation rather than using visibility information 
to help the partitioning. 

With controlled viewspace partitioning, although visibility infor- 
mation can only be encoded conservatively, the main advantage is 
simplicity. It gives structured organization of information which 
assists data enquiry and viewpoint locating. Besides, hierarchical 
data sructure for cell organization can be conveniently employed 
to exploit spatial coherence. 

Controlled viewspace partitioning can be performed by employ- 
ing hierarchical spatial data structure such that each node represents 
a cell. The choice of the data structure for organizing the cells is 
application-dependent. For architectural walkthrough, it is best to 
have a cell hierarchy that divides a building into cells according 
to levels and then rooms for each level. For walkthrough of out- 
door environment, controlled subdivision with data structure like 
BSP tree or quadtree is more appropriate. If an urban walkthrough 
restricts the viewer to move along the roads, then cells should be 
associated with the roads only. 3D spatial partitioning data struc- 
ture such as octree or kD-tree can be used for general flythrough 
application. 

With a cell hierarchy, next section discusses the occlusion pre- 
processing phase to determine the visibility for each cell. To cap- 
ture the computed visibility information, each cell is associated 
with an occludee set. The occltiee set of a cell specifies the oc- 
cludees if the viewpoint is located in the cell. 

5.2 Occlusion Culling 

Existing occlusion culling algorithms are usually targeted for dy- 
namic checking during run-time. Occluders are selected based on 
the viewer’s location and then occludees are identified. To allow 
visibility preprocessing without any specific viewpoint in mind, 
there is a need of systematically choosing occluder and occludee 
pairs. 

Our occlusion preprocessing uses virtual occluders obtained 
t?om occlusion preserving simplification as described in Section 
4. For LOD hierarchies which are used to represent objects for 
selective refinement algorithms, a bounding volume is usually as- 
sociated with each node of the hierarchies for view frustum culling 
(e.g. quadtree for terrain [9] and vertex hierarchies for progressive 
mesh [8]). Since bounding volume of a node bounds part of the 
original object covered by the node and its descendants, it can be 
treated as an occludee. As we go down the levels of au LOD hi- 
erarchy, the bounding volumes of nodes correspond to smaller and 
smaller parts of an object. In this way, hierarchical culling of ob- 
jects is possible. 

A polygon can act as an occluder of an object if the object is 
completely inside the negative half-space of the plane of the poly- 
gon, that is, the polygon is oriented away from the object. Given 
an occluder 0 and an occludee X, the viewpoint is in the full oc- 
clusion region if X is completely occluded by 0, as illustrated in 
Figure 4 (a top view of 3D) where region 1 is the ml1 occlusion 
region. 

Implementation. The list of simplified polygons from a low LOD 
of each object are used as virtual occluders. Edge error correction 
is performed for these virtual occluders to enforce occlusion pre- 
serving constraint. To identify the occluders for each node of the 
LOD hierarchies (which are treated as occludees), each no& is as- 
sociated with a set of occluders. This is done by traversing the LOD 
hierarchies top-down for each occluder. For each path of the LOD 
hierarchies, the occluder is added to the occltier set of the highest 
level node if the occhtder is oriented away from the bounding vol- 
ume of the node. In this way, all the occluders of a node is the union 
of its occluder set with all the occluder sets of its ancestors. Dur- 
ing occlusion culling, a list of occluders is accumulated while we 
traverse down each path of the LOD hierarchies. As occluders may 
share common edges, adjacent occluders are joined to form larger 
occluders to take advantage of the combined occlusion effect. 

To compute the visibility information for the cell hierarchy, oc- 
clusion testing is recursively applied to no&s of each LOD hier- 
archy through a pre-order traversal. For each node of a LOD hi- 
erarchy, full occlusion region is determined for each of its virtual 
occluder. Cells in a full occlusion region are found by traversing 
the cell hierarchy top-down such that only highest possible cells 
in the cell hierarchy are identified with their occludee sets updated 
accordingly. To allow efficient searching and avoid duplication of 
cells found when we go from a node of an LOD hierarchy to its 
descendants, we keep track of the cells which have already been 
identified. For the example in Figure 4, cells in region 1 are i&n- 
tified with their occludee sets updated. When children of X are 
recursively processed, only cells in region that has not been con- 
sidered are searched. For instance, only occludee sets of cells in 
region 2 are updated for the lower left child of X. 

5.3 Non-convex Occluders 

Full occlusion region can be determined by object space occlusion 
culling algorithm using supporting planes [3]. A supporting plane 
is constructed for each edge of an occluder and a vertex of au oc- 
cludee. It is oriented in a way such that both the occluder and 
occludee lie on positive half-space of the plane (e.g. In Figure 4, 
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Figure 4: Occlusion culling of an occluder 0 and an occltiee 
(quadnode) X . 

the two lines that defme region 1 correspond to two 3D support- 
ing planes). A view-point sutisJies a supporting plane iff it is inside 
the plane’s positive half-space. For any convex occluder, 0 with 
n edges, Ml occlusion region is the region where all the support- 
ing planes are. satisfied Let pe be the supporting plane of edge e, 
where 1 < e 5 n. A viewpoint PI is in the full occlusion region 
iff3(pl,w)AF(pl,u)A . - . A F(p,,, v), where 3(p., V) returns 
TRUE if v satisfies pe. 

The use of supporting planes to enclose the region that corre- 
sponds to full occlusion was originally designed for convex occlud- 
ers only. We found that the algorithm can be extended to handle 
non-convex occluders as well. Assume edge z of 0 is replaced 
with edge a and edge b, and the internal angle formed by a and 
b is greater than r. In this case, the occludee can only be seen if 
the viewpoint is in negative half-spaces of both a and b’s supporting 
planes. That is, occlusion occurs when the viewpoint satisfies either 
the supporting plane of a or b. Thus, the expression for full occlu- 
sion checking becomes F(pl, V) A - . -A F(p,_l, V) A (F(P~, V) V 

F(pb, v)) A ~(Pz+I, v) A * *. A F(pn, w). The is done by subs& 
tUtbIg F(p,, V) with (F(Po, V) v F(pb, V)). 

In general, given a planar occluder 0 with n vertices ordered 
in counterclockwise direction, we can obtain the expression which 
determines a Ml occlusion region with respect to 0 as follows. 

Step 1: Construct polygon AI, with ml 5 n vertices, which 
equals to the convex hull of the n vertices. The expression El 
for full occlusion region with respect to A1 is defined by the 
conjunction of terms FF(p,, V) for all the edges 1 5 e 5 ml. 
In each of the subsequent step I, At-1 and El-1 from the pre- 
vious step is modified to form Ai and El. 

Step k : Assume we have a correct expression Eh to determine the 
full occlusion region for Ah, and mk < n (otherwise done). 

Step k+l: Case 1: Edge x of Ah with endpoints vertex i and ver- 
tex j where i precedes j in counterclockwise direction, and 
vertices in between i and j are on the left side of edge x. 

Construct a convex hull C with all the vertices tirn i to j. 
Ak+l is obtained by removing edge x Erom Ak and adding 
all the edges of C except edge x to .&,. As all the newly 
added edges of Ab+l form internal angles greater than ?r, 
Eb+1 is obtained by substituting the term F(p., ?J) in Ek with 
(F(p., v) v.. . v F(pt, v)), where edges s to t are the newly 
added edges. 
Case 2: Edge x of Ak with endpoints vertex i and vertex j 
where i precedes j in counterclockwise direction, andvertices 
in between i and j are on the right side of edge x. 
Construct a convex hull C with all the vertices f?om i to j. 
Ab+l is obtained by removing edge x fi-om Ak and adding 
all the edges of C except edge x to Ah. As all the newly 
added edges of .&+l form internal angles smaller than ?r, 
Ek+l is obtained by substituting the term F(p,, V) in Ek with 
(FF(p,,~)A--.AJ=‘(p~,v)),whereedgesstotarethenewly 
added edges. 

Figure 5: A non-convex occltier. 

Since at least one vertex is added to At in each step, the con- 
struction terminates in less than n steps. It is not difficult to see that 
a proof by induction follows naturally from the construction (with 
careful consideration of the combined regions covered by support- 
ing planes of newly added edges and that of their neighbors from 
one step to another). 

Figure 5 gives an example of non-convex occluder, the expres- 
sion for fbll occlusion testing is F(pl, w) A F(pa, w) A F(ps, u) A 

$4,~; A (F(IJs,v) V (F(Ps,v) A Fhrv)) V F(Ps,v)) A 

12, . 

In practice, an occluder may be formed from joining polygons 
which are not coplanar. In this case, after computing the support- 
ing planes for all the silhouette edges, we can take a cross section 
of the supporting planes to give a planar occluder for deriving the 
expression for full occlusion region. 

6 VISUALIZATION 

After the occlusion preprocessing phase, visibility of each cell is 
determined. To allow efficient selective refinement to take into ac- 
count the pre-computed visibility information, we assign to each 
node of the LOD hierarchies an ID. The IDS are numbered through 
pre-order traversal of the LOD hierarchies. Each node also stores 
the maximum ID among its descendants. In this way, it is easy 
for any node to recognize if another node is one of its descendants, 
as all its descendants’ ID must be between the node’s ID and the 
maximumID. 

Given a view-point, the cell hierarchy is traversed to find the cells 
from the root to the leaf that contain the viewpoint. Occludee sets 
of these cells are merged to give a final list of occludees, F. Thus, 
F contains the information about the nodes of the LOD hierarchies 
that are being occluded for the current viewpoint. By maintaining 
both F and the active list of the LOD hierarchies to be sorted in 
increasing or&r of IDS, we can traverse the two lists together for 
selective refinement. Active nodes which themselves or some of 
their ancestors appear in F are classified as invisible and should 
not be refined. In this way, selective refinement can be guided by 
F such that only visible parts of a scene may be refined while in- 
visible portions are coarsen. Figure 6 gives an illustration of the 
idea. Without lose of generality, a binary tree is used as an LOD 
hierarchy for simplicity. Assume that the active list is {4,5,6, 11, 
12,13}. Given a viewpoint, F is found to be {3,8, 12). Thus, the 
list of visible active no&s is (6, 11, 13). 

Our approach can be incorporated with any selective retine- 
ment algorithms utilizing some form of LOD hierarchies. For each 
he, each node of the active list is checked if it is being occluded 
by simple ID comparisons in addition to view-fi-ustnm culling and 
back-face culling. Only visible nodes are further considered for re- 
finement based on some screen-space geometric error metrics. By 
having an occlusion preprocessing phase and performing culling in 
a hierarchical fashion, minimum effort is required to find all the 
highest level nodes that are being occluded during run-time. As a 
result, selective refinement can easily take into consideration visi- 
bility information to achieve high polygon count reduction. 
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Figure 6: An LOD hierarchy with nodes numbered through a pre- 
order traversal. Thick-lined boxes represent active nodes. 

7 EXPERIMENTAL RESULTS 

We have experienced with our framework for terrain walkthrough 
application on an SGI Indigo2 workstation with a 250 MHz MIPS 
R4400 CPU/R4000 FPU and 128 MB of main memory. Our test- 
ing used an edge collapsing simplification [4]. Vertex hierarchies 
were built for selective refinement as described by [8]. Gur pre- 
liminary experiments used five datasets, each consists of a terrain 
model and some buildings sitting on it as occluding objects. Details 
of each dataset such as the number of polygons of the models, origi- 
nal occluders and virtual occluders obtained from simplification are 
summarized in Table 1. The total time used to simplify the terrain 
and occluding objects are also shown. A quadtree was used as cell 
hierarchy. Table 2 lists the number of levels of the cell hierarchy 
and statistics for visibility preprocessing. 

For each dataset, sample running time was measured for a walk- 
through of 1000 frames without and with occlusion culling (Table 
2). In both cases, view frustum culling was enabled. For all the ex- 
periments, there are sign&ant speedup in running time for walk- 
through with occlusion culling. Dataset 4 and 5 have the same ter- 
rain model with dataaet 5 having a denser set of occluding objects. 
We experimented the two datasets with different number of levels 
of cell hierarchy for the same walk-through path. 

The number of polygons rendered and frame time in the walk- 
through of datasets 1 and 3 are plotted in Figure 7 and 8. The graphs 
show that both the polygon count and frame time are greatly re- 
duced with occlusion culling (lower curves) as compared to without 
occlusion culling (upper curves). Figure 9 and 10 each shows top 
and 3D views of an adaptively reflned terrain without and with oc- 
clusion culling for an instantaneous viewpoint. For each top view, 
the terrain mesh is drawn in red, buildings are in blue and two side 
planes of the view frustum are in yellow. With occlusion culling, the 
terrain meshes are much coarser for parts that are occluded though 
inside the view tlustum. 

8 CONCLUSION 

This paper presents a framework that incorporates LOD modeling 
with occlusion culling. We have shown the technique of using sim- 
plification with edge error correction in deducing big virtual occlud- 
ers for efficient occlusion culling. With controlled cell subdivision 
for outdoor scenes, off-line occlusion culling is performed using 
virtual occluders. Through pre-computed visibility and the use of 
IDS, real-time selective refinement taking into account visibility can 
be achieved efficiently to attain significant polygon count and frame 
time reduction. 

One area of possible huure work is intelligent occluder selection 
for occlusion preprocessing. Possible strategies include selecting 
potential occluder based on the size of occluder and occludee and 
the distance between them, and detecting redundant occluder where 
one is closely behind another. Beside walkthrough, another area of 

possible future work is to explore the use of our framework in other 
rendering applications. 

Acknowledgment 
We would like to thank Kelvin Sung for his valuable comments to 
the paper. 

References 

[l] Cohen, J., Varshney, J., Manocha, D., Turk, G., Weber, H., 
Agarwal, P., Brooks, F. and Wright, W. Simplification en- 
velopes. PFOC. OfACMSiggraph, pp 119-128,1996. 

[2] Cohen-Or, D., Fibich, G., Halperin, D. and Zadicario, E. Con- 
servative Visibility and Strong Occlusion for Viewspace Par- 
titioning ofDensely Occluded Scenes. Pmt. OfEumgraphics, 
1998. 

[3] Coorg, S. and Teller, S. Real-Time Occlusion Culling for 
Models with Large Occluders. Symposium on Interactive 30 
Graphics, pp 83-90, 1997. 

[4] Garland, M. and Heckbert, P. Surface Simplification Using 
Quadric Error Metrics. PIVC. of ACM Siggraph, pp 209-2 14, 
1997. 

[5] Greene, N., Kass, M. and Miller, G. Hierarchical Z-Buffer 
Visibility. Pmt. of ACMSiggraph, pp 23 l-240, 1993. 

[6] Greene, N. Hierarchical polygon tiling with coverage masks. 
Proc. ofACMSiggraph, pp 65-74,1996. 

[7] Hoppe, H. Progressive Meshes. Pmt. of ACM Siggraph, pp 
99-108,1996. 

[8] Hoppe, H. View-Dependent Refinement of Progressive 
Meshes. Pmt. of ACM Siggraph, pp 189-198, 1997. 

[9] Lindstrom, P., Koller, D., Ribarsky, W., Hodges, L., Faust, N. 
and Turner, G. Real-Time, Continuous Level of Detail Ren- 
dering of Height Fields. Pmt. ofACMSiggraph, pp 109-l 18, 
1996. 

[lo] Luebke, D. and Erikson, C. View-Dependent Simplification 
Of Arbitrary Polygonal Environments. Proc. of ACM Sig- 
graph, pp 199208,1997. 

[ 1 l] Teller, S. and Sequin, C. Visibility Preprocessing For Interac- 
tive Walk&roughs. Pmt. of ACM Siggraph, pp 6 l-69,1991. 

[ 121 Xia, J. and Varshney, A. Dynamic View-Dependent Simplifi- 
cation for Polygonal Models. Proc. of the IEEE Visualization, 
pp 327-334,1996. 

[ 131 Zhang, H. Effective Occlusion Culling for the Interactive Dis- 
play of Arbitrary Models. PhD Dissertation, University of 
North Carolina at Chapel Hill, Department of Computer Sci- 
ence, 1998. 

[14] Zhang, H., Manocha, D., Hudson, T. and Hoff, K. Visibil- 
ity Culling using Hierarchical Occlusion Maps. Pmt. ofACM 
S&graph, pp 77-88, 1997. 

52 



11 Dataset 11 Terrain 1 Occluders I Virtual I Simplification 
occluders (4 

1 Crater Lake 8142 744 30 5.3 
Ashby 19602 1236 50 13.5 
WestUS 33282 1980 80 23.5 
Crater Lake 44402 2220 90 31.3 
Crater Lake 44402 4932 200 34.0 

Table 1: Number of polygons and simplification timing for various datasets. 
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Table 2: Preprocessing and visualization timing. 
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Figure 7: Number of polygons and frame time in the lOOO&ame wakthrough of dataset 1. 
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Figure 8: Number of polygons and frame time in the 100~frame wakthrough of dataset 3. 
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Figure 9: Top and 3D views of dataset 1 (a) without occlusion culling (2866 polygons), and
(b) with occlusion culling (1851 polygons).

(a) (b)

Figure 10: Top and 3D views of dataset 3 (a) without occlusion culling (6957 polygons), and
(b) with occlusion culling (3059 polygons).
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