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A (geometric) triangulation in the plane is a maximal connected plane graph with straight
edges. It is thus a plane graph whose bounded faces are triangles. For a fixed set of vertices,
there are, in general, exponentially many ways to form a triangulation. Various criteria related
to the geometry of triangles are used to define what one could mean by a triangulation that is
optimal over all possibilities. The general problem studied in this thesis is the following;:

given a finite set S of vertices, possibly with some prescribed edges, how can we choose
the rest of the edges to obtain an optimal triangulation?

Just to mention an example, we are interested in computing a min-max angle triangulation of
S, that is, a triangulation whose maximum angle over all its triangles is the smallest among all
triangulations of 5.

This thesis presents a number of new algorithms to construct optimal triangulations useful
in engineering and scientific computations, such as finite element analysis and surface inter-
polation. All algorithms are the first and, currently, the only ones that construct the defined
optimal triangulations in time polynomial in the input size. These main results are described
in three parts.

First, we develop a new algorithmic technique called the edge-insertion paradigm. It com-
putes for a set of n vertices an optimal triangulation defined by some generic criterion. From
this, we deduce that a min-max angle and a maxz-min height triangulation can be computed in
O(n%logn) time and linear storage, and a min-maz slope and a min-max eccentricity triangu-
lation in cubic time and quadratic storage.

Second, we show that a min-maz length triangulation for a set of n vertices can be computed
in quadratic time and storage. Length refers to edge length and is measured by some normed
metric such as the Euclidean or any other [, metric.

Third, for a given plane graph of n vertices and m non-crossing edges, we prove that there is
a set of O(m?n) points so that, for each adjacent pair of points on an edge, there exists a circle
passing through the two points that encloses no other points. This implies an efficient way
to construct a so-called conforming Delaunay triangulation, which is a Delaunay triangulation
that subdivides the given plane graph.

These results collectively provide a foundation for further algorithmic studies of optimal
triangulations.
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Chapter 1

Introduction

The theme of this thesis is geometric triangulations. These are face-to-face decompositions of
domains or spaces into triangles in two dimensions or simplices in general dimensions. Com-
putational work on geometric triangulations, or simply, triangulations, has been plentiful, ever
since the beginning of the computer era. Many interesting theoretical properties have been
discovered about triangulations, which in turn suggest the use of particular types of good or
optimal ones. Unfortunately, many of these optimal triangulations have as yet no polynomial
time construction methods and thus remain of limited significance in practice. Many computer
programs written in the area are either for optimal triangulations of a small class or heuristics
with no guarantee on the quality of the output triangulation. There remain numerous un-
solved problems on constructing triangulations, all waiting anxiously for solutions. The pool of
problems that was open a few years ago motivated our study, and this thesis reports on some

solutions and encouraging results in two dimensions.

In the rest of this chapter, we discuss two representative applications of triangulations
(Section 1.1), introduce useful terminology (Section 1.2), survey open problems related to ap-

plications (Section 1.3), and preview material covered by subsequent chapters (Section 1.4).



1.1 Two Sample Application Areas

Triangulating a geometric object or space is a popular decomposition method that has found
many applications. In this section, we describe two major uses of triangulations; other appli-
cations will be mentioned where appropriate in later discussions. The main purpose here is to
shed some light on the role of triangulations that will help us understand the relevance of the
open problems discussed in Section 1.3. As such, we only highlight the typical steps involved

in applications; specific details and other variations can be found in the references!.

FiNniTE ELEMENT ANALYSIS. This is a discretization technique for solving partial differential

equations. Many problems in engineering, including elasticity, electromagnetism, fluid dynam-
ics, structural mechanics, biomechanics and many others, appear as variational forms where in
each case a function is to be found that minimizes or maximizes a given set of equations. Very
often, an exact solution is impossible and thus an approximation is necessary. Finite element

analysis is one such approximation method [BaSu90, StFi73].

The analysis starts by creating a so-called mesh—possibly a triangulation—that decomposes
the structure or the object of interest into small pieces called elements. Next, the partial
differential equation is solved for each element with some lower order polynomial function. The
solutions for the elements are then integrated into a solution for the problem. Then, some error
indicator is obtained to decide whether any further computation is required to improve the
current solution. The next iteration, if needed, will be performed with higher order polynomial
functions or with improved mesh topology (via relocating the mesh vertices or refining elements

into smaller ones), or combination of both.

The mesh generation is indeed an important process. The overall quality of a computation
depends on the types and shapes of the elements, and the number and distribution of the
elements. One way to generate a mesh is to first spread vertices on the object, possibly taking
distribution requirements into account, and then form non-overlapping elements using these
vertices [Cave74]. Another way is to generate elements one at a time from the remaining

object [GeSh90, Trac77]. Sometimes, the object is first decomposed into some manageable, for

! Because of the huge amount of literature in the area, the references quoted are by no means complete.



example, convex portions [Joe86, JoSi86] before a mesh is created. We refer to [HoLe88, Shep88]

for surveys on mesh generation methods.

SURFACE INTERPOLATION. The objective is to construct a surface that passes through a given
set of data points with corresponding data values. This process appears in a wide variety
of scientific fields including mineral exploration, computer aided geometric design, medicine,
digital terrain modeling and weather analysis. In these applications, the given points and values
represent observed or computed values of some physical phenomena, and the interpolation
schemes are used to construct surfaces that approximate other values, which may be difficult or
impossible to obtain. Conditions, such as the continuity of partial derivatives (i.e., smoothness)
of the surface, are usually assumed to limit the choice. A comprehensive list of references on

the subject can be found in [FrSc87].

Let us consider the example of a given set of planar data points (a;,y;) with corresponding
data values z;. The goal is to construct a bivariate function f(z,y) such that f(z;,y;) = z;, for
all 7. A typical three-step interpolation procedure to achieve this is as follows. First, construct
a triangulation on the set of data points to divide the region of interest into triangles. Second,
estimate partial derivatives of f with respect to @ and y at each of the data points (z;,¥;)
using the data values of the data points connected to (2, y;) in the triangulation. The plausible
justification for taking the neighbors of (z;,y;) is that they tend to be close to (x;,y;) and
should thus have an influence on this calculation. Third, interpolate the values of points within
each triangle by some polynomial using the data values and the estimated partial derivatives
at the vertices of the triangle. The surface f is then obtained by connecting the interpolated
results on all the triangles, and some error bounds on the goodness of f can also be computed

from the geometry of the triangles.

1.2 Terminology

This section summarizes basic definitions and concepts needed throughout this thesis. The
discussion is predominantly for the two-dimensional plane, R%, because results and problems of

interest here are mostly two-dimensional.



CONVEXITY. Denote by 2y the edge, or line segment, that connects the points z, y € R, and by
|zy| the length of xy. The endpoints of xy are points x and y; they are, however, not considered
as points on zy. For z,y,z € R?, zyz denotes the triangle with edges zy,yz and zz. A set
C C R?is convex if for a,b € C, ab lies entirely in C'; otherwise, C' is non-convexr. The convex
hull of a set S, denoted by conv(9), is the smallest convex set in R? that contains S. A region
refers to the set of points in R* bounded by a (simple) closed curve. The curve is also the
boundary of the region. For example, a disk is a region bounded by a circle. We always refer
to a region as a open set that does not contain points of its boundary, and use the closure of a
region to mean the region plus its boundary. A convez region is a region whose set of points is

convex.

PLANE GEOMETRIC GRAPHS. Let S be a finite set of n vertices, or points, in R?, and £ a set

of edges determined by S. We call G = (5, F) a plane geometric graph if

(i) for every edge ab € E,abn S =0, and

(ii) for every two edges ab # cd in E, abNed = (.

If £ =0, we refer to G simply as a (finite) vertex set, or point set, 5. The connected components

of R? minus all vertices of $ and all points on edges of E are the faces of G.

TRIANGULATIONS. A triangulation is a plane geometric graph 7 = (9, ) so that F is maximal.

By maximality, edges in I bound conv(S) and divide its interior into disjoint faces bounded
by triangles. These triangles are referred as triangles of 7. We sometimes write 7(.5) to refer
specifically to a triangulation 7 of S. As 7 is a connected plane graph, its |.S| = n vertices,
|E| = e edges, and [ faces satisfy Euler’s formula: n — e 4+ f = 2; see, for example, [BoMu76].
In addition, if h is the number of edges in F bounding conv(5), then 3(f — 1)+ h = 2e, by
counting the edges in two ways. The left hand side counts 3 for each bounded face and h for
the unbounded face; the right hand side counts 2 for each edge. We thus obtain e =3n—h —3
and f = 2n — h — 1. Because h is fixed for a fixed point set 9, it follows that all triangulations

of S have the same number of f — 1 triangles and e edges.
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Figure 1.1: Examples on various types of triangulations for the point set S and the plane geometric
graph g = ({Cl, ba c, da €, fa g, h}’ {bha ce, Cf})

A plane geometric graph G = (9, F) can be augmented with an edge set E’ until it is a
triangulation 7 = (5, E U E’), also referred to as a triangulation of G. If E # 0, we call T
a constrained triangulation (of G), and E its set of constraining edges. Besides with edges, we
can also augment G = (9, E') with a vertex set $’. A triangulation 7 obtained in this manner
is called a Steiner triangulation (of G), and S’ the set of Steiner vertices. We call a Steiner
triangulation with constraining edges a conforming triangulation. Refer to Figure 1.1 for an
illustration. Unless stated otherwise, we talk about triangulations without Steiner vertices and

without constraining edges.

PorLyGgons. A (simple) polygon is a plane geometric graph G = (9, £') where F and S form a
single cycle. This cycle is the boundary of the polygon. It divides the plane into a bounded face,
its enterior, and an unbounded face, its exterior. We use polygon interchangeably to denote
both the boundary (a curve) and its interior (a region or, more precisely, a polygonal region).
A polygon is convez if its interior is convex, and it is called an n-gon if |S| = n. For example,
triangles are convex 3-gons. We define quadrilaterals to be 4-gons, and pentagons to be 5-gons.

Vertices of a polygon are always written in the order they appear on the boundary. Two vertices



are adjacent if they are incident to a common edge. A diagonal of a polygon is a line segment
that connects two non-adjacent vertices and lies entirely in the interior. An ear of a polygon is
a triangle bounded by two edges and one diagonal [Meis75]. Treating F as a constraining edge
set, we can talk about constrained and Steiner triangulations for G. The restriction of one of

these triangulations to the interior face of G is a polygon triangulation.

OPTIMAL TRIANGULATIONS. A plane geometric graph G permits, in general, many possible

triangulations. Various (shape) criteria can be used to classify some as optimal triangulations.
Many of these criteria are defined as maz-min (short for maximizes the minimum) or min-
maz? of some triangle or edge measure. The first quantifier is over all triangulations of G
and the second is over all triangles or edges of a triangulation. Two examples of criteria
are min-max angle and max-min angle. A criterion may or may not define a unique optimal
triangulation. When Steiner vertices are allowed, we prefer optimal triangulations with small

number of vertices, for obvious computational reasons.

A max-min or a min-max criterion, in the case without Steiner vertices, can be extended
naturally to its vector form. For example, consider the min-max angle criterion. For a trian-
gulation A of G, we define its angle vector V4 = (a1, az,...,0qy), with a3 > ay > ... > oy
the ¢ largest angles of the t = f — 1 triangles of A. If B is another triangulation of G with
angle vector Vg = (f1,02,...,0:), we say Vg is (lexicographically) smaller than V4 if there
is an index 1 < 7 < ¢ so that 3; = a; for 1 < ¢ < 7 and 3; < a;. Then, the vector form
of the criterion in this case defines a triangulation with the minimum angle vector. Similarly,
the vector form of the max-min angle criterion defines a triangulation that lexicographically

maximizes the non-decreasing vector of smallest angles of triangles.

Additional optimal triangulations will be introduced in the next section. For now, we
define the most prominent optimal triangulation of a point set 5, named after the Russian

mathematician Boris Delaunay.

DELAUNAY TRIANGULATIONS. An edge ab, for a,b € 5, is a Delaunay edge if there is a circle

through a and b so that all other points of § lie outside the circle. The collection of Delaunay

2Though min-min and max-max versions are possible, they are usually trivial and uninteresting.



edges defines a plane geometric graph D(9) known as the Delaunay triangulation of S [Dela34].
In the non-degenerate case, which excludes four or more points on a common circle, D(5) is
indeed a triangulation. In fact, it is a triangulation that lexicographically maximizes the non-
decreasing vector of smallest angles of triangles. In the degenerate cases, some faces of D(.9) are
convex polygons other than triangles, and these can further be subdivided into disjoint triangles
using additional edges cd for ¢,d € S. The resulting triangulation is called a completion of
D(S). In many situations, we make no distinction between Delaunay triangulations and their
completions. Note that each edge ¢d of a completion satisfies the so-called empty disk property
(with respect to ), i.e., there is a circle through ¢ and d so that all other points of 9 lie outside
the (open) disk bounded by the circle.

For a general plane geometric graph G = (9, F') where E # (}, we extend the above definition
to define constrained and conforming Delaunay triangulations. Two vertices a and b are visible
from each other if the line segment ab does not intersect any constraining edges in F. A
constrained Delaunay triangulation of G is a triangulation 7 = (9, E U E'), where ab € E' if
a and b are visible from each other and ab satisfies the empty disk property with respect to
only vertices visible from both a and b [LeLi86]. A conforming Delaunay triangulation of G is
a completion of D(S U S") where each edge of G is the union of some edges and vertices of the

completion [BFL8S].

TIME- AND STORAGE-COMPLEXITY. The efficiency of an algorithm is measured by its time-

and storage-complexity. Time refers to the number of steps, as a function of the input size n,
needed to complete the computation. Storage refers to the amount of memory space needed and
is also measured as a function of n. We assume the random access machine as our computational
model and use the unit-cost measure which charges one unit of time per arithmetic operation
[AHU74]. As a common practice, we talk about the asymptotic order or order of magnitude of

a complexity function f(n) rather than the exact function itself. Thus, we write

(i) f(n) € O(g(n)) if there is a positive constant ¢ so that f(n) < ¢-g(n) for all integers n

exceeding some constant ng > 0,

(i) f(n) € Qg(n) if g(n) € O(f(n)), and



(iif) f(n) € ©(g(n))if f(n) € O(g(n)) and f(n) € Q(g(n));

see, for example, [PrSh85, page 8-10].

The terms linear, quadratic, cubic refer to polynomials in n with degree 1, 2, and 3 respec-
tively. A polynomial time algorithm is an algorithm whose time-complexity is some polynomial
in the input size n. For practical purposes, efficient algorithms commonly refer to those with
low order polynomial time such as linear, O(nlogn), and quadratic. A computational problem
is said to be in the class P if it has a polynomial time algorithm, specifically, deterministic
polynomial time algorithm. Besides P, the class NP is of interest here. A problem is in NP if it
has a polynomial time, non-deterministic algorithm (see [GaJo79] for detailed discussion). P is
in NP but the converse relation is not known. There are decision problems in NP known to be
equivalent, by a polynomial time transformation, to all other problems in NP. Such problems

are termed NP-complete problems, and are unlikely to be in P.

DATA STRUCTURES. Data structures are ways to organize data in a computer. Common

examples of data structures are arrays, stacks, priority queues, and trees. These are well-
known and discussed in many standard texts on algorithms; see, for example, [CLR90]. We next
introduce the quad-edge data structure [GuSt85] to store a plane geometric graph G. Loosely
speaking, it stores each edge of G four times, twice for its two incident faces and twice for its
two endpoints®. Figure 1.2 shows an example of the quad-edge structure for a plane geometric
graph that bounds polygonal regions A and B. Strictly speaking, A is not a polygonal region in
the usual sense of the term since A contains a “crack” due to edges fg and gh. The quad-edge
representation treats A as a single region bounded by those (oriented) edges for which it lies to
their left. As such, we need not distinguish a region with cracks from a genuine one as long as its
interior remain simply connected. By this we mean that different (simple) paths (disjoint from

the edges) between two points in the interior can be continuously deformed into each other.

®Often, we do not need all the four (oriented) versions of an edge, but rather only the two versions that
correspond to the endpoints of the edge.



Figure 1.2: To the right is a schematic diagram of a quad-edge representation of the plane geometric
graph to the left. Quad-edge records are shown represented by crosses which are linked by solid and dotted
curves.

1.3 Survey of Problems

In the following subsections, we describe questions about constructing optimal triangulations.
Some of these questions are answered in this thesis, and some remain open. Qur emphasis
is on efficiency, that is, algorithms that run in low order polynomial time. As a fixed set of
n vertices generally has exponentially many triangulations (an upper bound of 10" on the
number of triangulations of a set of n points in R? is known [ACNS82]), it is not feasible to
exhaustively search the set of all triangulations for an optimal one. Also, many straightforward
ideas usually do not work as we will see in later chapters. The same can be said about Steiner
triangulation problems. Most existing techniques for constructing optimal triangulations are

surveyed in Chapter 2.

Sections 1.3.1 to 1.3.4 collect problems on non-Steiner triangulations, and Section 1.3.5 on
Steiner triangulations. We note that some non-Steiner cases can be extended naturally to con-
strained or Steiner cases. Also, max-min or min-max criteria mentioned in these problems can
be substituted by their corresponding vector forms. As mentioned, all problems are stated as
questions on the existence of efficient algorithms, particularly, sequential ones. The same ques-
tions can also be asked in relation to other computational issues, such as parallel computation,

dynamic inputs, etc. These questions will not be discussed.



1.3.1 Angle Criteria

For many applications, a “good” triangulation is one without thin or elongated triangles. Put
it differently, triangles that differ as little as possible from equilateral triangles are usually
preferred. One way to capture this notion is to impose angle criteria such as min-max angle
or max-min angle. This indeed agrees with the fact that angle is an important quantity in
bounding the errors of computations in finite element analysis and surface interpolation. In
particular, there are bounds that relate the error directly to the size of smallest angles, and
others that relate it to the size of the largest angle; see, for example, [Akim84, BaAz76]. De-
launay triangulations optimize the max-min angle criterion, and can be computed in O(nlogn)
time by a number of algorithms (Section 2.4). On the other hand, the construction problem for
min-max angle criterion was open for some time [Hans90]. An efficient solution to the problem

is provided in Section 4.1.

Problem 1 How fast can we compute a min-max angle triangulation of a point set?

Besides min-max and max-min angle conditions, a limit on the range of the angle values is
another natural condition. We note that this, however, may not always be achievable without
introducing Steiner vertices. For example, it is not always possible to use only acute angles.

The next question is a variant of this general issue, and is still open at this day.

Problem 2 Given a point set 5, how fast can we compute a triangulation of S that minimizes

the number of obtuse angles?

1.3.2 Length Criteria

For finite element analysis, edge lengths are sometimes part of error bounds. Specifically,
the sharpness of some error bounds is inversely proportional to the longest side of a triangle
[BrZ170, WGS90]. For surface interpolation, we sometimes use vertices of a triangle as “nearby”
locations to estimate the data values of points in its interior. It is thus desirable to have interior
points of the triangle as close to its vertices as possible [Akim84, page 44]. Also, this may help

in estimating partial derivatives of other vertices connected to the triangle. Both applications
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suggest the criterion of min-max length. Of course, this is ignoring the tradeoff and interplay
between angle and length criteria; they may not be optimized simultaneously. We can still
formulate the problem on min-max length criterion (which also appears in [PeKe87, page 175],

[Schu87, page 221], and [WaPh84, page 218]), and provide a solution in Chapter 5.

Problem 3 How fast can we compute a min-max length triangulation of a point set?

The following problems on length criteria are still open. Problem 4 is the “reverse” of the
previous problem, and Problem 5 is notoriously difficult [Lloy77, PIHo87] (see Section 2.5 for

some general discussion).

Problem 4 How fast can we compute a max-min length triangulation of a point set?

Problem 5 Given a point set 5, how fast can we compute a triangulation of S that minimizes

the sum of edge lengths?

1.3.3 Other Reasonable Criteria

As mentioned, error bounds are sometimes expressed in terms of angles as well as edge lengths.
We can thus consider to optimize measures that relate, in some ways, to both. These include,
for instance, the area of a triangle and the aspect ratio. The latter is the ratio of the longest
edge to the altitude from this edge. The degree of a vertex is yet another interesting measure
as it signifies the importance of the vertex in computations [FrFi9l]. It is, however, an NP-
complete problem to decide whether a point set with constraining edges has a triangulation
with vertex degree at most 7 [Jans92]. No solution is known for the next problem compiled

from [Schu87, page 222], [Barn77, page 84], [GeSh90, page 202], and [GCR77, Lind83].

Problem 6 Can a min-max or a max-min optimal triangulation based on any one of the
following quality measures be computed efficiently: area; aspect ratio; degree; radius of inscribed
circle; ratio of the area of the inscribed circle to the area of the triangle; ratio of the diameter

of the inscribed circle to the radius of the circumscribed circle?
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Two other measures are intentionally left out from the above; these are the max-min height
[GCR77] and the min-max eccentricity [GCR77, WaPh84]. Height of a triangle refers to the
length of the altitude from its longest side, and eccentricity of a triangle refers to the infimum
over all distances between the center of its circumscribed circle to points in the closure of the
triangle. These are formulated separately as they now have efficient solutions discussed in

Sections 4.2 and 4.4.

Problem 7 How fast can we compute a max-min height triangulation of a point set?

Problem 8 How fast can we compute a min-max eccentricity triangulation of a point set?

1.3.4 Data Dependent Criteria

Notice that all the above mentioned optimal triangulations for use in interpolating z = f(z,y)
do not take the data values into account. This may not be desirable since some shape infor-
mation “encoded” in the data values has great influence on the quality of the interpolation.
Indeed, a study shows that the best triangulation should have triangles with long edges in
the direction of minimum curvature and short edges in the direction of maximum curvature,
rather than simply having triangles close to equilateral ones [Nadl85]. This requirement is an
example of a data dependent criterion. In general, a data dependent criteria is one that takes

into account more than just the locations of the vertices.

Work done on data dependent criteria can be found in [DLR90b, QuSc90, Ripp92, RiSc90].
We sample only two such criteria for interpolating z = f(z,y). They are the min-max AABNV,
short for acute angle between normal vectors [DLR90a, DLRIOb], and the min-max slope
[WaPh84, page 218]. To understand these, we imagine that a triangulation on points (x;, ;)
in the plane is actually a “spatial triangulation” on (z;,¥;, z;) in space, i.e., a terrain formed
by triangular faces. The intrinsic dimension of this triangulation is two and it lives in R3. It
should be clear that we can talk about normal vectors and slope of these faces with respect to
the plane z = 0. This naturally defines the mentioned criteria. The plausible justification for
these criteria is that they model gradual change in the z values, in particular z values across

faces, and thus better control the smoothness condition across faces in the interpolation.
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Problem 9 Can an optimal triangulation defined by any one of the following criteria be com-
puted efficiently: min-max AABNV, minimum sum of AABNV, and minimum sum of the

squares of AABNV?

Problem 10 How fast can we compute a min-max slope triangulation of a point set?

Problem 9 is still open; heuristic algorithms are used in practice [DLR90a]. On the other hand,

there is an efficient algorithm for problem 10 in Section 4.3.

1.3.5 On Steiner Triangulations

Many open problems on Steiner triangulations are summarized in [BeEp92]; we will highlight
only two here. We note that constraining edges are commonly used to model important features
of objects or spaces to be triangulated, and they constitute part of the edges in the resulting
triangulation. Popular optimal triangulations with constraining edges include the constrained
and conforming Delaunay triangulation. There are already efficient construction algorithms for

the former [Chew89, Seid88], but not for the latter [NaSr91].

Problem 11 How fast can we compute a conforming Delaunay triangulation for a plane geo-

metric graph?

Chapter 6 contains a polynomial time solution to the problem. The next open problem is

related [BeEp91], since a triangulation without obtuse triangles is indeed Delaunay.

Problem 12 How fast can we compute a conforming triangulation without obtuse triangles

for a plane geometric graph?

1.4 Overview of the Thesis

The following chapters discuss algorithms on computing optimal triangulations. Chapter 2

surveys some prior work relevant to our subsequent discussions in Chapters 3 through 6.
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Chapter 3 discusses a new algorithmic technique, called the edge-insertion paradigm, which
computes optimal triangulations for plane geometric graphs. We present an abstract view of
the paradigm and state two conditions for criteria that can be optimized. Four examples of
criteria known to satisfy these conditions are the min-max angle, max-min height, min-max
slope and min-max eccentricity; these are discussed in Chapter 4. The material of these two

chapters also appears in [ETW90, BEEMT92].

Chapter 5 presents a quadratic time solution to the min-max length triangulation problem
of a point set. The result is applicable to edge lengths measured by an arbitrary normed metric,
including the Euclidean distance and the more general [, metrics. It is currently the only (non-
trivial) length criterion that can be computed efficiently. Our solution also provides additional
insight into optimal triangulations under edge length criteria. This chapter also appears in

[EdTa91].

Chapter 6 considers conforming Delaunay triangulations. We show that, for every plane
geometric graph G with n vertices and m edges, there is a conforming Delaunay triangulation
for G with 4m?n+ 10mn + 4n vertices. The result also implies an efficient algorithm to compute

these vertices and thus a conforming Delaunay triangulation. This is also published in [EdTa92].

We note that all solutions found in the above chapters are reasonably simple and not ex-
ceedingly difficult to implement. They are currently the only solutions of their kinds that run in
polynomial time. The data structures needed are mainly arrays, stacks, priority queues, trees,
and quad-edges. For each algorithm the tricky part is its correctness, which is based on subtle

observations and has a relatively involved and lengthy proof.

Chapter 7 summarizes our work and notes some difficulties of three-dimensional problems.
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Chapter 2

Some Prior Work

This chapter reviews some computational work on triangulations. Materials covered are relevant
to discussions in subsequent chapters. Further information on work done in the area can be
found in the survey papers [Aure91, BeEp92] and the two books on computational geometry
[Edel87, PrSh85]. A quick reference to this chapter is as follows.

1. The plane-sweep method computes an arbitrary triangulation for a plane geometric graph

of n vertices in ©(nlogn) time and linear storage (Section 2.1).

2. Dynamic programming is a general method to compute optimal polygon triangulations

in polynomial time (Section 2.2).

3. The edge-flip scheme computes the Delaunay triangulation in quadratic time and linear
storage. With some modifications, it serves as a popular heuristic for computing other

optimal triangulations (Section 2.3).

4. mst(S) C rng(S) C gg(5) C D(S5), where S is a point set, mst(.9) its minimum span-
ning tree, rng(.9) its relative neighborhood graph, gg¢(.9) its Gabriel graph, and D(5) its

Delaunay triangulation (Section 2.4).

5. There is a subgraph approach to compute a triangulation of a point set so that its total
edge length is a factor of O(logn) higher than that for the minimum length triangulation
of the point set (Section 2.5).
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2.1 Plane-Sweep

Plane-sweep is a simple way to construct an arbitrary triangulation for a plane geometric graph.
Let us first see how to apply plane-sweep to a set of vertices pg, p1,...pa_1, sorted in this order
from left to right. We conceptually sweep a vertical line from left to right, and maintain a
triangulation for the vertices already encountered. When we reach vertex p;, we add the edge
pipi—1- Then we march in a counterclockwise and then a clockwise direction along the convex
hull of pg, p1, ..., pi—1 to add edges between p; and convex hull vertices. To perform this for the
counterclockwise direction, we first set p; := p;—_1 and let p; be the convex hull vertex following
p; in this direction. If p;, p; and p form a right turn', we add p;pg, set p; := py and repeat the

test; otherwise, we are done for p;. The clockwise direction is done symmetrically.

The time spent to add an edge is constant since marching along convex hull edges in a
quad-edge data structure takes constant time per step. Thus, a total of O(n) time is needed to
create O(n) edges for the output. Sorting the n vertices (with z-coordinate as the primary key
and y-coordinate as the secondary key) takes Q(nlogn) time, which implies that plane-sweep
takes time O(nlogn) to compute an arbitrary triangulation for an unsorted set of n vertices.
Although plane-sweep is a rather simple-minded technique, it constructs a triangulation in
asymptotically optimal time. Indeed, £(nlogn) is necessary because triangulation is no easier

than sorting [PrSh85, page 188].

Plane-sweep works equally well in time O(nlogn) to construct a constrained triangulation
for a plane geometric graph. In this case, we need a dictionary, for example, a splay tree, to
record “active” (constraining line) segments intersecting the sweep line in sorted order. We
also record the rightmost vertex within the region between two adjacent active segments (and
above the topmost and below the bottommost active segment). The triangulation is constructed
incrementally to the left of the sweep line. Each rightmost vertex recorded plays the role of p;_1

in the vertex set case. The extra effort not encountered for the vertex set case is O(logn) for

! Three vertices p; = (mi1, mi2), py = (751, m52) and pr = (71, Tk2) form a right turn when vertex pj is on the
Tl Wiz 1
< 0.

right of the directed line p;p;. This is the case when the determinant | 7;1 @2 1

Tkl k2 1
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each insertion, deletion, and search in the dictionary. The total effort is O(nlogn), the same

as before.

2.2 Dynamic Programming

Dynamic programming finds the optimal solution by systematically combining solutions of
smaller problems. Let us see how the method computes a minimum length polygon triangula-
tion, i.e., a polygon triangulation that minimizes the sum of edge lengths. Let P be the simple
polygon with vertices pg,p1,...,pn—1. Let L[i,i+ j] be the total edge length of an optimal tri-
angulation for the region P’ bounded by p;;;p; and the edges from p;p;41 through piy;_1pitj,
where indices are modulo n. We compute L[7, 7+ j] recursively as follows. Clearly, p;4;p; is the
only edge of P’ possibly not in P. If p;4;p; crosses the boundary of P, then P’ is not a simple
polygon and we thus set L[i, ¢+ j] := oo. Otherwise, p;4;p; is either an edge or a diagonal of
P. In either case, p;1;p; is a side of some triangle in the optimal triangulation of P’. Such a
triangle decomposes P’ into two smaller (possibly empty) subpolygons of P’, which must also
be optimal in terms of total edge length; we, thus, have
Llisi+ 51 5= lpisgpil + _min_ (Llisi+ K+ Lli+ i+ )

With the above, we can find L[0,n — 1] by three nested loops, varying j from 1 ton — 1, ¢
from 0 to n — 1, and k from 1 to j — 1, to first solve small problems and then combine their
solutions to solve larger problems. The loop with % also checks whether p;y;p; crosses the
boundary of P by testing whether any edge p;xpitr+1 crosses? p;4;p;. To obtain the optimal
triangulation for P, we record the k that is chosen to optimize each L[i,i + j], and use it later
to trace the triangulation. In total, the algorithm takes cubic time for the nested loops, and

quadratic storage for keeping L[i, j] and &k [Gilb79, Klin80].

It is easy to see that the algorithm can be modified to compute other criteria. For example,
we can compute a min-max angle triangulation for a simple polygon in the same amount of time

and storage. Also, we can compute a triangulation that lexicographically minimizes the non-

2Two edges ac and bd cross iff abcd is a convex polygon, i.e., abe, bed, cda and dab are all left turns or all
right turns.
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increasing vector of largest angles of triangles, but the time- and storage-complexity in this case
are a factor of n higher as we need to compare and store vectors of linear size. Incidentally, the
dynamic programming approach is not necessarily the most efficient way to compute optimal
triangulations; for instance, the min-max angle criterion can actually be computed in O(n?logn)

time and linear storage (Section 4.1).

2.3 Edge-Flip

Edge-flip is a local optimization method that operates on two triangles whose union forms a
convex polygon. It was used in [Laws72] to remove small angles: the edge bd shared by triangles
abd and cbd is replaced or flipped when the smallest angle in these triangles is smaller than that
of ach and acd. In effect, an edge-flip replaces two existing triangles by two new ones. This
operation was incorporated into a plane-sweep scheme (Section 2.1) to incrementally compute
a locally optimal triangulation 7(.9) [Laws77], that is, one that has no edge-flip to improve its
quality. It was found that this locally optimality actually implies that 7(.5) is a completion
of D(5) [Dela34, Sibs78]. Since any two completions of D(5) have the same value for their

smallest angles, 7(.9) is actually a max-min angle triangulation (see [Edel87, page 301-303]).

There are various possibilities to implement the above scheme. One variant is to first
compute an arbitrary triangulation, 7(5), and then use a stack to schedule edge-flips. First,
all edges of 7(5) are pushed onto the stack. Then, edges are popped one by one to check
for possible edge-flips. When an edge-flip bd occurs, each of the other four edges of the two
triangles incident to bd is pushed onto the stack if it is not already there. The algorithm stops
when the stack is empty, which occurs after at most O(n?) edge-flips where n = |5]; see, for

example, [Edel92].

Many applications adapt the edge-flip method to optimize other criteria, by changing the
condition for edge-flip. These, however, do not always compute the defined optimal triangu-
lations and are thus heuristic schemes; see, for example, [DLR90a]. Also, it is unclear how
long each heuristic runs since edges removed can be recycled back for further edge-flips. One
possible way to cope with this difficulty is to impose a time limit on the algorithm; one other is

to use a priority queue (instead of a stack) to schedule edge-flips and stop the algorithm once

18



an unsuccessful edge-flip is encountered. When this latter heuristic is applied to the minimum
length criterion (for which we flip long edges for short ones), it guarantees that at most O(n?)

edges are flipped as removed edges do not reappear.

2.4 Delaunay Triangulations and Related Structures

The Delaunay triangulation has been a prominent subject in the study of triangulations; it is
related to many positive results known in the area. Besides the O(n?) time edge-flip method
(Section 2.3), Delaunay triangulation can be computed in O(nlogn) time by diverse algorithmic
paradigms such as divide-and-conquer [GuSt85, ShHo75], geometric transformation [Brow79],
and plane-sweep [Fort87]. Furthermore, it can be computed in time O(nlogn) with high proba-
bility by randomized incrementation [GKS92]. Among all triangulations of a given point set 5,
the Delaunay triangulation optimizes criteria such as the max-min angle [Sibs78], the min-max
circumscribed circle [D’AS89], the min-max smallest enclosing circle [D’AS89, Raja91], and the

minimum integral of the gradient squared [Ripp90].

As a graph structure, the Delaunay triangulation of S, D(5), is the straight line dual of
the so-called Voronoi diagram [Voro07, Voro08, Aure91]. Various subgraphs of D(.5) have been

studied in the literature. Three of those subgraphs, satisfying
mst(S) C rng(S) C gg(5) C D(S)

will now be discussed.

THE GABRIEL GRAPH OF 5, gg(5). Given a vertex set S, gg(.9) is a unique graph that con-

tains an edge pgq, p,q € 5, if all points in S — {p, ¢} are outside the closure of the disk with
diameter pq. It is defined by Gabriel and Sokal [GaSo69] for use in geographical analysis, and,
more generally, for clustering points. Obviously, an edge in gg(.9) is also a Delaunay edge, but

the converse is not necessarily true; thus, gg(5) C D(5).

THE RELATIVE NEIGHBORHOOD GRAPH OF S5, rng(S). An edge pq belongs to rng(\9) if

< min max{|x xqlt.
|pal S L {lapl, [zql}
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This definition goes back to Toussaint [Tous80], who modified a similar definition by Lankford
[Lank69], for use in pattern recognition. Equivalently, the lune of pq, denoted by A, is the set
{z € R? : max{|zpl|, |vq|} < |pq|}, and pq in rng(S)if Ay, NS = 0. It is obvious that A,, U{p, ¢}
contains the closure of the disk with diameter pg; thus, each edge of rng(\9) is also an edge of

g9(.9). Therefore, rng(.S) C gg(.9).

A MINIMUM SPANNING TREE OF 5, mst(5). It is a spanning tree, i.e., a connected and cycle

free graph, on S with the minimum total edge length. From the definition, the lune of each
edge pg in mst(.S) must be empty. Otherwise, there is a point r € A,, so that pr and ¢r are
not both in mst(.5), as mst(9) is cycle free. The spanning tree obtained by replacing pg with
either pr or ¢r has smaller total edge length than mst(5), a contradiction. Thus, we have

mst(S) C rng(S).

All the graphs, mst(5),rng(5), gg(5), and D(5) are connected since mst(.9) is connected,
and are plane since D(.5) is plane. An efficient way to compute mst(.5), rng(.9) or gg(.9) is to
first compute D(.5) with some of the methods mentioned above, and then remove invalid edges;

see, for example, [MaSo80, Supo83, Yao82].

2.5 Minimum Length Triangulations

We have seen in Section 2.2 the cubic time (dynamic programming) algorithm for constructing
minimum length triangulation for a simple polygon. The same problem for a point set is open
(Section 1.3.2, Problem 5) [Lloy77]. We mention in the following an interesting attempt, termed

subgraph approach, for finding a polynomial time solution to the problem.

The idea is to convert a point set problem to a number of (simple) polygon problems, which
can then be solved in polynomial time, for example, by dynamic programming. This conversion
is done by adding sufficiently many non-intersecting edges to the point set so as to divide its
convex hull into a number of polygons. For this to work, we must assert that these additional
edges are indeed part of an optimum and are computable in polynomial time. Unfortunately,

such a set of edges has not been found. Currently, only a small subset of edges can be identified

(see [Gilb79] for details).
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Despite the above difficulty, the subgraph approach was used as a powerful technique by
Lingas [Ling87] and Plaisted and Hong [PIHo87, OTZ88] to compute a triangulation with a
guaranteed bound on its total edge length. The former uses the union of the convex hull and
a spanning forest to reduce a given point set problem to several polygon problems. Under the
assumption of a uniform point distribution, the result is a triangulation with total edge length
within a factor of O(logn) from the optimum with high probability, and the expected length of
the solution is of the same order as that of the optimum. The latter generates polygon problems
by computing the convex hull and a star graph from each point to its nearby neighbors. After
optimally triangulating all polygons, this method generates a solution with total edge length

within a factor of O(logn) from the optimum.
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Chapter 3

The Edge Insertion Paradigm

This chapter introduces an operation called the edge-insertion to locally improve a triangula-
tion. Basically, the operation adds a new edge to the triangulation to be improved, deletes old
edges intersecting the new edge, and retriangulates the resulting polygons supported by the
new edge. This is in some sense a generalization of the edge-flip operation (Section 2.3)—an
edge-insertion generally intersects many old edges, but is the same as an edge-flip when it inter-
sects only one. Its ability to intersect many edges turns out to be very powerful; its formalism
into an iterative improvement scheme, termed the edge-insertion paradigm, computes a few
min-max and max-min optimal triangulations for which edge-flip paradigm fails, as shown in

the next chapter.

In the following, we examine an abstraction of the edge-insertion paradigm based on two
sufficient conditions for the min-max (and max-min) criteria that it can optimize. Section 3.1
formalizes the basic version of the paradigm, and Section 3.2 states the two sufficient conditions.
Then, Section 3.3 proves the correctness of the paradigm when applied to such criteria. Section
3.4 discusses refinements to the paradigm, Section 3.5 presents some extensions, and Section

3.6 summarizes this chapter.
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3.1 The Paradigm

Let S be a point set in R?, and let 2, v, z be points in S. Recall that zy denotes the line segment
that connects z and y, and zyz denotes the triangle with vertices z,y, and z. We call zyz an

empty triangle if all other points of 5 lie outside the closure of zyz.

A measure 1 is a function that maps each triangle zyz to a real value p(zyz). Examples
of measures that are of particular interest here are largest angle, height, slope, and eccentricity
of a triangle. We restrict our attention to min-max criteria, that is, for each p we consider the
construction of a triangulation of S whose maximum p(zyz) over all its triangles is the smallest

among all possible triangulations of S. Max-min criteria can be simulated by considering —p.

The measure of a triangulation A is defined as p(A) = max{p(zyz) : 2yz a triangle of A}.
If A and B are two triangulations of a common point set, then B is called an improvement of
A, denoted by B < A, if u(B) < p(A), or u(B) = pu(A) and the set of triangles zyz in B with
p(xyz) = p(B) is a proper subset of the set of such triangles in A. A triangulation A is optimal

for p if there is no improvement of A.

The formal specification of the edge-insertion of ¢s, ¢,s € 5, into a triangulation A of § is

as follows.

Function EDGE-INSERTION(A, ¢s): triangulation.
1. B:= A.
2. Add ¢s to B and remove from 5 all edges that intersect gs.
3. Retriangulate polygons P and R constructed in step 2.
4. return 5.

S

Figure 3.1: P and R are created by the removal of edges intersecting ¢s.

In step 2, P and R created are not necessarily simple polygons in the usual meaning of the

term, as shown by Figure 3.1. Although their interiors are always simply connected, there can

23



be edges (or “cracks”) contained in the interiors of their closures. Nevertheless, as discussed in
Section 1.2, each such edge can be treated as if it consisted of two edges, one for each side, which
then allows us to treat P and R as if they were simple polygons. As such, we can triangulate P
and R in step 3 in an optimal fashion (minimizing the maximum p) by, for example, dynamic

programming (Section 2.2).

With the edge-insertion operation, we formulate the most basic version of the edge-insertion
paradigm as follows; it tries all possible edge-insertions and halts when no edge-insertion im-

proves the current triangulation.

Input. A set § of n points in R?.
Output. An optimal triangulation 7 of 5.

Algorithm. Construct an arbitrary triangulation A of .5
repeat
T := A;
for all pairs ¢,s € 5 do
B := EDGE-INSERTION (A, ¢3);
if B < A then A := B; exit the for-loop endif
endfor

until 7 = A.

To compute an optimal triangulation, this paradigm assumes that there is an edge-insertion
that improves A whenever A is not yet optimal. Section 3.2 presents two conditions on measures
for which the assumption is true, and Section 3.3 proves this assertion. Assuming this, we argue
that the above algorithm runs in time O(n®). A single edge-insertion operation takes time O(n?)
when retriangulating by dynamic programming, as long as the measures of any two triangles
can be compared in constant time. Thus, the for-loop takes time O(n®) per iteration of the
repeat-loop. Finally, the repeat-loop is iterated at most O(n?) times because there are only (g)
triangles spanned by 5, and each iteration permanently discards at least one of them when it

finds an improvement of the current triangulation.
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3.2 Two Sufficient Conditions

Again, let S be a set of n points in R%. For each triangle zyz, z,y,2 € S, we designate one
or more vertices as anchors of zyz, depending solely on the measure p. For all but one of the
measures of interest in the next chapter, vertices with the largest angle are anchors. In these

cases, each non-isosceles triangle has a unique anchor.

Let 7 be a triangulation of S, and let zyz be an empty triangle of 5. We say that 7 breaks
zyz at y if it contains an edge yt with yt Nxzz # (). Note that if 7 breaks zyz at y, then it can

neither break it at  nor at z since 7 is a plane graph.

We are now ready to formulate two conditions for measures p. They both suffice to show
that the edge-insertion paradigm computes a global optimum (i.e., min-max p). The first
condition requires that every improvement of a triangulation A of S has an edge that breaks

one worst triangle of A at its (unique) anchor. Precisely, we require that

for every triangle zyz of A, if 7 neither contains zyz nor breaks it at its

anchor(s), then max{u(A), u(7)} > p(zyz).

The second condition is a stronger version of (I). It further requires that p(7) is no better
than measures of those triangles in A which 7 does not break at their anchors. Specifically, we

require that

for every triangle zyz of A, if 7 neither contains zyz nor breaks it at its

(1)
anchor(s), then u(7) > p(zyz).

We will see in Sections 4.3 and 4.4 that the slope and the eccentricity satisfy (I) but not
(IT). This shows that (I) is strictly weaker than (II). Because of the greater generality of (I),
we can only derive an O(n®) time refinement to the edge-insertion paradigm, as compared to

O(n?logn) time refinement for (II).
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3.3 The Cake Cutting Lemma

This section shows that if A is not yet optimal for measure p satisfying condition (I), then
there is an edge whose insertion leads to an improvement, specifically an edge breaking a worst
triangle at its anchor. This is achieved through the following two lemmas. The argument uses

only (I), so also applies when (II) is satisfied.

Cake-Cutting Lemma. Assume p satisfies condition (I). Let 7 < A be two triangulations of
a point set 9; let pgr be a triangle in A but not in 7 with u(pgr) = u(A); let ¢ be an anchor
of pgr; and let ¢s be an edge in 7 that intersects pr. Let P and R be the polygons generated
by adding ¢s to A and removing all edges that intersect ¢s. Then there are triangulations P
and R of P and R with u(pgr) > p(P) and u(pgr) > p(R).

Proof. We focus on triangulating P; R is triangulated similarly. Imagine we have P and 7
on separate pieces of transparent paper that we lay on top of each other so that the vertices
of P match those corresponding ones in 7. Next, we clip everything of 7 outside P. Now, we
see generally many edges of 7 cutting through P, but none of them can meet ¢s as ¢s € 7.
Let us call each connected component of an edge intersected with the interior of P a clipped
edge. Since P is not necessarily convex, several clipped edges can belong to the same edge of 7.
Our plan is to use these clipped edges as guides to successively remove ears from P to obtain

a required P.

If no clipped edge exists, then P has only three vertices and therefore must be a triangle
of 7. Because this triangle is not in A and 7 < A, the triangle has measure less than u(.A).
So we are done. In the following, we thus assume the existence of at least one clipped edge.

Denote by ¢ = pg, p1, - - -, Pk, Pk+1 = S the sequence of vertices of P.
Claim 1. For 1 < j <k, if Zp;_1p;pj+1 < 7, then p;_1p;4+1 is a diagonal of P.

Proof (of Claim 1). By construction of P, it is possible to find non-intersecting line segments
pj—1z and p;41y, both inside P, so that z and y lie on ¢s. (If j = 1, then 2 = p;_; = ¢; if
Jj =k, then y = p;41 = s.) The (possibly degenerate) pentagon xp;_1p;p;4+1y is part of P, and
because the interior angles at p;, x, and y measure less than 7, edge p;_1p;41 is a diagonal of

the pentagon and therefore also of P. This completes the proof of Claim 1.
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A clipped edge divides P into two polygons, the near side supported by ¢s and the far side
not supported by gs.

Claim 2. There is at least one clipped edge whose far side is a triangle.

Proof (of Claim 2). Let 2y be a clipped edge so that its far side, F', contains no further clipped
edge. Let ab be the edge in 7 that contains xy, and let abc be the triangle in 7 that lies on
the same side of the line through xzy as F'. We have F' C abc for otherwise F' contains a clipped
edge belonging to ac or be. Also, all vertices of F, except possibly z and y, are points in 5 and

therefore equal to a, b, or ¢. Thus, F is a required triangle. This proves Claim 2.

The clipped edges zy that satisfy Claim 2 fall into four classes as illustrated in Figure 3.2.

An ear p;_1p;pi+1 so that xy is a clipped edge with far side zp;y can now be removed from

Dq p

Figure 3.2: A clipped edge zy that satisfies Claim 2 has zero, one, or two endpoints on edges of P.

P, leaving a polygon P’ with one less vertex. Claims 1 and 2 remain true for P’ because the
removed ear is not supported by ¢s. So we can iterate and compute a triangulation P of P.

Symmetrically, we get a triangulation R of R. Let B be the thus obtained triangulation of §.
Claim 3. pu(pgr) > p(abe) for all triangles abe in P and R.

Proof (of Claim 3). It suffices to show the claim for triangle abc in P and R with maximum px.
Assume without loss of generality that abe is in P and p(abe) = p(B). At the time immediately
before abe was removed by adding ac, there was a clipped edge zy with far side xby. Hence, 7
does not break abc at b, and by construction, A breaks abe at b and therefore neither at a nor

at c.
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If 2y = ac, then abc is a triangle in 7 but not in A, and therefore u(pgr) > p(abc). So,
assume xy # ac. Then, if b is an anchor of abe, (I) implies that max{u(B),u(7)} > p(abe)
as 7 does not break abe at b nor does it contain abe. This simply means that p(7) > p(abe)
because pu(B) # p(abe), and therefore pu(pgr) > p(abe). Otherwise, a or ¢ is an anchor. As in
the previous case only with 7 replaced by A, we obtain max{u(B), u(A)} > p(abe) from (I) and
thus u(pgr) = p(A) > p(abe). This completes the proof of Claim 3 and also the Cake-Cutting
Lemma.

The Cake-Cutting Lemma now shows that the basic edge-insertion paradigm cannot get

stuck in a local optimum for p satisfying condition (I).

Lemma 3.1 Assume p satisfies condition (I). Let A be a non-optimal triangulation of a point

set S. Then there is an edge-insertion operation that improves A.

Proof. Let B be an improvement of A and consider a triangle pgr in A with u(pgr) = u(A)
that is not in B. Assuming ¢ is an anchor of pgr, condition (I) implies that B contains an edge
qs with gsNpr # (). Let P and R be the polygons generated by adding ¢s and deleting the edges
that intersect ¢s. The Cake-Cutting Lamma implies that there are polygon triangulations P
and R of P and R with u(P) and pu(R) both smaller than u(pgr).

3.4 Refinements of the Paradigm

We now refine the basic paradigm for measures satisfying (I) and (II). Both refinements are
specializations of the algorithm given below. It differs from the basic paradigm in two major
ways. First, edge-insertions are restricted to candidate edges gs that break a worst triangle
pqr at its anchor g. These edges are tried in a sequence, say ¢sq,¢sz,..., etc. Second, the
two polygons created by adding ¢s are retriangulated by repeatedly removing ears (as in the
proof of the Cake-Cutting Lemma), rather than by dynamic programming. We use the notation

Si+1 = NEXT(s;).
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Input. A set S of n points in R?.
Output. An optimal triangulation 7 of 5.

Algorithm. Construct an arbitrary triangulation A of 5
repeat
T := A;
find a worst triangle pgr in A, let ¢ be its anchor, and set s := sq;
while s is defined do
B := A, add ¢s to B, and remove all edges that intersect ¢s;
(partially) triangulate the two polygons P and R
by cutting off ears xyz with p(ayz) < p(pgr);
if P and R are completely triangulated then
A := B; exit the while-loop
else s := NEXT(s)
endif
endwhile

until 7 = A.

Two remarks are in order. First, this algorithm finds a triangulation with min-max triangle
measure, but not necessarily an optimal triangulation in the sense that the set of worst triangles
is minimal. To achieve this slightly more ambitious goal, the repeat-loop must not halt until
all worst triangles have subjected to unsuccessful edge-insertions. This requires only minor
modification to the algorithm. Second, in an implementation of the algorithm we would not
really copy an entire triangulation. Instead of the assignment 7 := A, we would use a flag to
check whether an iteration of the repeat-loop produced an improvement. And, the assignment
of B := A and the subsequent A := B can be avoided by making changes directly in A and

undoing them to the extent necessary.

The following subsections explain some of the steps in greater details and analyze the time-

and storage-complexity of the two refinements.

3.4.1 Triangulating by Ear Cutting — Part 1

As implied by the proof of the Cake-Cutting Lemma, the sequence in which ears are removed
from P is immaterial so long as only the last is supported by gs. Additionally, three consecutive

vertices is an ear of the remaining portion of P yet to be triangulated if they form an angle
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less than 7 inside P. This condition is equivalent to they form a left turn when vertices of P
are listed in a counterclockwise order. Thus, the triangulation of P can be implemented using
a stack and with simple test of an ear, so that it runs in time linear in the size of P. Here are
the details. We first initialize the stack, say stackP, by pushing ¢ followed by p. After that, we
consider the other vertices of P one by one in order. Each time a vertex p; is considered, we
first reset the stop indicator, repeat the CUTEARP(p;) procedure until stop is set or stackP has

only one vertex, then push p; onto stackP.

procedure CUTEARP(s)
suppose pg is the topmost vertex on stackP followed by pg_1.
if pr_1prs is an ear of the remaining portion of P yet to be triangulated

and  p(pg-1prs) < p(pgr) then
use pr_1pgs in triangulating P;
pop pi from stackP

else
set stop := true

endif.

The triangulation is complete if, at the end of the process, there are only two vertices on stackP.

Similarly, we use stackR and procedure CUTEARR(s) to triangulate R.

3.4.2 Analysis under (I)

The above ear-cutting process speeds up the algorithm for measures satisfying (I) and (II). But,
we can do better for (II) by further refinement. This is because partial effort on unsuccessfully
triangulating P and R can be saved for subsequent attempts. This results in further speed up
when integrated into a clever way to search for a good edge-insertion. We will return to this

discussion after we analyze the current refinement.

Theorem 3.2 Let S be a set of n points in R? and let u be a measure that satisfies (I). A

triangulation of S that minimizes the maximum p can be constructed in time O(n?) and storage

O(n?).

Proof. To achieve the claimed bounds, we use the algorithm above, along with two data

structures requiring a total of O(n?) storage. First, the quad-edge data structure (Section 1.2)
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stores the triangulation in O(n) storage and admits common operations, such as removing an

edge, adding an edge, and walking from one edge to the next in constant time each.

Second, to record the status of candidate edges, we use an n-by-n bit array whose elements
correspond to the edges defined by 5. If the insertion of a candidate edge ¢s is unsuccessful,
that is, the triangulation of P or R cannot be completed, then we know by the Cake-Cutting
Lemma that ¢s cannot be in any improvement of the current triangulation. We then set the bit
for ¢s, so that we do not attempt the insertion of ¢s again. If the insertion of ¢s is successful,
we set the bit for pr since it cannot be in any later improvement (as implied by (I) that every
improvement breaks pr). The bit array is also used to compute the sequence of candidate edges:
scan the row corresponding to ¢ and take all edges gs that intersect pr and whose flags have

not yet been set.

Each edge-insertion, whether successful or not, causes a new flag set for one of the (g) edges
defined by S. Therefore, at most (};) edge-insertions are carried out, taking a total of O(n?)
time. The claim follows because an initial triangulation can be constructed in time O(nlogn),

most straightforwardly by plane-sweep (Section 2.1).

3.4.3 Triangulating by Ear Cutting — Part 2

We now continue to refine the ear cutting process to triangulate P and R for measures satisfying
(IT). To be accurate, we should mention that the task of cutting ears and that of searching for

a candidate edge are woven together. The complete algorithm is given in the next subsection.

The refinement centers at saving partial work done in an unsuccessful edge-insertion of ¢s;_4
to ¢gs;. In particular, some removed ears due to ¢s;_y may remain valid for gs; = ¢s. Thus,
we just need to restore P and R to the extent necessary and then triangulate their remaining
portions on their stacks. For reason of efficiency (Section 3.4.5), we alternate removing an
ear from each, and when one polygon is successfully triangulated, we attempt to complete the

polygon that remains. This is formalized in the following CUTEARS procedure.
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procedure CUTEARS
stop := false;
while stackP and stackR each has > 2 vertices and not stop do
CUTEARP(s); if not stop then cuTEARR(s) endif
endwhile;
while stackP has > 2 vertices and not stop do CUTEARP(s) endwhile;
while stackR has > 2 vertices and not stop do cUTEARR(s) endwhile.

If the procedure finishes without raising the flag (stop = false), then we must have only one
vertex on each stack, and thus the triangulations for P and R are complete and an improvement
has been obtained. Otherwise, the flag is raised while testing either P or R (so we should really

have used two flags to be able to distinguish the two cases—we pretend we did).

Let us now consider the case where the triangulation of P cannot be completed due to the
insertion of candidate edge ¢s. Let P’ be the portion of P defined by vertices ¢ = po, p1,- .., Pk
on stackP and s = pyy1. By construction, each possible ear p;_1p;p;41,j < k of P’ is such that

w(pj—1p;ipi+1) > p(pgr). The next lemma is crucial for defining NEXT(s).

Lemma 3.3 Let B be an improvement of A for p satisfying condition (II). Then all edges of
B that intersect the interior of P’ also intersect ¢s. In particular, all edges of B incident to ¢

avoid the interior of P'.

Proof. As in the proof of the Cake-Cutting Lemma, we consider P’ as a “window” through
which we see clipped edges of B. Now suppose the claim is not true, that is, there is at least one
clipped edge with no endpoints on ¢s. As before we thus find such a clipped edge zy whose far
side is a triangle zp;y. But now condition (II) implies p(B) > pu(p;—1p;p;j+1) if p; is an anchor
of the ear p;_1p;p;41, and p(A) > p(p;—1p;jpj+1) if pj_1 or pj4q is an anchor. This contradicts
the assumption that P’ has no such ear.

It is interesting to observe that the proof of Lemma 3.3 breaks down if we assume that
p satisfies only (I). Symmetrical result holds for R’, the portion of R defined by vertices ¢ =
705 T1y-- -, Tm ON StackR and s = 7,41, when R cannot be completed due to the insertion of

candidate edge g¢s.
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3.4.4 Searching for a Proper Edge

As we search for an edge-insertion, we maintain an open wedge W containing all the remaining
candidate edges. Initially, W is the wedge between the ray ¢p and the ray ¢F. If the edge-
insertion of ¢s; turns out to be unsuccessful because the triangulation of P cannot be completed,
then Lemma 3.3 allows us to refine W as the part of the old W on R’s side of ¢3;; see Figure

3.3. Similarly, if the triangulation of R cannot be completed, then W can be narrowed down to

Figure 3.3: The two rays define the current W, and the broken line segments indicate those triangles
removed from P and R. If P is found to be noncompletable, then the next candidate edge ¢s;y1 lies in the
updated W defined by ¢5; and the ray passing through R.

P’s side of ¢5;. (As a consequence, if neither P nor R can be completed, then it is impossible
to improve the current triangulation by breaking pgr at ¢. This, however, turns out to be too

costly to check; see Section 3.4.5.)

Assume that ¢s; has failed because P could not be completed. Because ¢s;41 intersects
T S;, and thus moves away from P’, all ears cut off P’ remain the same and do not have to be
reconsidered. On the other hand, s; is no longer a vertex of R, so all ears cut off R’ that are

incident to s; must be returned to the territory of R’.

We can now integrate the tasks of searching for a good edge-insertion and triangulating P
and R. This is shown in the next procedure. The searching is done by stepping from triangle to
triangle. The first vertex s that we test is the third vertex of the other triangle of pr (if no such
triangle exists, then pr is an edge of the convex hull of S and no appropriate vertex s exists).
In general, each subsequent s is just the third vertex of the triangle incident to pgr,, where s
and ¢ lie on opposite sides of the line through pgr,,. This vertex is denoted by THIRD(pg, r.,).

For each new vertex s obtained in this fashion, we distinguish two cases: if s € W, then an
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edge-insertion is performed; else, we remove ears as much as possible. Note that W is defined

by ¢p,, and ¢7,,.

Input. A triangulation A of S with triangle pgr so that p(pgr) = p(A).

Output. An improved triangulation or a message that the measure cannot be improved.

Algorithm. Set p, := p, r, := r; push ¢ then p onto stackP, and ¢ then r onto stackR;

loop

if THIRD(py, 7,,) is not defined then

return the message that the measure cannot be improved and stop
else

set s := THIRD(pg, ' ), and remove pgr,, from A;

if s € W then

add ¢s to A and attempt the triangulation of P’ and R’ by CUTEARS
case 1: The attempt succeeds. Return the new triangulation and stop;
case 2: The flag was raised while testing P.
Set py := s, and push s onto stackP;
restore ears cut off R’ that are incident to s;
case 3: The flag was raised while testing R.
Set ry := s, and push s onto stackR;
restore ears cut off P’ that are incident to s
else (i.e., s g W)
if sr,, intersects W then
stop := false; while not stop do cUTEARP(s) endwhile;
push s onto stackP
else (i.e., spy intersects W)
stop := false; while not stop do cUTEARR(s) endwhile;
push s onto stackR
endif

endif

endif

forever.

3.4.5 Analysis under (II)

Because of the alternation between removing an ear from P’ and one from R’, at most only one

more than half of the removed ears are restored. This is also true if one polygon is completely

triangulated while ears are still removed from the other, because in this case only the ears of

the former polygon need to be restored, and their number is smaller than those cut off from the
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other. Thus, the total number of removed ears while edge-inserting ¢s1, ¢s2, ..., ¢s; is linear in

the number of old edges intersected by ¢s;, and so does the running time of the procedure.

We next prove that the old edges removed will never be reinserted in any later successful

edge-insertion, which then implies the claimed time-complexity of the algorithm.

Lemma 3.4 Let A be a triangulation of 5, with worst triangle pgr, and let B be obtained
from A by the successful insertion of an edge ¢s;. Then no edge xy in A that intersects ¢s; can

be an edge of any improvement of 5.

Proof. Lemma 3.3 implies that every improvement of B has an edge gw that lies inside the
wedge W computed when g¢s; is inserted into A. Every edge zy in A that intersects ¢s; also
intersects every other edge ¢t with ¢t € W. In particular, zy N qw # ) which implies that zy is

neither in B nor in any improvement of 5.

Theorem 3.5 Let S be a set of n points in R%, and let p be a measure that satisfies (IT). A
triangulation of 5 that minimizes the maximum g can be constructed in time O(n?logn) and

storage O(n).

Proof. As before, the algorithm uses the quad-edge data structure to store the triangulation.
The bit array, however, is replaced by a priority queue that holds the triangles of A ordered
by measure. It admits inserting and deleting triangles and finding a triangle with maximum
measure in logarithmic time each [CLR90]. Lemma 3.4 implies that only O(n?) edges and
triangles are manipulated in the main loop of the algorithm, which thus takes time O(n? logn).
Lemma 3.4 also implies a quadratic upper bound on the number of iterations of the repeat-loop,

which implies that the total time needed to find worst triangles pgr is also O(n?log n).

3.5 Extensions

In this section, we address the extensions to constrained problem and to problem defined by

vector of measures. The Cake-Cutting Lemmas and Lemma 3.1 remain valid for constrained
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triangulations provided the measures satisfies (I) or (II) also in this more general setting. In
this case, we only need to modify the algorithm so that edges intersecting constraining edges
can never be used as candidate edges for insertions. This modification does not increase the

time-complexity.

It follows that the unique triangulation that lexicographically minimizes the decreasing vec-
tor of triangle measures can be constructed for the non-degenerate case where no two triangles
of the point set have the same measure. First, construct a min-max triangulation, 77, and
declare the three edges of the triangle with the largest measure as constraining edges. Second,
construct a min-max triangulation 75 for the thus constrained input and introduce new con-
straints to enforce the second largest measure in future triangulations. Continue this way and
construct triangulations 73, 74 and so on, until the constraining edges add up to a triangulation

themselves.

Interestingly, the time- and storage-complexity remain the same. As before, for measures
satisfying (I), it is because each edge needs to be inserted at most once during the entire
process. For measures satisfying (II), each edge once removed cannot reappear in any future

triangulations. We summarize the results as follows.

Corollary 3.6 Let S be a set of n points in R%, with or without constraining edges. Let u be

a measure that satisfies (I).

(1) A triangulation of S that minimizes the maximum u can be constructed in time O(n?)

and storage O(n?).

(2) In the non-degenerate case, when p(xyz) # p(abe) unless zyz = abe, the triangulation
that lexicographically minimizes the decreasing vector of measures p can be constructed

in the same amount of time and storage.

Corollary 3.7 Let S be a set of n points in R%, with or without constraining edges. Let u be

a measure that satisfies (1I).

(1) A triangulation of S that minimizes the maximum p can be constructed in time O(n?log n)

and storage O(n).
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(2) In the non-degenerate case, the triangulation that lexicographically minimizes the decreas-

ing vector of measures p can be constructed in the same amount of time and storage.

3.6 Discussion

The main result of this chapter is the formulation of the edge-insertion paradigm as a general
method to compute optimal triangulations, and the identification of two classes of criteria for
which the paradigm indeed finds an optimum. The algorithm for measures satisfying (1) appears

in Sections 3.4 and 3.4.1, and for (II) in Sections 3.4, 3.4.3, and 3.4.4.

Though usually simple to verify, conditions (I) and (II) are somewhat restrictive. Currently,
only four measures are known to satisfy them (next chapter). It would be interesting to find
conditions weaker than (I) even though the price to pay may be implementations of the paradigm
that take more than cubic time. On the other hand, it remains open whether further speed up

is possible for the two refinements presented.

Another problem suggested in Section 3.5 is how to optimize vectors of measures in the
degenerate case where multiple measures occur. We note that the special case of this problem

for a simple polygon can be handled easily by dynamic programming in time O(n*) and storage

O(n?).
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Chapter 4

Applications of Edge Insertion

This chapter shows four applications of the edge-insertion paradigm. The main result is the

following theorem derived from corollaries 3.6 and 3.7.

Theorem 4.1 For a set of n vertices S in R%, with or without constraining edges,
(1) a min-max angle triangulation can be computed in time O(n%logn) and storage O(n),
(2) a max-min height triangulation can be computed in time O(n?logn) and storage O(n),
(3) a min-max slope triangulation can be computed in time O(n?) and storage O(n?), and

(4) a min-max eccentricity triangulation can be computed in time O(n?) and storage O(n?).

In addition, the generalization of each criterion to the vector form can be computed in the same

amount of time and storage, provided the input is non-degenerate.

To prove Theorem 4.1, we show that the measure p satisfies condition (II) when defined
as the largest angle or the (negative) height (Sections 4.1 and 4.2), and it satisfies (I) when
defined as the slope or the eccentricity (Sections 4.3 and 4.4). In each case, the proof also holds
under the more general setting with constraining edges. For these to be a worthy exposition,
we must first be convinced that other known methods, especially the edge-flip scheme, fail to

optimize these measures. In addition, we must ascertain that these criteria, plus the empty
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disk property, do not necessarily define the same optima. These issues are discussed in the next

few paragraphs.

Recall that the edge-flip scheme iteratively flips an edge as long as it makes a local improve-
ment. As each flip is allowed only for two abutting triangles forming a convex quadrilateral,
it is highly probable that the method gets stuck in local optima. For instance, consider the
triangulation of Figure 4.1 when subject to edge-flip under min-max angle, max-min height,

or min-max eccentricity. It is a regular pentagon abede that was slightly perturbed. More

a

Figure 4.1: Flipping be or bd cannot locally improve this triangulation. Thus, the edge-flip scheme cannot
change the shown triangulation into the optimal one containing edges ac and ad.

precisely, the perturbation is such that |bc| > |de|, Zabe = Zaed < sbed < Zede, and also
h(d,ce) < h(c,bd) < h(e,ad) = h(b,ac) < h(a,be), where h(y, zz) denotes the minimum dis-

tance between y and a point on the line through zz.

Take this same example, and imagine that vertices are not perturbed and thus form a regular
pentagon. If we set the elevations (or data values) of a,b,¢,d,et0 5,0,10,0,11 in this sequence
to assign slopes to triangles, we again have a bad example for edge-flip on the slope measure.
One quick way to estimate the slope of a spatial triangle p;p;pr given by its planar projection
pip; Pk (as in our example) is as follows. Assume the given elevations of the vertices are such
that 73 > 73 > w3, If 753 = 73, then the slope is simply %. Otherwise, let z be the

projection of a point on p;p, with elevation 7;3. From simple calculation, z can be computed

43 —T43

and so does the slope o))"
13<~P7

We can stretch the same example so that it is also the Delaunay triangulation of the vertices.
It thus follows that Delaunay triangulation is not necessarily the same as a min-max angle, a

max-min height, or a min-max eccentricity triangulation. Trivially, we can say the same for
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Delaunay triangulations and min-max slope triangulations. Since slope and eccentricity satisfy
(I) but not (II), they define different optima from largest angle and height. Lastly, each pair

can be distinguished by a simple example with four vertices, and thus they are all distinct.

4.1 Minimizing the Maximum Angle

A min-max angle triangulation of a point set 5 minimizes the maximum angle of its triangles,
over all triangulations of 5. As mentioned, such optimal triangulation has potential applications

in finite element analysis and surface interpolation [BaAz76, Bali84, Greg75].

For z,y,z € S, we define a(zyz) = max{Zxz, Ly, Zz} as the measure of triangle zyz. The
measure of a triangulation A of 5 is a(A) = max{a(zyz) : 2yz a triangle of A}. For triangle
zyz, we designate vertices y with Zy = a(2yz) as anchors. Then, the next lemma shows that

a satisfies condition (II).

Lemma 4.2 Let zyz be a triangle of a triangulation A of 5, and y be an anchor of xyz. Then

a(7) > a(xyz) for any triangulation 7 of S that neither contains zyz nor breaks zyz at y.

Proof. Assume that xzyz is not in 7 and that 7 does not break xyz at y. Then, there exists
a triangle uyv in 7 so that either « = 2 and wv N yz # () (rename vertices if necessary), or uv
intersects both ya and yz. In both cases, a(7) > Z(uyv) > a(zyz) because Zzyz is properly

contained in Zuyw.

We thus establish part (1) of Theorem 4.1. We note that the edge-insertion paradigm
actually evolved from the algorithm for min-max angle triangulations [ETW90], rather than
the order materials are presented here. The Cake-Cutting Lemma was also the main idea behind
the algorithm. Its original proof has a strong flavor of “cutting cake” from which the lemma
gets its name. For this historical and sentimental reasons, we repeat the proof in the rest of
this section. Though the proof may look slightly longer, it is conceptually simpler than the one

in the previous chapter.
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Lemma 4.3 (Cake-Cutting) Suppose triangulation 7 is an improvement of triangulation A.
Let pgr be a triangle in A with Zpgr = a(A) but not in 7, and let gs be an edge in 7 that
intersect pr. Let P and R be the polygons generated by adding ¢s to A and removing all edges
that intersect ¢s. Then there are triangulations P and R of P and R with a(pgr) > a(P) and

a(pgr) > a(R).

Proof. We prove the claim for P; it follows for R by symmetry. As before, we lay P on top of
7 so that their corresponding vertices match, and called each connected component of an edge
of 7 intersected with the interior of P a clipped edge. Again, we use these clipped edges to cut
(the cake) P to obtain P.

Given a point z on the boundary of P, let the path from z to ¢ (or & to s) be the part of the
boundary between x and ¢ (or z and s) that does not contain ¢gs. We distinguish four classes

of clipped edges xy; see Figure 4.2.

Figure 4.2: The class I edges in this example are eg and muv; the class 11 edges are ¢j, ¢k, cz, and sp;
the class I1I edges are ¢l and cw; and the class IV edges are jh, jd, un, zb, and sa.

I. Both endpoints,  and y, are not vertices of P and thus lie on edges of P.
II. Both endpoints are vertices of P.
III. Endpoint z is a vertex of P, y is not, and y lies on the path from z to s.

IV. The same as class III except that y lies on the path from z to g.
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At any vertex z of P, the clipped edges with one endpoint at = define angles at x that are
all smaller than a(A), because the clipped edges come from 7. The only disadvantage of the
division of P defined by the clipped edges is that some of their endpoints lie on edges of P
rather than at the vertices. We will now construct a triangulation of P based on the clipped
edges. It proceeds step by step where each step either removes or rotates a clipped edge or

introduces a new edge.

1. All class I edges are removed. This does not harm any angle.
2. All class I edges remain where they are.

3. Let zy be a class III edge with y on the edge v of P, where 3 precedes v on the path
from z to s. We replace zy by xv.

Note first that zv is indeed a diagonal of P. Otherwise, it intersects the boundary of P, which
implies that either z or < is not visible from ¢s. This is a contradiction to the way P is
constructed. Note second that the angle at  that precedes zy in the counterclockwise order
increases in step 3. Still, the angle formed by xv is strictly contained in an angle at = in A
because all edges of A that intersect the interior of P also intersect gs. It follows that the angle
formed by z7 is smaller than a(A). Another issue that comes up is that there can be class IV
edges a'y’ with ¢y’ on the same edge Gv of P; these edges now intersect zv. To remedy this
situation we replace 2’y by z’z. By the same argument as above, 2’z is a diagonal of P, and
the angle at #’ that precedes z'y’ in the clockwise order, and which increases as we replace x'y’

by @'z, remains smaller than a(A).
4. If zy is a class IV edge with y on the edge v of P, where 3 precedes v on the path from
x to g, then we replace xy by z7.

5. After steps 1 through 4 we have a partial triangulation of P which we complete by adding

edges arbitrarily. This finishes the construction of P.

We have a(P) < a(A) since we started out with all angles smaller than a(.A); each time an
angle increases it remains smaller than a(A) as argued above, and step 5 decomposes angles,

thus creating only smaller angles.
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4.2 Maximizing the Minimum Height

Recall that the height n(xyz) of triangle zyz is the minimum distance from a vertex to the
opposite edge, i.e., n(zyz) = min{h(z,yz), h(y,z2),h(z,2y)}. We write n(A) = min{n(zyz) :
zyz a triangle of A} for the measure of a triangulation A of S. A maxz-min height triangulation
of S maximizes n(.A) over all triangulations A of 5. Such triangulations have been suggested

for use in surface interpolation [GCRT77, WaPh8&4].

We next show that —» satisfies condition (II), when we define vertices of zyz with largest

angle to be anchors. This establishes part (2) of Theorem 4.1.

Lemma 4.4 Let zyz be a triangle of a triangulation A of 5, and let y be an anchor of zyz.

Then n(7) < n(zyz) for any triangulation 7 of S that neither contains zyz nor breaks zyz at

Y.

Proof. Since y is an anchor, we have height n(zyz) = h(y, zz), which is the distance between
y and a point s € zx. Assume that zyz is not in 7 and that 7 does not break zyz at y.
Then there exists a triangle uyv in 7 so that either v = 2 and wv Nyz # O (rename vertices if

necessary ), or uv intersects both yz and yz. In both cases, n(uyv) < h(y,uv) < n(xzyz) because
uv N ys # 0.

We insert the following paragraph on the relations of non-obtuse triangulations with some
of the above optimal triangulations. These, as we will see, have some implication to the imple-
mentation of the edge-insertion algorithm. We call a triangulation non-obtuse if the sizes of all
angles, three per triangle, are less than or equal to 7. It should be clear that not every point
set S admits a non-obtuse triangulation. If 7 is a non-obtuse triangulation of 9, then it is the
Delaunay triangulation, or a completion of it in degenerate cases. This is because 7 is optimal
with respect to the edge-flip operation. Besides those properties of Delaunay triangulations
(Section 2.4), a non-obtuse triangulation 7 of a point set also minimizes the maximum angle

since it is unique up to choosing diagonals of rectangles. The next lemma implies that 7 also

maximizes the minimum height.
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Lemma 4.5 If 7 is a non-obtuse triangulation of 5, then there is no other triangulation that

improves 7 with respect to 7.

Proof. We show that there is no edge whose insertion could improve 7; the Cake-Cutting
Lemma then implies the assertion. Let pgr be a triangle in 7 with n(pqr) = h(q,rp) = n(7),
and assume there is an edge ¢s, with ¢gs N rp # @, whose insertion improves 7. Let pqgt be
the triangle in the improvement that lies on the same side of the line through pg as pgr. If
h(p,sq) < h(q,rp), then n(pgt) < h(p,tq) < h(p,sq) < h(q,rp) = n(pqr), a contradiction
to the assumption that pgt is a triangle in the improvement of 7 but not in 7. Therefore,
h(p,sq) > h(q,rp), and symmetrically h(r,sq) > h(q,rp). It follows that Zpgs > Zgpr and
Zrqs > Zqrp. But now Zpgs + Zrgs = Zpgr > Zgpr + Zgrp which can be the case only if

Zpgqr > 5, a contradiction to the assumption.

Lemma 4.5 implies that during the construction of a max-min height triangulation the
heights of non-obtuse triangles need not be stored in the priority queue. This is because the

height of such a triangle can be smallest only if the current triangulation is already optimal.

4.3 Minimizing the Maximum Slope

Consider a function f : R? — R defining a surface z3 = f(21,23) in R®. The gradient of f is

the vector Vf = (ﬂ ﬂ), each component of which is itself a function from R? to R. Define

81’17 81’2
Vif = (%)2 + (%)2, and call \/V2f at a point (z1,22) the slope at this point.

Let S be a set of n points in R? and let S be the corresponding set in R® where each point
of 5 has a third coordinate called elevation. For a point z of 5, we write & for the “lifted”
point, that is, the corresponding point in s, Analogous to the definitions in R?, 27 denotes the
line segment with endpoints & and ¢, and 292 denotes the triangle with vertices Z, 7, 2. We can
think of 272 as a partial function f on R?, defined within zyz. At each point in the interior of
xyz, the gradient is well defined and the same as for any other point in the interior of zyz. We

can therefore set o(2yz) equal to the slope at any point in the interior of zyz, and call it the
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slope of zyz. For a triangulation A of S define 0(A) = max{o(zyz) : 2yz a triangle of A}, as

usual. A min-maz slope triangulation of S minimizes o(A) over all triangulations A of 5.

Observe that the direction of steepest descent at any point in the interior of a triangle zyz
is given by A = —V f at that point. We call vertex y an anchor of xyz unless the line y + AA,
A € R, intersects the closure of zyz only at y. In the non-degenerate case, zyz has only one
anchor, but if A is parallel to an edge, then there are two anchors. Call the intersection of the
closure of 9% with the plane parallel to the z3-axis through y + AA the descent line {(xyz) of

xyz, assuming y is an anchor of zyz.

The remainder of this section shows that measure o satisfies condition (I). For technical
reasons it is necessary to assume that no four points of S are coplanar. Indeed, the strict
inequality in the next lemma is incorrect without this assumption. This general position as-
sumption, however, does not diminish the generality of our algorithm, because a simulated
perturbation of the points can be used to enforce general position [EdMii90]. This perturbation
is infinitesimal. Consider the triangulation of the unperturbed points that corresponds to an
optimal triangulation of the perturbed points. This triangulation must minimize the maximum

slope over all triangulations of the unperturbed points.

Lemma 4.6 Let zyz be a triangle of a triangulation A of 5, and let y be an anchor of zyz.
Then max{o(A),o(7)} > o(ayz) for every triangulation 7 of S that neither contains zyz nor

breaks zyz at y.

Proof. The slope of zyz, o(ayz), is also the slope of the descent line ¢; = {(xzyz). Assume
without loss of generality that ¢; descends from § down to where it meets the closure of #Z.
(If it ascends, we use the same argument only with the z3-axis reversed.) Assume also that 7
neither contains zyz nor breaks it at y. It follows that 7 contains an edge wv so that either
w = x and uv Nyz # @ (rename vertices if necessary), or uv intersects both yz and yz. If

o(uyv) > o(xyz), then o(7) > o(zyz) and there is nothing to prove.

Otherwise, the edge 4% must pass above {1 in R®. By this we mean that there is a line parallel
to the xs-axis that meets 40 and {;, and the elevation of its intersection with 40 exceeds the

elevation of its intersection with ¢y, as in Figure 4.3. Then at least one of @& and & must lie
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Figure 4.3: The triangle zyz with anchor y in A is neither contained in 7 nor is it broken at y by 7.
Therefore, 7 contains a triangle uyv that intersects xyz as shown. It is possible that © =  or v = z, but
not both at the same time.

above the plane hy through points 2,7, 2; say © lies above hy. Consider the triangle yvz, and
note that it is not necessarily a triangle of A or 7, nor even an empty triangle of 5. We have
o(yvz) > o(zyz) because the projection (along z3-axis) of {; onto the plane hy through ¢, v, 2
is steeper than (; but not steeper than (; = {(yvz). We distinguish three cases depending on
which vertex is the anchor of yvz, that is, through which one a line of steepest descent of §v2

passes.

Case 1. v is an anchor of yvz. Then {5 connects © with a point on the closure of §2. Consider
the intersection of A with a plane parallel to the z3-axis through /5. This intersection includes
a polygonal chain that connects ¢ with that same point on the closure of 2 (since yz is an
edge in A). One of the segments in the chain must have slope at least the average slope of the

chain; hence one of the triangles abe in A has o(abc) > o(yvz) > o(2yz), and 6(A) > o(zyz).

Case 2. zis an anchor of yvz. Then {5 connects Z with a point on the closure of §0. Then we
use the same argument as in Case 1, only applied to 7. Since yv is an edge in 7 at least one of
the triangles abc in 7 that intersect the projection (along xs-axis) of {3 has o(abe) > o(yvz) >

o(xzyz), and therefore o(7) > o(xyz).

Case 3. y is an anchor of yvz. In this case {5 connects § with a point @ on the closure
of ©2. Furthermore, it is impossible that {5 descends from 7 to @ because w lies above hq,
which contradicts o(yvz) > o(zyz). Thus, it must be that {; descends from & down to 7.

Then o(uyv) > o(yvz) because 4 passes above (3. But o(yvz) > o(zyz), so we have shown

o(T) > o(zyz).
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This implies part (3) of Theorem 4.1. An example to show that ¢ indeed violates (II) is
given in Figure 4.4, so an O(n?logn) time algorithm for min-max slope triangulations seems

out of reach at this moment.

Figure 4.4: Triangulation 7 with diagonals uv, vw, and wu is an improvement of 4 with diagonals xy,
yz, and zx. T has no triangle with slope as large as o(zyz), but does not break zyz at any of its vertices.

4.4 Minimizing the Maximum Eccentricity

Consider a triangle zyz and let (¢1, p1) be its circumcircle, with center ¢; and radius p;. Recall
that the eccentricity of xyz, e(xyz), is the infimum over all distances between ¢; and points in
the closure of zyz. Clearly, e(zyz) = 0 iff ¢; lies in the closure of xyz. Note that eccentricity is
related to the size of the largest angle, a(zyz). Specifically, unless e(zyz) = e(abc) = 0,

e(zyz) - e(abe)

alzyz) < alabe) iff
(92) < afabe) i L < A

where po is the radius of the circumcircle of abe. This suggests we call y an anchor of zyz
if the angle at y is at least as large as the angles at # and z. As usual, we define ¢(A) =
max{e(zyz) : zyz a triangle of A}. A min-maz eccentricity triangulation of S minimizes €(.A)
over all triangulations A of 5 (see [WaPh84]). Obviously, a non-obtuse triangulation, when it

exists, for a point set 5 also minimizes its maximum eccentricity.

Figure 4.5 shows that measure ¢ does not satisfy condition (II). On the other hand, ¢ does

satisfy condition (I) as shown by the next lemma, which then implies part (4) of Theorem 4.1.
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Figure 4.5: 7T is the triangulation with diagonals uv, vw, and wu, and A is the one with diagonals
zy, yz, and zz. We have ¢(7) = e(uyv). As vertices u and v lie very close to yx and yz, respectively,
the circumcircle of uyv is significantly smaller than the one of zyz and e(uyv) < e(zyz). So, T is an
improvement of A, yet 7 does not break zyz of A at any of its vertices.

Lemma 4.7 Let zyz be a triangle of a triangulation A of 5, such that e(zyz) > 0, and let y be
an anchor of zyz. Then max{e¢(.A),e(7)} > e(zyz) for every triangulation 7 of S that neither

contains xyz nor breaks zyz at y.

Proof. Assume that 7 neither contains zyz nor breaks it at y. Therefore, 7 contains a triangle
uyv so that v = z and wv N yz # (rename vertices if necessary), or uv intersects yz and yz.
Let (¢1,p1) be the circumcircle of zyz. If neither u nor v are enclosed by this circle, then
€(T) > e(uyv) > e(zyz). Otherwise, assume that v is enclosed by (¢1,p1) and consider the line
segment cyv. It intersects a sequence of edges of A, ordered from ¢ to v. For an edge ab in
this sequence let abe be the supporting triangle so that ¢ and ¢; lie on different sides of the line
through ab. Assume that ab is the first edge in the sequence so that (¢1,p1) encloses ¢ but not

a and not b. Then ¢(A) > e(abe) > e(zyz).

4.5 Discussion
This chapter shows that the edge-insertion paradigm can optimize the min-max angle, the max-

min height, the min-max slope and the min-max eccentricity criteria. These polynomial time

solutions are the first, and currently the only ones, for these problems. An interesting side
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result is that non-obtuse triangulations also optimize the above criteria except for the min-max

slope.

We remark that conditions (I) and (II) have also been tested for other measures mentioned
earlier in Section 1.3. None of them seems to meet the requirements. Of course, the techniques
of retriangulating regions and searching for a good edge-insertion can still serve as a heuristic

that is more powerful than edge-flip when applied to these problems.
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Chapter 5

Minimizing the Maximum Length

This chapter is devoted to the study of the min-max length criterion. Generally speaking,
length criteria are known to be difficult to optimize; no optimal triangulations defined on (non-
trivial) length criteria has previously been computed efficiently. In the face of this apparent
difficulty, the quadratic time algorithm on constructing min-max length triangulations for point

sets presented here is somewhat surprising. There is evidence for the potential usefulness of

such a triangulation [BrZ170, WGS90].

The developments in the forthcoming sections to solve the min-max length problem are ele-
mentary, but lengthy and occasionally involved. Some of the details contribute insight into edge
length criteria. Before we continue, let us first rule out some seemingly promising approaches
to computing min-max length triangulation. Note first that the Delaunay triangulation does
not minimize the maximum edge length, as shown in Figure 5.1. Second, the iterative methods
that use the edge-flip (Section 2.3) or the more general edge-insertion operation (Chapter 3)

can get caught in local optima; see Figure 5.2.

Third, the incremental greedy method, that repeatedly adds the shortest edge that does
not intersect any previously added edges (see, for example, [LeLi90]), also fails to minimize the
maximum edge length. For the six points in Figure 5.2, this method computes the triangulation
with diagonals zy, wu, and wy. Finally, let us take a brief look at the decremental greedy method

that throws away edges in the order of decreasing length. It stops the deletion process if another
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b= (1,v3)

a=(-2,0) d=(2-¢,0)

c=(1,-3)
Figure 5.1: The length of the longest edge in the shown Delaunay triangulation approaches % the

length of the longest edge in the other triangulation, as ¢ approaches 0. Indeed, \% is the worst possible
ratio achieved by a Delaunay triangulation. This follows from the fact that it minimizes the radius, r, of
the maximum smallest enclosing circle of all triangles [Raja91]. Hence no edge in the Delaunay triangulation
exceeds 2r and every other triangulation has an edge of length at least /3.

deletion would render the set of edges so that it does not contain any triangulating subset. The
trouble with this approach is that it is not clear how to efficiently decide whether the evolving
edge set is still sufficient to triangulate the point set. Indeed, Lloyd [Lloy77] proves that the
general version of this problem (decide whether a given edge set contains a triangulation) is

NP-complete.

The organization of this chapter is as follows. Section 5.1 formulates the global algorithm;

its straightforward implementation using dynamic programming takes time O(n>). The only

v y

T
u

Figure 5.2: The diagonals are such that |zy| < |uv| = |ow| < |wu| < |yz| = |z2| < |uy| = |zw]| < |zv].
So, neither edge-flip nor edge-insertion can locally improve the shown triangulation A containing diagonals
zy, yz and zx. However, the min-max length triangulation is not .4 but the one with diagonals uv, vw, and
Wy,
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intricate part of this algorithm is the proof of correctness provided in Section 5.2. Sections
5.3 to 5.6 present a specialized polygon triangulation algorithm that can be used to speed
up the general algorithm to time O(n?); Section 5.7 discusses implementation issues. While
Sections 5.1 through 5.6 assume that the Euclidean metric is used to measure length, Section
5.8 demonstrates that all results extend to general normed metrics. Indeed, the arguments in
Sections 5.1 through 5.6 are axiomatically derived from a few basic lemmas in order to minimize
the number of changes necessary to generalize the results. Finally, Section 5.9 summarizes the

contribution of this chapter.

5.1 The Global Algorithm

Let S be a point set. We define ch(5) as the smallest convex polygon whose closure contains
the convex hull of 5. In the case where three or more collinear points of § lie on the boundary
of this polygon, we think of each such points as a vertex of the polygon. Thus, edges are taken
only between adjacent collinear points. Each edge of ch(9) is an edge of every triangulation of

S, and therefore also of every min-max length triangulation.

The circle with center 2 and radius p is denoted by (z,p). Recall (from Section 2.4) that
rng(9) stands for the relative neighborhood graph of 5, and the lune of ab is the intersection
of the two disks bounded by (a,|ab|) and (b, |ab]). Edge set of rng(.9) contains ab iff |ab| <
minges_ (o5 max{|zal, |zbl}, i.e., the lune of ab is disjoint from 5. We will see in the next
section that there is a min-max length triangulation mlt(.9) that contains all edges of rng(5).

For convenient, ch(5) and rng(5) will be interpreted as edge sets where appropriate.

Because ch(S)Urng(5)is a connected graph, it decomposes the convex hull of S into simply
connected regions. Though the boundary of each region is not necessarily a simple polygon,
we can always treat it as one computationally (Section 1.2). Thus, we can construct mit(.S) by
computing ch(S) U rng(9) and then (optimally) triangulating each resulting simple polygon.

Input. A set S of n points in R?.

Output. A min-max length triangulation of 5.
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Algorithm. 1. Construct ch(S) and rng(S).
2. Determine the polygons defined by ch(.5) U rng(5).
3. Find a min-max length triangulation for each such polygon.

Step 1 can be carried out in time O(nlogn) using results documented in [PrSh85, Supo83].
Using the quad-edge data structure of Guibas and Stolfi (Section 1.2) for storing the plane
geometric graph ch(9) U rng(9), step 2 can be accomplished in time O(n). Then, at step 3,
we can use dynamic programming (Section 2.2) to compute an optimal triangulation for each
polygon in time cubic and storage quadratic in the number of its vertices. This adds up to time

O(n?) and storage O(n?). The correctness of the algorithm is established next.

5.2 The Subgraph Theorem

The main result of this section is what we call the Subgraph Theorem mentioned earlier. We
begin with two elementary lemmas about distances between four points in convex and in non-

convex position.
O-Lemma. For a convex quadrilateral abed, we have |ab| + |ed| < |ac| + |bd|.

Proof. Let x be the intersection point of the two diagonals, ac and bd. Clearly, |ab| + |cd| <
(lael + J2b]) + (jex] + 2d]) = [ac] + [bd].

In words, the total length of the two diagonals of a convex quadrilateral always exceeds the
total length of two opposite edges. This is true even if three of the four vertices are collinear.
It implies that if one diagonal is no longer than one of the edges, then the other diagonal is

longer than the opposite edge.

A-Lemma. Let a,b,c,d be four distinct points so that the closure of the triangle abc contains

d. Then |ad| < max{|ab|, |ac|}.

Proof. If a, b, ¢, d are collinear the result is obvious. Otherwise, let d’ be the intersection of the
edge be with the line through ad, and note that |ad| < |ad’|. Of all points on be U {b, c}, only
the endpoints (b and ¢) can possibly maximize the distance to a. The assertion follows because

if d’ is an endpoint of be, then d # d' and therefore ad is strictly shorter than ad’.
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Note that the length of the longest edge of any minimum spanning tree is no longer than
the longest edge of any triangulation of 5. This follows trivially from the fact that every
triangulation contains a spanning tree. It is not very difficult to prove that the same is true for
the relative neighborhood graph of 5. Note that the bisector of two points p and ¢ is the set of

points equidistant to both.

Length Lemma. Every triangulation of 5 contains an edge that is at least as long as the

longest edge of rng(.9).

Proof. Let pg be the longest edge of rng(S) and let A be an arbitrary triangulation of 5.
If pg € A, there is nothing to prove. Otherwise, pg intersects edges 181, 7289,..., k8 of A,
sorted from p to g, with all »; on one side of the line through pg and all s; on the other. If pg is
longer than all edges in A, then r; and sy are both inside the circle C}, = (p, |pg|), because prq
and ps; are both edges of A. By the definition of rng(.S), r1 and s; are thus outside or on the
circle Cy = (¢, |pq|). Therefore, 71 and sy lie in the half-plane of points closer to p than to g.
symmetrically, 75 and s lie inside C; and outside or on C/, and therefore in the half-plane of
points closer to ¢ than to p. For each 1 < ¢ < k—1, we have either r; = r;41 or s; = $;41, which
implies that there is an index j so that r; and s; do not lie on the same side of the bisector
of pg. But then the O-Lemma implies that |r;s;| > |pg|, because |pg| is no longer than each of

two opposite edges of the convex quadrilateral pr;gs;, a contradiction.

The proof of the Subgraph Theorem is similar to that of the Length Lemma, although
considerably more involved. The basic idea is to assume an extremal counterexample and to
contradict its existence by retriangulating parts of it using no long edges. In the following,
we first develop three facts showing the possibilities of retriangulations, and then prove the

theorem.

Let 7 be a min-max length triangulation of S that does not contain some edge pq of rng(.5).
Suppose pq intersects the triangles #1,%3,...,%; of 7, sorted from p to ¢ (see Figure 5.3 left).
The deletion of the edges that intersect pg would result in a simply connected region, whose
boundary can be interpreted as a simple polygon—we treat each edge in its boundary as a
pair of edges with opposite directions, and to trace the boundary of the region we traverse all

directed edges that have the region on their left side. Any two consecutive (directed) edges
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Figure 5.3: To the left we see the triangles of 7 that intersect pg. If we remove the edges intersecting
pq we get a polygon whose boundary is oriented in a counterclockwise order. The prefix P and the suffix @
defined for this configuration are illustrated to the right. Although b and a’ are the same point, they refer to
different angles of this point.

define an angle (see Figure 5.3 middle). Note that a vertex can correspond to many angles,
although the common situation is that it corresponds only to one. We will therefore sometimes
ignore the difference between vertices and corresponding angles. Points p and ¢ correspond to
only one angle each. An angle is convez if the two defining edges form a left turn. Call the
sequence of edges from p to g the lower chain and the sequence from ¢ to p the upper chain.

Each chain contains at least one convex angle different from p and g.

A prefiz is an initial subsequence of ty,t5,...,%;, and a suffiz is a terminal subsequence
of t1,1t2,...,tx. We say that a prefix (suffix) covers an angle of the polygon if it contains all
triangles incident to this angle. Let ¢ be minimal so that the prefix P = t1,15,...,1; covers a
convex angle other than p, and let j be maximal so that the suffix ) = t;,%;41,...,1; covers
a convex angle other than ¢. P and () consist of at least two triangles each. We let b be the
convex angle (vertex) covered by P—it is incident to both ¢; and #;_y—and d be the other
vertex common to t; and ¢;,_y. Furthermore, ¢ is the third vertex of ¢;_1 and a is the third
vertex of ¢; (see Figure 5.3 right). Symmetrically, define vertices b, d’,¢’, a’ of Q. We say that
P (Q) is type 1 if the last (first) two triangles of P (@) are the only ones incident to b (b'), and
it is type 2, otherwise (see Figure 5.4). If P is type 1, then a,b, ¢ belong to the same chain and
d belongs to the other chain (this includes the case that ¢ = p), and if P is type 2, then a,b

belong to one chain and ¢, d to the other.

Fact 5.1 P =1y,1,...,t;and Q =1;,¢;41,...,; share at most two triangles, thatis, :—1 < j.
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Figure 5.4: The prefix P with vertices a,b,c,d and the suffix Q with vertices o/, b, ¢/, d’ are defined
depending on pq. P is type 1 and Q) is type 2. For illustration purposes the constraint that all vertices must
lie outside the lune of pg has been ignored.

Proof. We show that the suffix R =¢;,_1,1;,...,1; covers at least one convex angle other than
¢, so ) cannot be bigger than R. If P is type 1, then R covers b, which is convex. Otherwise,
R covers all angles between d and ¢, d included. Since all angles between p and d, p and d
excluded, are non-convex, at least one angle between d and ¢ must be convex, and this angle is

covered by R.

It should be clear that abcd and a’b'c’d’ are both convex quadrilaterals by the choice of
their vertices. The next two facts imply that either abed, or a’b'c’d’, or both have alternate
triangulations using ac or «’¢’, while maintaining the maximum edge length of 7. In other
words, bd, or ’d’, or both can be switched. Formally, we call bd (b'd") switchable if ac (a'c’) is
no longer than the longest edge of 7. Fact 5.2 shows strong locality constraints for @ and d (o’

and d') if bd (b'd") is not switchable. Define
A= {zeR*:|ep| > |pg| and |ep| > |2¢|} and

D = {x € R? : |ap| > |pq| and |zq| < |pq|},

with the understanding that A and a belong to one half-plane defined by the line through pg,
and D and d belong to the other (see Figure 5.5).

Fact 5.2 If bd is not switchable, then ¢« € A and d € D.

Proof. Since bd is not switchable, ac must be longer than the other five edges defined by
a,b,c,d, and, by the Length Lemma, it must be longer than pq. We first show that |ac| < |ap|

and then derive the four inequalities needed to establish the claim.
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Figure 5.5: The regions A and D as defined for the case when a is on the upper chain.

(i) |ac| < |ap|. We can assume that ¢ # p. Note that ¢ is contained in the closure of bdp. Since
the line through bd separates a from p, the closures of abp and adp cover bdp completely,
and therefore one of them contains c¢. If ¢ lies in the closure of abp, the claim follows from
|ab| < |ac| and the A-Lemma for abp, and if ¢ lies in adp, it follows from |ad| < |ac| and

the A-Lemma for adp.
(ii) |ap| > |pgq|. This follows from (i) and |ac| > |pq| implied by the Length Lemma.

(iii) |dq| < |pq|. Assume |dg| > |pq|. The O-Lemma for pagd implies |ad| > |ap|, and thus

|ad| > |ac| because of (i), a contradiction.
(iv) |dp| > |pg|. This is immediate from (iii) because pq is an edge of rng(.5).
(v) |ap| > |ag|. Assume |ap| < |ag|. By the O-Lemma for pagd and (iv), we get |ad| > |aq|.

This implies |ad| > |ap| by assumption, and |ad| > |ac| by (i), a contradiction.

The proof of Fact 5.2 is now complete because (ii) and (v) are equivalent to ¢ € A and (iii) and

(iv) are equivalent to d € D.

Symmetrically, we define regions A’ and D’ which is where ¢’ and d’ must lie if ¥'d’ is not
switchable. Using Facts 5.1 and 5.2 we can now show that there is always an edge that can be

switched.

Fact 5.3 It is not possible that both bd and b'd’ are non-switchable.
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Proof. If bd and b'd’ are both non-switchable, then ad lies on ¢’s side of the bisector of pg
and a’d’ lies on p’s side, by Fact 5.2. Because of Fact 5.1 and because ad is the last edge of P
and a'd’ is the first edge of @, we have {a,d,d’,d'} = {a,b,c,d} = {d’,b', ', d'}. Furthermore,
the fact that bd and b'd’ are both edges of 7 implies that they are the same and thus b = d’,

d=10V,a=7¢,c=d (see Figure 5.6). It follows that the polygon has the shape of a diamond

b=d' |
/
7
// QIC/
/ \\
/ ~
/ Sl
« »
Peo *q
\\\ //
/
c=a' ’

d=b'
Figure 5.6: If bd and b'd’ are both non-switchable, then b and d are the only convex angles besides p

and q.

with p,b,q,d as the only convex angles. This contradicts the locality constraints for a,b,c,d
stated in Fact 5.2. In particular, the chain from p to d € D is concave or straight and therefore
enclosed by the circle (g, |pq|). It follows that this chain is disjoint from A’, which is where

¢ = a', the predecessor of d in this chain, is supposed to lie.
With the above results and notations, we now choose an extremal counterexample to prove
the main result of this section.

Subgraph Theorem. Every point set S in R? has a min-max length triangulation mit(.S) so

that rng(S) C mit(S).
Proof. We assume there is a set S so that no min-max length triangulation contains rng(5).
Let 7 be a min-max length triangulation of S that satisfies the following extremal properties,
where later properties are contingent upon earlier ones.

(1) 7 minimizes the number of edges that intersect pq.

(2) 7 minimizes the number of edges incident to b that intersect pg.

(3) 7 minimizes the number of edges incident to b’ that intersect pq.
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It is conceivable that 7 is not unique, but it will be sufficient to assume that 7 is any one of

the remaining triangulations.

By Fact 5.3, either bd, or b'd’, or both are switchable. If bd is switchable and P is type
1, then the number of edges that intersect pg decreases when bd is switched. This contradicts
property (1). Thus, P must be type 2 if bd is switchable, and, similarly, () must be type 2 if
b'd" is switchable. When we switch bd the degree of b decreases, which contradicts property (2).
Thus, it must be that bd is not switchable and b'd" is. But switching o’d’ decreases the degree
of o', which would contradict property (3), unless the degree of b increases at the same time.
Remember that (3) is contingent upon (2), so if (2) is not satisfied any more, then we cannot

draw any conclusion. Thus, the configuration left for analysis is as shown in Figure 5.7.

Figure 5.7: In the final configuration bd is non-switchable, so @« € A and d € D, and b'd’ is switchable,
so () is type 2. Furthermore, switching 0’'d’ to a’c’ increases the degree of b, so ' = b and therefore P and
@ overlap in exactly one triangle. The figure ignores that by rights all points should lie outside the lune of

pq.

To reach the final contradiction, we switch 'd’ and redefine @ based on the new configura-
tion. Since all angles from (the old) d’ to ¢ are non-convex, the new points b’ and a’ are the
same as before, and the new d’ is the old ¢/. Thus, we can again switch &'d’, and so on, until @
is type 1 or ¢’ = ¢ at which point the next switch decreases the number of edges intersecting

pq. This finally contradicts property (1).

5.3 Preliminaries Results on rng-Polygons
This section introduces some notations, and presents a few elementary lemmas for our sub-

sequent discussion to speed up the cubic time algorithm (Section 5.1) to quadratic time by a

specialized polygon triangulation algorithm. Recall that the first two steps of the algorithm

60



decompose the convex hull of S into simply connected regions by drawing all edges of ch(5) and
rng(9); these steps remain unaltered. Each region is represented by a polygon, termed an rng-
polygon, with directed edges that trace the boundary of the region in a counterclockwise order
around the region. Because rng(5) is a connected graph that spans 5, any rng-polygon has at
most one edge not in rng(.9); this edge is in ch(5)—rng(9). We call an rng-polygon a complete

rng-polygon if all its edges belong to rng(.9), and an incomplete rng-polygon, otherwise.

Obviously, rng-polygons are not as general as arbitrary polygons because for each edge ab,
except possibly for one, the lune of ab, A\yp = {z € R? : max{|az|,|bz|} < |ab|}, is free of
points of 5. We call pg a diagonal of an rng-polygon if it lies entirely in the interior of the
rng-polygon. For each diagonal pg of an rng-polygon it must be that A,, contains at least one
point of S. We further distinguish between the cases where A,, contains points of 5 on both

sides of the line through pg and where it does not.

For a directed edge pg, let h be the set of points to the left of or on the directed line that

passes through p and ¢ in this order. Define the half-lune of pg as
Ny = Apg N Py

By definition, A,y = 7,7 U 4, and we have pg € rng(9) iff nz NS =5z N0 5 = 0. We call pq
an rng-edge if pg € rng(\9), call it a 1-edge if only one half-lune contains points of 5, and call
it a 2-edge if both half-lunes contain points of 5. For a 1-edge pg, we say the side where the
half-lune contains points of 5" is beyond pq, and the other side is beneath pg. Note for example
that if pg is a 1-edge bounding an incomplete rng-polygon R, then pg € ch(S) and therefore R

is beyond pg. We will see later that 1-edges are useful in triangulating rng-polygons.

The first lemma of this section shows that when we triangulate an rng-polygon R, whether
complete or incomplete, we can ignore all points outside R. More specifically, it shows that the
type of any diagonal or edge of R remains unchanged when we remove all points of § that are

not vertices of R.

Reduction Lemma. Let pg be a diagonal or edge of an rng-polygon R. If 7, contains points

of 5, then it also contains vertices of K.
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Proof. Suppose 7,5 contains points of .5 but no vertices of R. Then, it must intersect edges of
R without containing their endpoints. Let yy’ be the edge closest to p and ¢, and let 2 be a
point in 7,z N .S. Since z is not a vertex of R it must lie on the other side of yy’, as seen from
p and ¢. So yy' € rng(S) — ch(S5), and therefore max{|zy|, |zy'|} > |yy'|. Assume without loss
of generality that |zy| > |yy'|. If 3’ lies outside or on the circle (p, |pg|), we consider the convex
quadrilateral pyay’. Otherwise, y' lies outside or on (q,|pg|), in which case we consider the
convex quadrilateral ¢gyzy’. But now we have |zy| > |yy| and either |py’| > |pz| or |¢y'| > |qz|,

a contradiction to the O-Lemma in both cases.

Using the Reduction Lemma, we now address vertices visible from both endpoints of an
edge. We need some terminology. Two points z, y inside or on the boundary of an rng-polygon
are visible from each other if zy is contained in the interior of the rng-polygon. The distance
of a point 2 to an edge pq is defined as the infimum, over all points z € pq, of |zz|. If

Ipg| > max{|pz|,|qx|}, then this distance is indeed the height of triangle pqz.

Visibility Lemma. Let pg be a diagonal or edge of an rng-polygon R, and let x be a vertex

of R that lies in 7,5 and minimizes the distance from pg. Then z is visible from p and also from

q.

Proof. Consider the triangle pgx, let ' € pg be the point with minimum distance from =z,
and assume without loss of generality that z is not visible from ¢. Let yy’ be an edge of R
that intersects gz. The proof of the Reduction Lemma implies that at least one endpoint of
yy' lies in 7,5, say y € 1. In addition, y and y’ lie outside pga because z is closest to pgq
(see Figure 5.8). Hence, yy’ intersects ap, x¢q and all edges xz with z € pg. Thus, aya’y’ is a

convex quadrilateral, and because of |yz’| > |za’| by the choice of z, we have |yy'| > |zy’| from

Figure 5.8: The quadrilateral zyx’y is convex because &’ € pg and y, v & pqr.
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the O-Lemma. By symmetry, if 3’ lies in 7, we have |yy’| > |2y|, which implies yy’' & rng(5).
This is a contradiction because yy" ¢ ch(5). Thus, y’ must lie outside 7,5. If 3’ lies outside or
on the circle (p, |pq|), then |py’| > |px|, and therefore |zy| < |yy'| by the O-Lemma for py'zy.
Symmetrically, we get |zy| < |yy'| from the O-Lemma for gy’zy if 4’ lies outside or on the circle

(¢,|pql). Together with |zy’| < |yy'|, this contradicts yy’ € rng(S).

We need one more elementary lemma.
Containment Lemma. If 2 € 7,5, then 1, C A,,.

Proof. Take a point z € 7,3, and consider the four points p,q,z,2. If 2 € pg, there is nothing
to prove. Otherwise, pzgx or pgzx is a convex quadrilateral (possibly with three of the four
vertices collinear) or z € pgz. In each case |¢z| < |pg| can be shown using the O- or the

A-Lemma. This implies z € Ap,.

The following lemma is of fundamental importance to the quadratic time triangulation

algorithm.

1-Edge Lemma. Let pg be a l-edge of an rng-polygon R, and let x be a vertex of R that lies
in 7,7 and minimizes the distance from pg. Then px is either an edge of R or a 1-edge with pga

beneath pz, and the same is true for gz.

Proof. We have 7,5, C Ay, by the Containment Lemma. The part of 7, in 74 contains no
point of S because 1z NS = @ by assumption. Also, the part of 7,3 in 7,5 also contains no
point of S because a point y € 1., N 1,y would be closer to pg than z is, as can be shown using
the O-Lemma for pa'yx (see Figure 5.9). So pz is an edge of R if 7,7 contains no point of .5
either, and it is a 1-edge with triangle pgz on its beneath side, otherwise. The argument for gz

is symmetric.

5.4 Triangulating Incomplete rng-Polygons

The above lemmas are suflicient for efficiently triangulating an incomplete rng-polygon. As

defined earlier, all edges of an incomplete rng-polygon R are rng-edges, except for one 1-edge,
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Figure 5.9: Vertex x is visible from p and from ¢, so pgx is empty. It follows that if y € 7,5, N1, then
pqyx is a convex quadrilateral.

pq € ch(S) — rng(S), which has R on its beyond side. The algorithm below can triangulate
more general incomplete rng-polygons, that is, it is not necessary that pg € ch(.5), but it must

be that pg is a 1-edge and R lies beyond pgq.

Input. An incomplete rng-polygon R that lies beyond its 1-edge pq.
Output. A min-max length triangulation of R.
Algorithm. 1. Find a vertex z in A, that minimizes the distance from pq.

2. Draw edges pz and qz. This decomposes R into the triangle pgzx,

and two possibly empty incomplete rng-polygons Ry and Rs.
3. Recursively triangulate Ry and R,.

The correctness of this algorithm follows from the 1-Edge Lemma. Indeed, it implies that
if Ry is non-empty, then it lies beyond pz, which is the only 1-edge of Ry. Similarly, R, lies
beyond its 1-edge g, provided Rs is non-empty. Thus, the input invariant is maintained all the
way through the recursion. This implies that the algorithm successfully triangulates. By the
choice of point z, the edges px and ga are both shorter than pg. It follows that the diagonals
are monotonely decreasing in length, down a single branch of the recursion, and therefore all
diagonals constructed by the algorithm are shorter than pg. A straightforward implementation

of the algorithm takes time quadratic in the number of vertices of R.

Remark. Instead of choosing a vertex z that minimizes the distance to pg, step 1 of the
algorithm could also choose other vertices as long as they are visible from p and ¢ and lie in their
lune. An interesting choice among these vertices is the vertex y that minimizes max{|yp|, |yq|}.

As long as y is unique, which is the non-degenerate case, this choice leads to a triangulation
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of the polygon R that lexicographically minimizes the non-increasing vector of edge lengths.
Another possible choice is the vertex z that minimizes |zp| 4 |z¢|. This vertex is automatically
visible from p and from ¢ and might be useful in actual implementations because it is often
considerably less expensive to compute the distance between two points than between a point

and a line segment.

5.5 A Lemma on Polygon Retriangulation

This section presents a technical lemma on retriangulating a polygon. It will find application
in the next section, and is also of independent interest. In order to conveniently distinguish
between boundary and non-boundary edges of a triangulation, we call a non-boundary edge a
diagonal. Let X be a polygon, X’ a triangulation of X, and 2’ a diagonal of X that is not in
X. We say that za' generates X if it intersects every diagonal of X'. We give an algorithmic
description of a particular triangulation of X, called the fan-out triangulation F,(X) with

(fan-out) center x. The triangulation is illustrated in Figure 5.10.

Figure 5.10: The polygon X is triangulated by fanning out from x, connecting adjacent neighbors of z,
and recursing in the thus created pockets. The illustration of this process is schematic and ignores some of
the inherent shape constraints for X .

1. Connect z to all vertices of X that are visible from z. Call these vertices and also the

two vertices connected to z by edges of X neighbors of z.

2. Two neighbors of z are said to be adjacent if they are consecutive in the angular order

around x. Connect any two adjacent neighbors u, v of z, unless uv is an edge of X.

3. Every edge uv created in step 2 decomposes X into two parts, and the part that does not

contain z is called the pocket X, of uv. Assume that u is the endpoint of uv so that the
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other incident edge of the pocket, uw, is partially visible from z. Recursively construct

the fan-out triangulation of X,, with center v.

We need a few more terminology. Among the diagonals of F,(X), we distinguish between
fan-out edges constructed in step 1 and cut-off edges constructed in step 2 of the above algo-
rithm. Each call of the algorithm triangulates part of a pocket and recurses in each component
(pocket) of the remainder. We call a pocket V' a child of another pocket Z if V. C Z and V is
maximal. The original polygon, X, is also called a pocket and forms the root of the tree defined
by the child relation. This tree is exactly the recursion tree of the algorithm. Each pocket Z is
associated with a fan-out center z. The maximum distance between z and any other vertex of

7 is called the width of Z.

The lengths of the diagonals of F,(X) are constrained by the length of the longest edge
of X, the length of the longest diagonal of X', and the width of X. Specifically, we prove the

following result.

Fan-Out Lemma. Let X be a polygon, with 6; the length of its longest edge, let X" be a
triangulation of X, with do the length of its longest diagonal, let zz’ be a generator of X', and
let 65 exceed the maximum distance of z from any vertex of X. Then |ab| < max{é, 63,63} for

every diagonal ab of F (X).

Proof. Note that the assertion follows if we prove that max{éy,d;, 63} exceeds the width of
every pocket Z created during the algorithm. To see this, notice that the width of Z is an
upper bound on the length of any fan-out edge emanating from the center of Z. Each cut-off
edge uv that creates a child pocket V' of Z is incident to the fan-out center of V', which implies

that the width of V' is an upper bound on its length.

The proof of the upper bound on the widths of all pockets proceeds inductively, from the
top to the bottom of the tree. The width of X is less than ¢3, by assumption, and therefore also
less than max{éy, 6, 63}. For the inductive step, consider a pocket Z and a child V' of Z. We
show that the bound on the width of Z is inherited by V', with some environmental influence
from X and X'. Let z be the fan-out center of Z, § the width of Z, v the fan-out center of V,

uv the cut-off edge that creates V', and w the other vertex of V' adjacent to u.
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First, we prove |uv| < max{éy,6}. By definition of fan-out center, v lies in the closure of
wwz. The A-Lemma thus implies |uv| < max{|uw]|,|uz|}, and we get the claimed inequality
because |uw| < é; and |uz| < §. Second, we show that max{ds,6} exceeds the maximum
distance between v and any vertex of V' other than u. Let y # v, u be such a vertex and let
yy' be a diagonal of X' that intersects xza’. Such a diagonal exists because xza’ generates X'
It follows that yy’ intersects uv and that therefore v lies in the closure of yy'z. Using the
A-Lemma, we get |yv] < max{|yy'[,|yz|} < max{é2,d} because |yy’| < é2 and |yz| < é. The
two bounds together imply that the width of V' is less than max{éy, 2,6}, and induction shows
that it is less than max{éy, 62, 63}.

In Section 5.6.3, we will need a result as given in the Fan-Out Lemma, but restricted to the
fan-out triangulation on one side of the generator. Specifically, we need the following corollary

whose proof is almost the same as the one of the Fan-Out Lemma.

Fan-Out Corollary. Suppose W is a polygon, W a triangulation of W, z2’ a generator of W,
and X the part of W on one side of za’. Let é; be the length of the longest edge of X, é5 the
length of the longest diagonal of W, and let é3 exceed the maximum distance of z from any

vertex of X. Then |ab| < max{dy, 82,63} for every diagonal ab of F,.(X).

Remark. The Fan-Out Lemma can also be formulated without the assumption of an initial
triangulation. The condition on the diagonal zz’ is now that each vertex of X must be visible
from some point of zz’. The parameter §; needs to be redefined as the maximum, over all
vertices y of X, of the infimum, over all points a of zz’ visible from ¥, of the distance between

y and a.

5.6 Triangulating Complete rng-Polygons

This section shows how to triangulate a complete rng-polygon R in quadratic time. The
algorithm is given in Section 5.6.1. The basic idea is to divide R into two polygons, each can be
triangulated by the algorithm for incomplete rng-polygons (Section 5.4). This idea is supported
by the 2-edge Lemma in Section 5.6.2. That is, when vertices are in general position, there

exists a min-max length triangulation of R that contains exactly one 2-edge, say pg. Moreover,
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pq indeed divides R into two polygons that behavior as required, and the resulting triangulation
thus has pq as its longest edge. Such a 2-edge can, fortunately, be computed in quadratic time

as shown in Section 5.6.3. The algorithm thus has the claimed time-complexity.

5.6.1 The Algorithm

We assume that no two diagonals and edges of the rng-polygon R are equally long. If this non-
degeneracy assumption is not satisfied, it is necessary to run the algorithm with a simulation
of non-degeneracy. The side-effects of this simulation and how they can be undone will be

discussed in Section 5.7.

Let us call a 2-edge pg expandable if there are vertices r and s in A,4, on different sides of
the line through pg and both visible from p and ¢, so that £ = {pr, qr,ps,qs} is a set of rng-
and 1-edges and the quadrilateral prgs lies beneath the 1-edges in . The algorithm as shown
computes the shortest expandable 2-edge pq (steps 1 to 3), and then completes the triangulation
using the algorithm for incomplete rng-polygons (step 4). The resulting triangulation uses no

2-edge other than pq, which is thus the longest edge of the triangulation.

Input. A complete rng-polygon R.
Output. A min-max length triangulation of R.

Algorithm. 1. Determine the type of each diagonal pg of R.

2. For each 2-edge pq, find vertices p/, p”, ¢’, ¢ that minimize the
counterclockwise angles Zp'pq, Zqpp”, Z2¢'qp, Zpqq”, contingent
upon pp’, pp”, q¢’, q¢” being rng-edges or 1-edges with pg on
their beneath sides (see Figure 5.11).

3. Find the shortest 2-edge pq for which pp’, q¢’, pp”, q¢" are such
that p’ = ¢"” or pp' N qq¢" £ 0, and p"”" = ¢ or pp" N qq’ £ 0.

4. As pq is expandable (Section 5.6.3), find £ = {pr, qr, ps, gs} and
then triangulate the (possibly empty) incomplete rng-polygons
defined by pr, qr, ps, gs.

Below we give the algorithmic details of the above steps.

STEP 1: classifying diagonals. For each vertex p of R, we compute all incident diagonals pg

and their angular order around p. Furthermore, we determine whether or not the half-lune 7,
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Figure 5.11: By the choice of p’ the counterclockwise angle /p’pq contains no 1-edge with pg on its
beneath side. Symmetric statements hold for p”’, ¢, and ¢”.

contains any vertex of R. Recall that, by the Visibility Lemma, 7, contains a vertex visible
from p if it contains a vertex of R at all. We can thus base the decision whether or not 7y is
empty of vertices solely on the vertices visible from p. As defined earlier, pg is a 2-edge if both
half-lunes of pg contain vertices of K. Otherwise, pq is a l-edge and its beyond side is where
the half-lune contains vertices of R. We now show that the computation for p can be done in

time linear in the number of vertices. It follows that quadratic time suffices for step 1.

Computing the sorted sequence of diagonals ppy, pps, ..., pps incident to p is a standard
operation for simple polygons and can be done in linear time; see, for example, [FEIAvVSI,
JoSi87, Lee83]. Let ppy and pp,4+1 be the two edges of R incident to p and assume that

D0, P1s P2y« - 5 Pm+1 18 in @ counterclockwise order around p.

To determine whether there is a vertex of R in the half-lune 7,3 for 1 <4 < m, we scan
the list pg,p1,..., Pm+1 Once, from smallest index to largest. During the scan, we maintain a
stack of diagonals pp; whose half-lunes 7,3, are not yet found to contain any vertex of R. Before
pushing pp; onto the stack, we remove all diagonals pp; whose half-lunes contain p;. Using a
straightforward extension of the Containment Lemma, we can show that the order of processing
implies that the edges whose half-lunes contain p; lie on top of the ones whose half-lunes do
not contain p;. Thus, the former can be removed simply by repeatedly popping the topmost
diagonal. When the scan is complete, the stack contains exactly all diagonals pp; whose half-
lunes contain no vertex of R. Since a diagonal can be pushed and popped only once each, the

entire process takes constant time per diagonal.

STEP 2: finding rng- and 1-edges. For each vertex p, we scan ppi, pps, ..., PPm in this order.
In the process, we keep track of the most recent rng-edge or 1-edge pp whose beneath side is in

the direction of the scan. Initially, pp = ppo. When a 2-edge pq is encountered, then pp is the
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edge pp’ that belongs to pg. A symmetric scan is carried out to find the edge pp” that belongs

to pg. The total time, for all vertices p of R, is clearly quadratic.

STEP 3: locating shortest expandable 2-edge. Step 3 is computationally trivial. It takes
quadratic time since constant time suffices to test whether or not pp’, pp”, q¢’, q¢” satisfy the
conditions of step 3. However, it is not trivial to see that the edge pg obtained by step 3 is also

the shortest expandable 2-edge. We defer the proof till Section 5.6.3.

STEP 4: triangulating incomplete rng-polygons. It should be clear that we can simply scan
through the vertices of R once to obtain F, then apply the algorithm for incomplete rng-
polygons (Section 5.4). This step takes time only quadratic in the number of vertices of R.
Incidentally, pg is in fact a 1-edge when restricted to only one of the two polygons. So, the step

can actually be simplified to only two applications of the algorithm for incomplete rng-polygons.

The next two subsections show the correctness of the above procedure.

5.6.2 Triangulating by One 2-Edge

Under the non-degeneracy assumption, we note that every triangulation of R, and therefore
also every min-max length triangulation, contains a 2-edge. To see this, consider the longest
edge pq of a triangulation. It cannot be an edge of R because the third vertex of the incident
triangle lies in its lune A,,. It is therefore a diagonal with incident triangles pgr and pgs, and
we have r,s € A\,, by maximality of pg. Since r and s lie on different sides of the line through
pg, it follows that pg is indeed a 2-edge. In fact, we have the following stronger result utilized

by the above algorithm.

2-Edge Lemma. Let R be a complete rng-polygon with no two diagonals or edges of the same
length. Then there exists a min-max length triangulation of R that contains an expandable

2-edge.

Proof. We assume there is no min-max length triangulation of R that contains an expandable 2-
edge. A contradiction to this assumption will be derived using an min-max length triangulation
of R, R defined as follows. Let pgq be the longest edge of R and let pgr and pgs be the incident

triangles. By the non-degeneracy assumption, pq is the longest edge of every min-max length
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triangulation of R. Choose R so that the sum of heights of pgr and pgs (that is, the distance of
r from pq plus the distance of s from pg) is a minimum. We prove below that pq is expandable

and that r and s are witnesses thereof, that is, the quadrilateral prgs lies beneath every 1-edge

in &= {pr,qr,ps,qs}.

Case 1. Assume that prgs lies beyond at least one 1-edge in F, say beyond pr. Then we can
retriangulate R on this side of pr using the algorithm for incomplete rng-polygons. Among
others, this algorithm removes edge pg, and all new edges are shorter than pr, which itself is

shorter than pg. This contradicts the assumption that R is a min-max length triangulation.

Case 2. Assume that one of the edges of F, say pr, is a 2-edge, and assume without loss of
generality that r € ny. Thus, there is a non-empty set of vertices z of R contained in the
half-lune 7. By the Containment Lemma, these vertices z lie in A,,, and by the Visibility

Lemma, a non-empty subset S’ of the z are visible from both p and r.

If a vertex z is in S, then either pz N rq # 0 or rz N pg # 0; see Figure 5.12. Let S be

Figure 5.12: The points z lie in the interior of 7,5, — pgr, which consists of one or two connected
components depending on whether or not the angle at » in pgr is non-acute.

the subset of vertices z of the first kind, and let S/ be the subset of vertices of the second kind.
If 5, # 0, choose x € ), so that the number of edges of R that intersect px is a minimum.
Next, remove all edges from R that intersect pz and denote by X the polygon thus generated.
If, on the other hand, 5, = (), then choose @ € 5! # () so that the number of edges in R that
intersect r is a minimum; again remove all edges from R that intersect rz, and denote the
resulting polygon by X. For convenient reference, we set 2/ = p in the first case and 2’ = r in
the second. In either case, we construct a retriangulation F,(X) of X by fanning out from z,

as described in Section 5.5.
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We show below that the new triangulation of R has properties that contradict the assump-
tions of case 2. Most importantly, the Fan-Out Lemma of Section 5.5, together with a few

claims which we are about to prove, imply that the edges of F,(X) do not exceed pq in length.
Claim 1. Except for z, all vertices of X lie outside the half-lune 7.

Proof (of Claim 1). Let 1192, ¥3y4,- .., Ym—1Ym be the edges, sorted from 2’ to z, that are
removed from R when X is constructed. (y1y; is either pq or ¢r, and ys € {p,q,7}.) Suppose
the claim is not true. Then there is a smallest index 7,3 < 7 < m — 1, so that one endpoint of
Y;jYj+1, Say Yj4+1, s in n,5. Consider the polygon X; of R that is created by removing the edges
Y1Y2, Y3Y4, - - -, Yj—2yj—1 from R. Since y;4q is the only vertex of X; that lies in 7, it is visible
from p and from r inside X;. But this means that y;;;2’ intersects fewer edges of R than za’.

This contradicts the choice of # and completes the proof of Claim 1.
Claim 2. For each vertex y of X, we have |zy| < |pq].

Proof (of Claim 2). Clearly, both pz and ra are shorter than pg. So let y be any vertex
different from p,r, x, and let yy’' be an edge of R that intersects 2’x. Because of Claim 1, x is
visible within X from p and also from r, so pyxy’ and ryxzy’ are convex quadrilaterals. Since
y’ lies outside 77,3, it cannot lie inside both of the circles (p, |pr|) and (r, [pr]). If ' lies inside
(r,|pr]), then |py’| > |pz| which implies |yy’| > |zy| by the O-Lemma for pyzy’. Otherwise,
we have |ry’| > |ra| which implies |yy’| > |zy| by the O-Lemma for ryzy’. This concludes the

proof of Claim 2 because yy’ is an edge of R and is therefore no longer than pgq.

Claim 2 and the Fan-Out Lemma imply that all diagonals of F,(X ) are shorter than pq. In
the case where pg N rz # (), we now have a contradiction, because the retriangulating process
of X eliminates pqg and all edges of the resulting new triangulation of R are shorter than pg.
In the case where r¢ N pz # (), the new triangulation still includes pg. We show below that the
height of the new triangle incident to pg is smaller than the height of pgr, and thus arrive at a

contradiction.

So assume rq N px # (; in this case pg is an edge of the boundary of X and p is visible
from z. If ¢ is also visible from z, then the new triangle incident to pq is pga with height |za/|,

where ' € pg minimizes the distance to #. Analogously, define r’ € pg that minimizes the
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distance to r. Since |pr| > |pz|, we have |rr’| > |2#/| by the O-Lemma for prar’. Together with
|zr!| > |za’|, this implies |r#'| > |za’|. If ¢ is not visible from z, then pq belongs to the pocket
X, defined by a cut-off edge uv. We have u = p, w = ¢, and the center v of X, lies in the
closure of pgz. So again, either pqv is a triangle, and its height is less than that of pgz and
therefore that of pgr, or ¢ is not visible from v, in which case the argument can be repeated.

Eventually, we arrive at a triangle incident to pg whose height is less than that of pgr.

Two remarks are in order. First, the expandable 2-edge mentioned in the lemma is clearly
the shortest among all expandable 2-edges. Second, the assertion of the Lemma is false without
the condition that no two diagonals or edges of the complete rng-polygon R are equally long. To
see this, take, for example, two equilateral triangles abe and abd and move d slightly towards
the common edge ab. For S = {a,b,c,d}, we have rng(S) = {ac,cb,bd,da}, ab is a 1-edge,
and cd is a 2-edge. So acbd is a complete rng-polygon. There is only one min-max length

triangulation of acbd, namely, the one with diagonal ab. But ab is not a 2-edge.

5.6.3 Searching for the Right 2-Edge

Two results are needed to show that the 2-edge pg computed by step 3 in Section 5.6.1 is
indeed the shortest expandable 2-edge. First note that there are no expandable 2-edges shorter
than pg. This is because all 2-edges shorter than pq fail the test of step 3, which are thus not

expandable as implied by the following topological lemma.

Crossing Lemma. Let vy, v9,...,v, be the sequence of vertices of a simple polygon, and let

v1v; and v;v, be two diagonals. Then vyv; Nv;v, # 0 iff § < i

Proof. The edge v;v, decomposes the polygon into two polygons with vertex sequences
V1,V2,...,05,0, and v;,vj41,...,v,. If j < 4, then neither of the two polygons has vy and
v; on its boundary. It follows that vyv; crosses from one polygon into the other, and because
v1v; is a diagonal, this is only possible by crossing v;v,. To prove the other direction, we assume
vv; Nv;v, # 0 and observe that v1 and v; belong to different polygons because there is no way

that vyv; can enter the second polygon and leave it again. Thus, j < ¢.
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We remain to show that the edge pg computed in step 3 is indeed expandable.

Expandability Lemma. The shortest 2-edge pq of R that satisfies the conditions of step 3 is

also expandable.

Proof. We show below that R can be triangulated on both sides of pg using only edges shorter
than pg. If we now assume that pg is not expandable, we get a contradiction to the 2-Edge
Lemma because pq is the longest edge of the triangulation and all expandable 2-edges are longer

than pg.
We describe how to triangulate the part of R to the right of pg; the other part is symmetric.

Case 1: p' = ¢”. Assume |qq¢"| > |pp’|. Then |qq¢”| < |pg| for otherwise p € 1,7, and qq” would
neither be an rng-edge nor a 1-edge with pg on its beneath side. If we apply the triangulation
algorithm for incomplete rng-polygons (Section 5.4), once for pp’ and once for g¢”, we get a

triangulation with the desired properties.

Case 2: pp’ N qq” # (. In this case pp’ and gq¢” are 1-edges. Because pp’ and ¢q¢” intersect, we
have either |p'q| < |p'p| or |¢"p| < |¢"¢| from the O-Lemma for pgp’q”. Assume without loss of
generality that |¢"p| < |¢”q|. As in case 1 we also have |¢"q| < |pg|, but note that we do not

necessarily have |p'p| < |pq|.

We now describe the triangulation process. It takes three steps as illustrated in Figures

5.13 and 5.14.

1. Construct the triangulation 7.~ of R beyond ¢q”, using the algorithm for incomplete

rng-polygons (see Figure 5.13).

2. Find the subset V of vertices of R, excluding ¢, that lie in the closure of pgq”, and compute
ch(V). Add the edges of ch(V') that are diagonals of R to the triangulation, and connect
q to all vertices of ch(V') (see Figure 5.13).

3. Step 2 created untriangulated pockets Y, , one for each edge uv of ch(V') that is a diagonal
of R. Assume that u precedes v on the clockwise path from p to ¢” on the boundary of

ch(V). The pocket Y, is triangulated as follows.
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Figure 5.13: The shaded portion represents the triangulation beyond g¢q'; it forms part of the final
triangulation.

3.1 Set up, := v if uv is a 1l-edge and pq lies on the beneath side of uv. Otherwise, find a
vertex uy, so that |uur| < |pq|, uug is a l-edge, pq lies beneath wur, and uuy, does
not intersect ch(V'). (The existence of such a vertex uy, will be established shortly.)

3.2 Construct the triangulation 7,,, of R beyond uuy, again using the algorithm for
incomplete rng-polygons, but retain only those triangles that lie completely inside

the pocket Y,,. Let X, denote the untriangulated part of Yy,.

3.3 Construct the fan-out triangulation F, (X, ).

Figure 5.14: The shaded portion of the pocket Yy, represents the part of the triangulation 7, beyond
uuy, that is retained for the final triangulation. The remaining portion is triangulated by fanning out from v.

The remainder of the proof establishes that all diagonals of the thus constructed triangu-
lation are shorter than pg. This is indeed obvious for 7 ,», as constructed in step 1. We now
prove an easy extension of the A-Lemma, which implies that all edges created in step 2 are

shorter than pq.

Claim 1. Let d,e be two points in the closure of triangle abc. Then |de| < max{|ab|, |ac|, |bc|}.
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Proof (of Claim 1). Assume without loss of generality that e lies in the closure of abd.
The A-Lemma for abd implies |de] < max{|ad|, |bd|}, and the same lemma for abe implies

max{|ad|, |bd|} < max{|ab|,|ac|, |bc|}. This completes the proof of Claim 1.

If wuy, = wo, then |uuyr| < |pg|, which implies that all edges of 7, constructed in step 3.2
are shorter than pg. In this case the proof is complete as X, = () and no edges are added to
Yo in step 3.3. For the remainder of the proof, we thus assume that uy, # v which is the case
only if n,z contains at least one vertex of R. We show that a vertex uz, satisfying the conditions
of step 3.1 indeed exists, and that all edges of the fan-out triangulation F,(X,,) are shorter
than pg. Assume the sequence of vertices of the part of R beyond pp’ is p = uy,us,...,q" =

UKy vy Uy, = P (see Figure 5.14).
Claim 2. There exists a 1-edge uuy, that satisfies the conditions of step 3.1.

Proof (of Claim 2). Construct a triangulation 7,, of R beyond pp’ using the algorithm for
incomplete rng-polygons. This triangulation contains at least one edge uw; disjoint from ch(V').
The main invariant of the algorithm (described in Section 5.4) implies that wu; is a 1-edge and
pq lies on its beneath side. If |uw;| < |pg|, then u; satisfies the conditions for u; and we are

done.

So assume |uug| > |pg|. Similar to the Containment Lemma, we can show that the part of
Ny to the left of wi; is contained in 7,3, and thus contains no vertex of R. It follows that the
vertices in 7,z must be among ux 41, U +2,--.,U—1. By the Visibility Lemma, at least one of
these vertices is visible from u. Let U be the subset of vertices that are visible from u (including
the ones outside 7,3 ), and let u;, € U minimize the distance to u. We have |uug| < |uv| < |uw]
and, as above, the part of 7,s, to the left of u%; is contained in 7,y,. Therefore, this part
contains no vertex of R. The part of 7,;, to the right of u%; contains no vertex of R by the
choice of uy. It follows that uwuy is a diagonal that satisfies the conditions of step 3.1, which

completes the proof of Claim 2.

We now show two easy facts about 7,,, before examining the edges constructed by step

3.3.

Claim 3. If u;u;ug, with ¢ < j < k, is a triangle of 7, , then u;uy is its longest edge.
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Proof (of Claim 3). The first triangle constructed is ujujuy,, for some I < I < L, and its longest
edge is ujuy, because u; € Ay, . The general assertion follows by induction, which completes

the proof of Claim 3.

Claim 4. The edges of 7,,, that intersect uv, sorted from u to v, are monotonely decreasing

in length.

Proof (of Claim 4). If wujuy, with ¢ < j < k, intersects wv, u = uy and v = wuy, then either
I<i<j=i1+1<J<korl <i<J<j<k((seeFigure5.14). In both cases, u;uj intersects
uv closer to u than the other intersecting edge, u;uy or w;u;. By Claim 3, u;uy is longer than

both, which implies the assertion.

Note that if we delete edges from 7,,, that intersect uwv, then we get a polygon, say Wy,
of which X, is the part on one side of uv. We can thus interpret uv as a generator of 7,

restricted to Wy,. Since the edges of X, and 7,,, are shorter than |pg|, we just need to show

ur,
that all vertices of X, are closer to v than |pg|, and the rest follows from the Fan-Out Corollary.

Indeed, we prove a stronger bound on the maximum distance from v to a vertex of X, .
Claim 5. For each vertex x of X, we have |vz| < |vul.

Proof (of Claim 5). Consider the vertices of X, in turn from v = u; to v = uy, and assume
inductively that |vw;| < |vul, for all I < ¢ < j. Consider u; and the triangle u;_qujug in 7Ty, .
By Claim 4, we have |uj_qug| > |ujug|. If u;_qujvui is a convex quadrilateral, then the O-
Lemma implies |vu;_1| > |vu;|, as desired. Otherwise, u; is contained in the closure of vugu;_q
and therefore also in the closure of vuu;_y. The A-Lemma implies |vu;| < max{|vul, |vu;_1]},

which completes the proof of Claim 5.

This also completes the proof of the lemma.

The following theorem summarizes the algorithmic implication of the above.

Min-Max Length Theorem. A min-max length triangulation of a set of n points in R? can

be constructed in quadratic time and storage.
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5.7 Undoing the Simulated Perturbation

In general, for every point set S in R?, there is an arbitrarily small perturbation S’ so that S’
satisfies convenient non-degeneracy assumptions (see [EdMii90]). For a point p € S, we denote
its perturbed version by p’. In our algorithm, this means that no two pairs of points in 5" define
the same distance. Furthermore, the non-degenerate properties of S are maintained, that is,

for four not necessarily distinct points p,q,r,s € S with |pg| < |rs|, we have |p'¢’| < |5/

Let us consider the effects of the perturbation on the computation of a min-max length
triangulation. First, if p'¢’ € rng(S"), then pg € rng(.9), but not vice versa. In other words, we
may have fewer edges in the perturbed setting. This, however, does not adversely influence the
algorithm since rng(S’) is still connected and spans S’. Second, when the edges of ch(S’) are
added and the polygonal regions defined by ch(S’) U rng(S’) are triangulated, it can happen
that triangles a’b’¢’ are constructed whose unperturbed counterparts abe are flat, that is, a, b, ¢
are collinear. Although this is not a problem for the algorithm, it is somewhat distressing when
this triangulation is interpreted as a triangulation of 5. The remainder of this section shows

how to remedy this deficiency.

Let 7(5') be a min-max length triangulation of ', and consider its unperturbed version
7(95), that is, pg € T(5) iff p'¢’ € T(5"). A longest edge of 7(5) is no longer than a longest
edge of any min-max length triangulation mlt(S) of S, since mlt(.S"), the perturbed version
of mlt(.9), is a valid triangulation of 5" and would otherwise contradict that 7(.9”) is a min-
max length triangulation of 5. The reverse is also true, namely, a longest edge of 7(.5) is no
shorter than a longest edge of mlt(.5). We show this by converting 7(.9) into a min-max length

triangulation of 5.

Consider the dual graph 7*(5") of 7(5") and call a node a'b'¢’ flat if a,b, ¢, are collinear.
Determine the connected components of the subgraph of 7*(5”) induced by the set of all flat
nodes. FEach component corresponds to a collection of collinear points in .5, interconnected
by flat triangles; see Figure 5.15. Carry out the following steps for one component at a time.
Remove all edges of the flat triangles of the component, sort the corresponding points along
the supporting line, and add edges connecting points that are adjacent in the sorted order.

This produces regions bounded by more than three edges, as shown in Figure 5.15. All vertices
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Figure 5.15: The five points in the middle of the left triangulation are the perturbed versions of five
collinear points in the right triangulation.

x of such a region are collinear, except for one vertex y, which is connected to the first and
last of the vertices z. Triangulate this region by connecting y to all other vertices z. By the
A-Lemma, the newly introduced edges are no longer than the longer of the two original edges

incident to .

5.8 Extension to Normed Metrics

A convex region D C R? which is symmetric with respect to the origin can be used to impose
a norm on R*: for a point = € R?, define ||z|]| = ||z]lp = « if z lies on the boundary of
aD = {ay € R?* : y € D}. The norm can then be used to impose a (normed) metric on
R?: for two points z,y € R?, define |ay| = |avy|p = ||y — #||p. D is the unit-disk of the
metric and the boundary of D is its unit-circle. Notice that the three requirements for a metric
are indeed satisfied. First, |ab] = 0 iff @ = b because ||z|| = 0 iff 2 is the origin. Second,
|ab| = |ba| because D is centrally symmetric and therefore ||z|| = ||— z||. Third, the triangle
inequality, |ac| < |ab| + |bc|, follows from the convexity of D. Examples of normed metrics
are the [,-metrics, for p = 1,2,3,..., and the so-called A-metric discussed in [WWWS85] for its

applications to VLSI.

In this section, we assume that the triangle inequality is strict unless a, b, ¢ lie on a line in
this order. This is the case iff the defining convex region D is strictly convex, that is, no line
intersects the boundary of D in more than two points. This assumption is convenient and in fact
without loss of generality as every convex but not strictly convex region D’ can be approximated

arbitrarily closely by a strictly convex region D. Computationally, this approximation can be
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simulated by defining

lzllp = llzllp + ellzl2,

where ||z||2 is the Euclidean or l;-norm and ¢ is an arbitrarily small but positive real number.
Clearly, if ¢ is sufficiently small, then a min-max length triangulation under D is also a min-max

length triangulation under D’.

In the remainder of this section, we point out where the developments in Sections 5.1 through
5.6 need to be adjusted when the Fuclidean metric is replaced by an arbitrary normed metric.
Most importantly, the graphs defined in Section 2.4 can be extended in a natural way. If we
now stipulate that “circle” means a homothetic copy of the unit-circle as defined above and
“lab]” means the distance under the normed metric defined by D, then the definitions of mi#(.5),
D(S), rng(S), and mst(S) can be taken verbatim. The minimum spanning tree, mst(.9), is
connected and spans 5, and the Delaunay triangulation, D(.9), is plane because any two circles
intersect in at most two points. Since we still have mst(.5) C rng(S5) C D(5), we conclude that
all three graphs are connected and plane and they span 5. We remark that these three graphs

are not necessarily plane if D is not strictly convex.

The developments in Sections 5.1 through 5.6 are all based on a small number of basic facts,
namely, the distance relations expressed by the O-Lemma and the A-Lemma, the convexity of
the lune of an edge, and the straightness of the bisector of two points. The O-Lemma and the
A-Lemma are direct consequences of the triangle inequality and hold in the stated form (with
strict inequality) for arbitrary normed metrics as long as D is strictly convex. The lune of two
points is clearly convex as it is the intersection of two homothetic copies of D. Unfortunately,
the bisector of two points p # ¢, {,; = {z : |zp| = |zq|}, is not necessarily straight. Nevertheless,
(,, is still a simple curve that divides R? into two unbounded regions, called half-planes, one
containing p and the other g. The two half-planes are star-shaped with respect to p and ¢, that
is, any line through p or ¢ intersects {,, in at most one point. In addition, £,, is symmetric

pta

with respect to =5+ because D is centrally symmetric.

There is only one place where the straightness of the bisector is used in a substantial way,

and that is in the proof of Fact 5.3. We restate this fact and show how to prove it without the
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use of the straightness of the bisector. Recall that bd (b'd’) is said to be switchable if ac (a’c’)

is no longer than the longest edge of the triangulation 7.
Fact 5.3. It is not possible that both bd and o’d’ are non-switchable.

Proof. As established in Fact 5.2, if bd is non-switchable, then ¢ and d are contained in the
half-plane defined by (,, that contains ¢. Symmetrically, if b'd’ is not switchable, then &’ and
d' are contained in the other half-plane. Unlike in the Euclidean case, it is possible that ad and
a'd’ intersect (,,. It is thus possible that ad precedes a’d’ in the order of edges sorted from p to
¢ by their intersections with pq, as in Figure 5.16. Below we argue that if this is the case, then
ad (and symmetrically a’d’) is switchable. In particular, we show |ad| > |ap| which, together

with |ap| > |ac| from Fact 5.2, implies that ad is switchable.

Figure 5.16: Although a and d lie on ¢'s side of the bisector and o’ and d’ lie on p's side, ad intersects

pq closer to p than a’d’ does. This is not possible if the bisector is a line as for the Euclidean metric; see
Figure 5.6.

One characteristic of the described situation is that ad intersects {,, in at least one point
inside the lune of pg. Let x be such an intersection point closest to a. If pg N dz # 0, then
pdqx is a convex quadrilateral with |pd| > |pg| by construction. The O-Lemma thus implies
|dz| > |qz| = |pz|. It follows that |ad| = |az| + |dz| > |az| + |pz| > |ap|. On the other hand, if
pgNdz = @, then consider the point y = ad N pg and note that |py| < |qy|. We derive |dy| > |py]
from |py| + [dy| > |pd| = |pq| > 2|py|. Therefore, |ad| = |ay| + |dy| > |ay| + [py| > |ap| as
desired.
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All other steps of the proof of the Subgraph Theorem go through unchanged for arbitrary

normed metrics. We thus get the following generalization.

General Subgraph Theorem. Let S be a point set in R? equipped with a normed metric

with strictly convex unit-disk. Then $ has a min-max length triangulation mlt(.9) so that

rng(S) C mlt(S).

So the algorithm for computing a min-max length triangulation is clear—it is the same
as for the Euclidean metric, only that the length of edges is now measured in terms of a
normed metric. We assume that the length of an edge in this metric can be computed in
constant time. A careful reexamination of Sections 5.3 through 5.6 shows that the specialized
polygon triangulation algorithm works also in the context of arbitrary normed metrics. We
remark, however, that it includes the distance computation between a point and a line segment.
Although it is certainly reasonable to assume that this can be done in constant time too, the
observation in the remark at the end of Section 5.4 can be used to avoid this computation. We

thus have the following algorithmic result which generalizes the Min-Max Length Theorem.

General Min-Max Length Theorem. Let S be a set of n points in R? equipped with a
normed metric with strictly convex unit-disk. Given the relative neighborhood graph, a min-

max length triangulation of S can be constructed in time O(n?).

As mentioned above, a norm with non-strictly convex unit-disk can be simulated by one
with strictly convex unit-disk. It follows that the quadratic time bound also holds for arbitrary
normed metrics. The result stated in the General Min-Max Length Theorem raises the question
of how fast rng(9) can be constructed. The trivial algorithm tests all (}) edges, each in time
O(n), and therefore takes time O(n?). Faster algorithms are known for the /,-metrics where

O(nlogn) time suffices [JKY92, Kata88, Lee85].

5.9 Discussion

The main contribution of this chapter is the first polynomial time algorithm for computing a
min-max length triangulation of a set S of n points in R%. The components of the algorithm

are described in Sections 5.1, 5.4, and 5.6.1. Given the relative neighborhood graph of 5, the
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algorithm takes time O(n?). The algorithm works for arbitrary normed metrics. The polynomial
time bound follows because the relative neighborhood graph of S can be found in polynomial

time.

The same problem formulated for general plane geometric graphs can also be solved in
polynomial time provided the minimization condition is defined over all edges including the
constraining ones. This follows immediately from a constrained version of the Subgraph Theo-
rem. In the Euclidean metric case, the problem can actually be solved in quadratic time because
the relative neighborhood graph with constraining edges can be computed in O(nlogn) time
[SuCh91]. The question remains whether or not a min-max length triangulation, with or with-

out constraining edges, can be computed in less than quadratic time.

The approach used by the solution is a version of the subgraph approach mentioned in
Section 2.5. Both Plaisted and Hong [PIHo87] and Lingas [Ling87] used this approach to
compute approximations of the minimum length triangulation. It is interesting to see whether
it can also be useful to other criteria. In our case, the technique of retriangulation plays an
important role in the developments, and this will probably be the case also in other applications

of the subgraph approach?.

The results of this chapter are an out-growth of our general efforts to understand triangula-
tions that optimize length criteria. Currently, min-max length is the only non-trivial one known
to be computable in polynomial time. There are many related problems whose complexities
remain open; see Section 1.3.2. In particular, the natural extension of the min-max length
criterion to its vector form is not solved—it is no longer true that there is always an optimal
triangulation that contains the relative neighborhood graph as a subgraph. The smallest ex-
ample that illustrates this observation consists of four points a, b, ¢,d so that ¢ and d lie fairly
close to b, ab and cd intersect, and ¢ and d both lie outside the circle with radius |ab| and center

at a.

!ncidentally, retriangulation is also the main idea in proving the correctness of the edge-insertion paradigm.
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Chapter 6

Conforming Delaunay

Triangulations

A conforming Delaunay triangulation for a plane geometric graph G = (9, V) is introduced in
Section 1.2 as an extension to the Delaunay triangulation for a point set. It is a genuine Delau-
nay triangulation, or more precisely, a completion of a degenerate Delaunay triangulation. Its
relation to G is that each vertex in § is also a vertex of the triangulation, and each edge of F is
the union of some edges and vertices of the triangulation [BFL88]. The problem of constructing
a conforming Delaunay triangulation for a given plane geometric graph is non-trivial. In par-
ticular, it is not clear how many new vertices are really needed to achieve conformity. Previous
work [Bois88, NaSr91, Olou91, Saal91, SaPe91] fails to provide polynomial upper bounds on

this issue. Such a bound, on the other hand, is given in this chapter.

Section 6.1 formalizes the problem and presents some preliminary results. Section 6.2 gives
the first polynomial upper bound on the number of vertices necessary for a conforming Delaunay
triangulation. Section 6.3 explicitly formulates the algorithm implicit in the proof of the upper

bound. Lastly, Section 6.4 summarizes this chapter and mentions some open problems.
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6.1 Preliminaries

Let G = (5, F) be a plane geometric graph. A completion, C, of a Delaunay triangulation
conforms to G if every vertex of G is a vertex of C and every edge of G is the union of edges
and vertices of C. The problem is to find a small point set V' so that D(V') has a completion
that conforms to G. We call such a completion a conforming Delaunay triangulation of G.
It is also desirable to have an algorithm that constructs V' as well as a completion of D(V')
that conforms to G. The next lemma shows that the latter task can be handled by existing
constrained Delaunay triangulation algorithms [Chew89, Seid88], once we have an algorithm

that finds V. Thus, we can focus on the process of finding V.

As mentioned before, each edge ab of a completion of D(V') satisfies the empty disk property,
that is, there exists a circle through @ and b so that no point of V' belongs to the disk bounded
by the circle. We now argue that this property is also sufficient for the existence of a conforming
Delaunay triangulation. Call the portion of an edge of G between two contiguous points of V

(but excluding them) on this edge an interval.

Lemma 6.1 D(V) has a completion that conforms to G iff every interval defined by G and V'
has the empty disk property with respect to V.

Proof. The only if part follows from the definition of a completion of D(V'). For the if part,
we assume that every interval ab has the empty disk property. If ab is an edge of D(V') then
nothing has to be proved. Otherwise, no edge of D(V') can intersect ab because the closure of
the disk bounded by any circle passing through the endpoints of such an edge contains a or
b or both. Also, there is no other interval that intersects ab because G is plane. So ab, and
all other intervals that are not edges of D(V'), can be added to D(V') without introducing any

intersection. We can add zero or more non-intersecting edges arbitrarily until a completion of

D(V) is obtained.

A Lower BOUND. An edge ab € E that belongs to the boundary of the convex hull of §

automatically satisfies the empty disk property, and no points on ab need to be introduced. For

other edges ab, there are points on both sides of the line through ab. It is thus possible that ab
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does not satisfy the empty disk property, in which case points must be added to subdivide ab

into smaller intervals.

In some cases, the size of V" must be at least quadratic in the size of G. This bound can be
shown using the example of Figure 6.1 which consists of m = |F| edges and n = |S| = 2m + 2k

vertices. The edges are parallel and very close to each other. The isolated vertices come in &

. ° ° ° N
¢ . . . *
Figure 6.1: An Q(mn) lower bound example on the number of vertices of a conforming Delaunay

triangulation. In the example shown, m = 6, & = 3, and therefore n = 2m + 2k = 18.

pairs, with one vertex on each side of the group of edges. Provided the edges are sufficiently
close to each other, and the vertices are sufficiently close to the edges, it will be necessary to
place a point approximately between the two vertices of every pair on every edge. This proves
that at least mk points need to be added to obtain a conforming Delaunay triangulation. The
lower bound of Q(mn) follows for k = Q(n). For smaller k, the endpoints of half of the m edges

can be used to play the role of the isolated vertices.

PriOR WORK. A common approach to produce a conforming Delaunay triangulation is to
place sufficiently many points on the edges of the plane geometric graph so that each interval
has a circle that avoids all other edges [Bois88, NaSr91, Olou91, Saal91, SaPe91]. This can
always be achieved except maybe at places close to shared endpoints where sharp angles are
formed. This special case is handled by placing points at the intersections of the edges with a
sufficiently small circle drawn around the common endpoint. The method avoids the need for
backtracking as no point placed on any edge harms any interval that already has such a circle.
The price, however, is a possibly horrendous number of new points. Indeed, there is no function
f(n) that can bound the number of points although for every problem instance it is finite. In

particular, the number of points added grows as the edges move closer to each other.

AN EXPONENTIAL UPPER BOUND. An upper bound that depends solely on n can be obtained

as follows. Initially, set V := 5 and consider all m edges as unprotected. Treat the edges of G in
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turn. At the time the ¢th edge is treated, it may consist of various protected and unprotected
intervals. Place sufficiently many points on the unprotected intervals so that each new interval
has a circle that does not enclose any point of the current set V. Fach such circle may, however,
intersect other edges. To prevent points from being placed inside the circle later in the process,
we place points at the intersections between the circle and any unprotected interval of another
edge. Declare each new interval as protected if it is enclosed by the circle and unprotected

otherwise. See Figure 6.2.

Figure 6.2: The original graph, G, has vertices 0 through 9 and edges 01, 23, 45, 67 and 68. First,
edge 01 is treated. In the process, two new points are added to 01. The resulting three circles intersect the
other edges in seven points, which are also added. Each edge of G consists now of protected and unprotected
intervals.

The number of points needed to treat the i¢th edge does not exceed the current size of V' since
it suffices to project the current set V' orthogonally onto the ith edge. Similarly, the number of
circles needed for the ¢th edge does not exceed the current size of V. Assume inductively that
|V| < n(2m+41)"~! before the next step that treats the ith edge. The next step creates at most
n(2m + 1)1 circles intersecting the remaining edges in at most 2m points each. The size of V
thus increases to at most n(2m + 1)™' + n(2m + 1)*"12m = n(2m + 1)". The total number of

points at the end of the process is therefore at most n(2m 4 1)™.

This method apparently produces far too many points. An improvement was found by
Mehlhorn, Sharir, and Welzl. Their method combines the projection of points with a divide-
and-conquer scheme and achieves a subexponential although not yet polynomial bound. The
idea of protected and unprotected intervals turns out to be valuable in our effort to obtain a

polynomial upper bound on the number of points.
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6.2 The Upper Bound

Given a plane geometric graph G = (5, F), with |S| = n and |F| = m, this section shows how
to find O(m?n) points so that each resulting interval has the empty disk property. As defined
earlier, an interval is the portion of an edge between two contiguous points of V' chosen on this

edge. If no point of an edge belongs to V', then this edge itself is an interval.

6.2.1 The Global Idea

The point set V' is constructed in two steps, the blocking and the propagation phase. Initially,

V' contains only the vertices of G, that is, V := 5.

The goal of the blocking phase is to find O(n) pairwise disjoint disks that contain no points
of § so that the union of their closures is connected and contains S. Each circle bounding such
a disk is called a blocking circle. After finding these disks, we add the intersections between
blocking circles and edges of G to the set V. In addition, we add the O(n) points at which
blocking circles touch each other. The new set V' forms the vertex set W of a plane geometric
graph H which conforms to G. The edges of H are the intervals of G together with edges

connecting contiguous points of V' on blocking circles.

H has two types of edges. Each protected edge is enclosed by a blocking circle; its endpoints
lie on the blocking circle. All other edges are unprotected. By construction, protected edges
have the empty disk property with respect to the current set V. We will make sure that no
points inside the blocking circles are later added to V' so that this property persists with respect

to all future sets V.

The unprotected edges are further subdivided into intervals in the propagation phase. For
an edge or interval ab, we define the minidisk of ab, denoted by M, as the smallest disk
containing ab. In other words, M,; is the disk bounded by the circle with ab as a diameter. If
ab is unprotected and its minidisk contains a point ¢ € V visible from every point of ab then
a point ¢’ subdividing ab into ac’ and ¢’b is added to V. This point ¢’ will be chosen so that ¢

lies outside M, and M.
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6.2.2 The Details

THE BLOCKING PHASE. We show how to use a minimum spanning tree of S to construct n— 1

disks Dy, Ds, ..., D,_1 that satisfy the following properties:

(1) DinS=0forall 1 <i<n-1,

(2) D;nD;=0forall 1 <i<j<n-1,

n—1

(3) D= U (closure of D;) 1is connected, and
=1

(4) SCD.

Recall that a minimum spanning tree of 5, mst(.9), is a spanning tree of the complete graph
(S, (g)) whose sum of edge lengths is a minimum (Section 2.4). An important property of

mst(S) is that the minidisk of every edge of mst(5) is disjoint from .

Label the vertices of mst(.S) from 0 through n — 1 so that for every 0 < j < n — 1 the
vertices 0,1,...,j induce a subtree of mst(.9). Define ¢; so that ¢, is an edge of this subtree.
Notice that i; < j and that 7; is unique. The edges 7;j are now used to define the disks D;.
The disk Dy is the minidisk of edge 01. The disk D;, for 2 < j <n —1, is maximal so that

(i) its center lies on ¢;j,

(ii) its bounding circle goes through j, and

(iii) it is disjoint from disks Dy through D;_; constructed earlier.
Clearly, D; C M; ;. This implies property (1). Properties (2), (3), and (4) follow from the
construction.

Let S’ be the set of points where the blocking circles intersect the edges of G, and let S be
the set of points (not in S") where the blocking circles touch each other. As described above,
the points in S” and 5" are added to V. Let W be the new set V, and let H = (W, F) be a
plane geometric graph with F' = F' U F” defined as follows. The set F’ contains all intervals

on edges of G. Remember that by construction all points of W lie on the n — 1 blocking circles.
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Consider a disk D; bounded by a blocking circle C;, and let pg,p1,...,pk—1,px = po be the
points of W that lie on C; in this sequence. These points define a convex k-gon with edges
pepiy1, 0 < € < k — 1, termed walls. Some of these walls may be intervals on edges of G
and therefore belong to F’. In any case, F" is the collection of all walls. This completes the

definition of ‘H which conforms to G; see Figure 6.3.

Figure 6.3: The original graph, G, has vertices 0 through 7 and edges 17, 23, 46 and 67. The edges of
the minimum spanning tree, 01, 12, 23, 14, 45, 56 and 57, are indicated by broken lines. Each edge of the
tree corresponds to a blocking circle. Each blocking circle encloses protected edges of H.

Note that each wall is protected by a blocking circle. The collection of walls defines another
plane geometric graph, Z = (W, F"). Clearly, 7 is a subgraph of H. Note that all faces of H,
excluding the unbounded face, are simply connected because H is connected. For convenience,
we shall adopt the topology of the sphere in our discussion so that all faces of H are simply

connected. Similarly, all faces of Z are simply connected because 7 is connected.

THE PROPAGATION PHASE. The unprotected edges of H are further subdivided into intervals

during a non-deterministic process. Initially, every unprotected edge is also an unprotected
interval. Consider an unprotected interval ab and its minidisk M. Call a point ¢ € V' wisible
from ab if the interior of abc is disjoint from all edges of H. Suppose a point ¢ € V visible from
ab is contained in M,;. We add ¢’ to V, where ¢’ is the orthogonal projection of ¢ onto ab, and
thus subdivide ab into ac’ and ¢’b. Repeat this step until there is no unprotected interval ab

with such a point ¢. This completes the description of how the point set V is constructed.
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6.2.3 The Analysis

This subsection shows that the eventual size of V is O(m?n). The blocking phase adds at most
(2m — 1)(n — 1) intersection points between edges and circles and fewer than 3n points where
circles touch each other. The latter bound follows from the planarity of the intersection graph

of the blocking circles.

We now focus on proving that each point created in the blocking phase gives rise to at most
O(m) points in the propagation phase. We begin by proving a few properties of the propagation
phrase. Let ab be an unprotected interval at some point in time during the process, and let
¢ € V lie in M. Then the orthogonal projection ¢’ of ¢ onto the line through ab lies strictly

between a and b, i.e., ¢/ € ab. Furthermore, ¢ ¢ M, and also ¢ & M.

Assume now that ¢ # x,y is a point on some edge ay of G. All points in V' — (5 U S”) are

of this form. Then we have the following fact.

Lemma 6.2 There are at most two intervals, ab and a’d’, so that ¢ is visible from both and

contained in their minidisks. Furthermore, ab and «'d’ lie on different sides of the line through

Y.

Proof. If ¢ € My, then Zach > 7, and if ¢ is visible from ab then a and b lie on the same side
of the line through xzy. The same is true for a’d’. So if ab and @'’ lie on the same side of the
line then one endpoint of b’ must lie between @ and b as seen from c. This contradicts the

assumption that ¢ is visible from ab and from a'd’.

Next, let ¢ € My, be visible from ab, and ¢’ be the orthogonal projection of ¢ onto ab. Then we

have the following fact.

//b//

Lemma 6.3 There is no interval a”b” on the same side of the line through ab as ¢ so that ¢’ is

visible from a”b"” and ¢’ € M myn.

Proof. Assume such an a"b” exists. Then Za"¢'b"” > T which implies that ¢ lies between a”

and b as seen from ¢’. This either contradicts that ¢ is visible from ab or that ¢’ is visible from

a//b//‘
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Assume now that ¢ € V does not lie on an edge of G, so ¢ € S U S”. Similar to Lemma 6.2,

ks

we have the following fact as there can be at most three angles larger than 7 packed around c.

Lemma 6.4 There are at most three intervals ab so that ¢ is visible from ab and ¢ € M.

A LocariTy PROPERTY. Notice that the propagation phase takes care only of local con-

straints. In other words, it considers only visible point-interval pairs ¢,ab. Although the
minidisk of ab can contain other points of V', it is indeed justified to ignore such points, as we
will see shortly. Let ab be an unprotected interval. We call the minidisk M, locally empty if
it contains no point of V' that is visible from ab. Furthermore, M, is empty if it contains no

point of V' at all.

To prepare for the next lemma, we consider an interval ab and a point ¢ € M. If ¢ is not
visible from ab then there are intervals st that intersect abc. We say that st separates ¢ from ab
if both endpoints, s and ¢, lie outside M. Otherwise, st hinders the visibility between ¢ and
ab but it does not separate. Let F. ., be the set of intervals that separate ¢ and ab, and define
F. 4 as the set of (non-separating) intervals that hinder the visibility between ¢ and ab. It is
interesting to observe that F. ., = () or there is another point d of V' in My, with Ey ., C E. 4
and Fy,, = (0. To see this, choose a point z in the interior of abe so that the interior of abx
does not intersect any edge of H. Move z continuously and straight towards ¢ until either a
side of abxz hits a vertex d or z hits a non-separating interval uwv of H. In the second case at
least one of the two endpoints, say u, lies in Myp. Slide z on uv towards u until either a side of
abz hits another vertex d or z reaches u (then d = u), whichever happens first. The path of

crosses only intervals that separate ¢ and ab, therefore Ey 5 C Eo gp.

Lemma 6.5 If the minidisks of all unprotected intervals are locally empty then they are all

empty.

Proof. Suppose the claim is false. Then, there is an unprotected interval ab whose minidisk
M,y contains a point ¢ € V. As argued in the preceding paragraph, we can make the extremal
assumption that ab and c are chosen so that the number of separating intervals £, .5 is a global

minimum and F.,, = (. Let st be an interval that separates ab from ¢. Note that st is not
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protected because every circle through s and ¢ encloses at least one of a, b and ¢. But if st is
an unprotected interval, we have ¢ € My because s and ¢ are outside M,;,. Furthermore, st
cuts My, into two pieces, and the piece that contains ¢ is properly contained in Mg;. Therefore
E. o C E. 45 and we have proper containment because st € F, 4, does not belong to E, 4. This

either contradicts the extremal assumption or that st is locally empty.

PROPAGATION SEQUENCES. We are now ready to analyze the number of points created in the

propagation phase. Our particular goal is to show that each point ¢ created in the blocking
phase generates at most 3m points in the propagation phase. We say that a point ¢ generates
another point d if there is a sequence ¢ = c¢g,¢1,...,¢x = d so that ¢;41 is created as the
orthogonal projection of ¢; onto some interval during the propagation phase, for 0 < < k—1.
The sequence cg, cq, ..., ¢ is called a propagation sequence. It is non-trivial if £ > 1, and it is
mazimal if ¢g is created in the blocking phase and ¢j generates no further point. Note that all
c;, © > 1, of a maximal propagation sequence lie on unprotected edges of H, and these edges

are contained in edges of G.

Every point d created in the propagation phase gives rise to at most one point d’. To see
this, we first note that such a point d lies on an edge zy of G. Now Lemma 6.2 implies that d
is visible from at most two intervals whose minidisks contain d. By Lemma 6.3 and because d
itself is generated by an orthogonal projection, d generates another point d’ on at most one of
these two intervals. Together with Lemma 6.4, this implies that a point of V' constructed before
the propagation phase gives rise to at most three non-trivial maximal propagation sequences.
In fact, there are at most two such sequences per point not in 5 U S”. To establish that the

length of a maximal propagation sequence is at most m, it suffices to prove the following.

Lemma 6.6 No propagation sequence can have two or more points on the same edge of .

Proof. Suppose the claim is false. Consider a minimal propagation sequence, ¢c=cg, ¢y, ..., ¢ =
d, so that ¢ and d lie on the same edge zy of G. Consider the polygon, P, whose boundary
consists of the line segments e¢d and ¢;c;41, for 0 <7 < k—1. Recall that walls are protected, so
no points are projected on or across them. Thus, P lies completely within a face of Z. Since all

vertices of G are also vertices of 7, and because all faces of 7 are simply connected, there can
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be no vertex of G inside P. Thus, each edge of G that intersects P has its endpoints outside
P. It thus intersects the boundary of P in at least two points. Since ¢q, ¢y, ..., ¢k is minimal,
it follows that £ = 2 and that ¢g and ¢3 lie on the same side of the edge zy of G that contains
¢1. But this contradicts Lemma 6.3.

As mentioned earlier, |5 U S”| < 4n. Each point ¢ € S U S” gives rise to at most three
maximal propagation sequences of length at most m + 1 each. The point ¢ itself is the only
point of these sequences that does not necessarily lie on an edge of G. The number of other
points created during the blocking phase is less than 2mn. Each such point gives rise to at most
two maximal propagation sequences of length at most m each. The total number of points after

the propagation phase is thus less than
An(3m+ 1)+ 2mn(2m - 1) = 4m2n + 10mn + 4n.

This proves the main result of this section.

Theorem 6.7 Let G = (9, F) be a plane geometric graph with |S| = n and |F| = m > 1.
There exists a point set V of size |V| = O(m?n) so that its Delaunay triangulation has a

completion that conforms to G.

6.3 Implementing the Proof

The proof of the O(m?n) upper bound presented in Section 6.2 is constructive and can be
translated into an algorithm without much effort. The only demanding step is the implemen-
tation of the propagation phase. In order to keep the time-complexity roughly within the same
order of magnitude as the number of points added, we need to project the points in a sequence
that is computationally inexpensive. We will assume that point coordinates can be stored in
constant amount of storage and that basic geometric operations, such as intersecting a circle
with an edge and projecting a point onto a line, can be carried out in constant amount of time.
As usual, plane geometric graphs are stored using the quad-edge data structure of Guibas and

Stolfi (Section 1.2).
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6.3.1 The Blocking Phase

A minimum spanning tree of a set of n points in the plane can be computed in time O(nlogn).
This requires the construction of the Delaunay triangulation of the points and running a stan-
dard minimum spanning tree algorithm on the graph of this triangulation; see, for example,
[Edel87, Section 13.2.5]. Alternatively, a minimum spanning tree can be obtained in time
O(n?) directly from the complete graph of the points. The slower method is certainly easier to

implement.

After computing the tree, we need to find the disks Dy, Do, ..., D,_1 that satisfy properties
(1) through (4). Most straightforwardly, these disks can be constructed one by one as explained
in Section 6.2. For each j, the largest disk D; needs to be found so that its center lies on 4,7,
J lies on the bounding circle of D;, and D; avoids all D; for ¢« < j. This can be done in time
O(j). The total amount of time for this step is thus O(n?). The plane geometric graphs H and
7 can be computed by intersecting the bounding circles of the D; with each other and with the
edges of G. The resulting O(mn) intersection points can be computed and sorted along circles

and edges in time O(mnlogn).

6.3.2 The Propagation Phase

Recall that Z is a subgraph of H and contains none of its unprotected edges. A point ¢ € V is
projected onto an interval ab only if ab is unprotected. Thus, projections happen only within
faces of Z. We can thus restrict our attention to a single face of Z. As mentioned earlier, 7 is
connected and therefore its faces are simply connected. Each face of 7 is further subdivided
into regions (of H) by unprotected edges of H. Each region is also simply connected, and can
be treated computationally as bounded by a simple polygon defined by oriented edges that have

the region on their left (Section 1.2).

A TrREE oF REGIONS. Consider a face f of 7. Let Ry be the graph whose nodes are the regions

of f, and whose arcs connect regions that share unprotected edges of H. Each subdividing
unprotected edge has both endpoints on the boundary of f, which implies that Ry is a free

tree. It will be convenient to fix an arbitrary node as its root and thus impose a parent-child
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relation on adjacent node pairs. Points will be projected onto unprotected edges in three stages.
The first stage computes an initial set of projections that avoids difficult situations in the second
stage. The second stage computes and sorts segments along the boundary of each region. The

last stage consists of a post-order and a pre-order traversal of R;.

Consider two adjacent nodes v and £ of Ry, and let ab be their shared unprotected edge.
Points on the boundary of v that are projected onto ab are said to be exported from v to £.
Symmetrically, we say they are imported by £. The points projected onto ab are stored in two
separate sorted lists, L,¢ and Lg¢,, one for each side of ab. The complete list of points exported
from v to £, L,¢, can be computed only after all import lists Ly,, for k # £ adjacent to v, are
available. Note that the import list from &, L¢,, is not necessary for computing L,¢ because a

propagation sequence follows only one direction of a path in Ry (Lemma 6.6).

STAGE 1: subdividing unprotected edges. A vertex v; of v is reflex if the angle inside v exceeds
7, i.e., vertices v;,v;,v; form a right turn where v;9; and v;9, are the oriented edges on the
boundary of v. The first stage projects every reflex vertex ¢ onto all unprotected edges ab
for which there exists a portion a’d’ C ab so that c is visible from @'’ and ¢ € M,. Since
Za'eb' > T there can be at most three such edges ab. As a precaution, we do not require that
¢ be visible from ab. This way ¢ does not need to be reconsidered after ab gets subdivided.
Although such projections are not prescribed by the proof in Section 6.2, they neither invalidate
the correctness nor the analysis of the construction. Each reflex vertex is necessarily a vertex
in SUS” so there are fewer than 4n of them. Since each vertex is projected at most three

times, we thus increase the number of unprotected edges by less than 12n.

Here is how we find the at most three unprotected edges for a reflex vertex c¢. The parts of
the boundary of v visible from ¢ can be computed in a single walk along the boundary of v; see,
for example, [E1IAv81, Lee83, JoSi87]. The amount of time needed for the walk is proportional
to the number of edges. Select the at most three edges that have connected portions visible
from c along an angle exceeding 5. Project ¢ orthogonally onto these at most three edges. Each

projection subdivides an unprotected edge into two such edges.

The rest of the algorithm uses the subdivision of H produced in stage 1. It will therefore

be convenient to call the elements of this subdivision vertices and edges. After the completion
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of stage 1, no reflex vertex visible from an unprotected edge ab lies inside the minidisk M. It
thus follows that if a point ¢ lies in M,; and is visible from a point on ab then it is also visible

from ab.

STAGE 2: computing boundary segments. This stage is a preprocessing step that speeds up
computations in stage 3. It prepares the boundary of v in such a way that points can be
projected onto various unprotected edges in a single walk along the boundary of v. To this
end, we associate pieces of the boundary, called segments, with the unprotected edges of v. A
segment for an unprotected edge ab is a maximal connected piece of v’s boundary so that every
point z of the segment is visible from ab and contained in M,;. Note that segments do not
include their endpoints. Since v is simply connected, a point z is visible from ab iff it is visible

from a and also from b. The segments of ab are constructed as follows.

1. Find the part of v’s boundary visible from . As mentioned above, this can be done in a

single walk along the boundary.
2. Find the part of v’s boundary that is also visible from b. Again a single walk suffices.

3. Intersect the identified boundary pieces with M.

Define the rank of v, r(v), equal to the number of unprotected edges of v, and let |v| be
the total number of edges of v. If an edge bounds v on both sides, that is, the edge belongs to
the interior of the closure of v, then it is counted twice. By construction, this can be the case
only for protected edges. After carrying out 1 through 3 for each unprotected edge of v, we
obtain a collection of segments. Because of Lemma 6.2, the segments along the boundary of v
are pairwise disjoint. In other words, the segments form a sequence, and they can be sorted in
time proportional to |v| plus their number. This is because along an edge of v the segments
are ordered consistently with the order of their corresponding unprotected edges. We will see

later that the number of segments is less than 2 7(v) + |v|.

STAGE 3: traversing the tree. In a post-order traversal, the children s of a node v are visited
before v. Visiting a node v in this case means computing the export list to its parent £. Notice
that because of stage 1, v and & may share several unprotected edges. Still, their union is

the original unprotected edge of v and ¢, and L, can be obtained by concatenating the lists
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obtained by projecting points onto these unprotected edges. We can assume that at the time

the export list of v to £ is computed, all import lists L,, are available.

List L,¢ is constructed in a single walk along the boundary of . Whenever a segment that
belongs to an unprotected edge shared by v and £ is encountered, the points on this segment
are projected orthogonally onto the unprotected edge. These points can be vertices of v or
points in import lists of v. The result is the list L,¢. It is automatically sorted if we process

the points in their order along the boundary of v.

After the post-order traversal of Ry, all child-to-parent lists are complete. In order to
compute the export lists of a node v to its children s, we need to first construct the import
list from its parent, L¢,. This is done in a pre-order traversal of R;. A node is visited before
its children, and visiting a node v now means computing all export lists L, .. At the time we
compute these lists, all import lists are complete and stored with their unprotected edges. In a
final walk along the boundary of v, we project vertices onto the appropriate unprotected edges,

as before.

6.3.3 The Time Complexity

The analysis of the above algorithm requires some topological and combinatorial results about
regions. We begin with a combinatorial lemma. Let e1,e5,...,ex be a sequence of k not
necessarily distinct symbols. It is a D.Sy(n)-sequence if only n of the symbols e; are different,
e; # €41 for 1 < ¢ < k — 1, and there are no four indices 1 < 43 < i3 < i3 < 14 < k so that
= e, # €, = €, [DaSc65]. The following is a well-known fact about the length k of the

€4

sequence.
Lemma 6.8 The length of any DS3(n)-sequence is at most 2n — 1.

Proof. Suppose z is the symbol that is introduced last when a D.S3(n)-sequence is read from
left to right. From the last part of the definition, we deduce that z occurs only once. We can
thus obtain a DS3(n — 1)-sequence by either deleting z or z and its adjacent symbol. The
latter case happens only when z is sandwiched between a same symbol. Clearly, induction on

n completes the proof since DSy(1) = 1.
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We use such sequences to bound the number of segments in a region .
Lemma 6.9 The number of segments of v is less than 2r(v) + |v|.

Proof. Consider the ordered sequence of segments. Replace each segment by the name of the
corresponding unprotected edge. The resulting sequence contains no scattered subsequence of

the form

ab.oed.iab. . ed. ..,

because otherwise the bounding circles of M, and M.y would intersect at four or more points.
So if we compress repetitions we get a D.Sy(7(v))-sequence. If two consecutive symbols (unpro-
tected edges) are the same then there must be a vertex of v separating them. This implies that

the total number of segments exceeds the length of the D.Sy(7(v))-sequence by at most |v/.

The total number of unprotected edges before the propagation phase is at most O(mn),
and it is fairly easy to see that this bound is tight. It is plausible that a single region can have
only substantially fewer unprotected edges. We now prove a more general result that implies
a single region indeed cannot exceed O(m + n) unprotected edges. For a region v, we define
its exzcess e(r) = max{0,r(r) — 4m}. The total excess is the sum of the e(v) over all regions
v of H. We prove an upper bound on the total excess which is sufficient for our purposes but

certainly not tight.
Lemma 6.10 The total excess is less than 36n.

Proof. To help the discussion we replace each edge of G by a pair of directed edges, which we
call di-edges. A di-edge pg contributes an edge to a region v if it contains the edge and along
this edge v lies to the left of pg. Consider the sequence of unprotected edges in v’s boundary,
and replace each such edge by the name of the contributing di-edge of G. This results in a
sequence with at most 2m different symbols. A straightforward topological argument shows

that there is no scattered subsequence of the form

.opqg...st...pg...st...
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If we ignore repetitions we have a DS3(2m)-sequence, which implies that the length of the

sequence without repetitions is less than 4m. Anything exceeding this number is counted by
e(v).

Let ab and cd be two consecutive unprotected edges contributed by the same di-edge, pq.
Then (i) b = ¢, or (ii) bc is a protected edge of v, or (iii) there are two or more protected
edges between b and c. In case (i) we can charge the projection in stage 1 for the repetition,
and there are fewer than 12n of them. Each projected point is counted twice, once for each
side, so we have fewer than 24n repetitions of type (i) in total. In case (iii) we can charge the
vertex common to the first two protected edges after b for the repetition. This vertex must be
in S US"”. We have |5 U S”| < 4n, and each such vertex is charged at most twice because it
can lie on at most two blocking circles. This implies that there are fewer than 8n repetitions of
type (iii). In case (ii), be is a protected edge contributed by pg. We argue in the following that
the total number of such edges, over all regions and di-edges, is less than 4n. This will imply

the claim.

Since bc is protected, its endpoints lie on a blocking circle C'; bounding D;. Furthermore,
since be belongs to a region with at least one unprotected edge, it must be a wall. Consider
D; and the edges of H that lie on edges of ¢ and decompose D;. Each such edge has both
endpoints on ;. It follows that the dual graph of the decomposition is a free tree. The nodes
of the tree are the regions of the decomposition, and the arcs correspond to the edges that
decompose D;. The edge bc corresponds to an arc incident to a leaf of the dual graph. We
can bound the number of repetitions of type (ii) by bounding the total number of leaves of the

n — 1 dual graphs defined for the blocking circles.

To count the total number of leaves, we assume G is a triangulation. If not, it can be
converted into one by adding fewer than 3n — m edges; adding these edges can only increase
the count. The advantage of a triangulation is that now each interior node of a dual graph
has degree 2 or 3. Furthermore, the number of leaves of a dual graph is 2 plus the number of
degree-3 nodes. Each degree-3 node of the dual graph for D; corresponds to a triangle of G
each of whose three sides intersects ;. A triangle can intersect at most one blocking circle in
this manner. Thus, the total number of degree-3 nodes is at most the number of triangles, i.e.,

2n — 5. This number plus twice the number of blocking circles is less than 4n, as claimed.
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A region cannot have more than 4n vertices shared by adjacent protected edges, because
each such vertex is a vertex in S U S”. FEach such vertex is encountered at most twice, which

implies |v| < 27(v)+8n. Lemma 6.10 thus implies a bound on the number of edges of a region.
Lemma 6.11 For a region v of H, |v| = O(m + n).

We are now ready to derive the time-complexity of the algorithm. Stages 1 and 2 require
at most O(|v|r7(v)) time per region v. By definition, 7(v) < 4m + e(v), so the time is bounded

by a constant times
Do wlm+ Y lvle(v),

where the sums are over all regions of H. The first sum is O(m?n) because 3" |v| = O(mn) for
H has only O(mn) edges and stage 1 adds only O(n) to this number. The second sum is O(n?)
because 3" |v|e(rv) = O((m + n)3_ e(r)) by Lemma 6.11 and 3" e(r) < 36n by Lemma 6.10.
This implies that O(m?n 4+ n?) is an upper bound for the time spend in the first two stages of
the algorithm. After that, O(m?n) time suffices to compute all import and export lists in stage

3. This implies the main result of this section.

Theorem 6.12 Let G = (5, F) be a plane geometric graph with |S| =n and |[E]=m > 1. A
point set V of size O(m?n) that admits a completion of its Delaunay triangulation conforming

to G can be computed in time O(m2n + nz).

6.4 Discussion

The main result of this chapter is the existence of O(m?n) points that admit a completion
of their Delaunay triangulation conforming to a plane geometric graph with n vertices and
m > 1 edges. This result is superficially similar to the triangulation results of [BDE92, BEG90,
BeEp91, MeS092]. The best lower bound for the number of points necessary is Q(mn), and its

proof is fairly straightforward. It would be interesting to close the gap between the two bounds.

The O(m?n) points can be constructed in time O(m?n + n?), provided infinite precision

arithmetic in constant time is assumed. This assumption is unrealistic because the number of
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bits necessary to accurately represent a point increases at each projection along a propagation
sequence. It remains open whether the points can be constructed within the same time-bound

without this assumption.
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Chapter 7

Conclusion

Many words have been said in the literature about triangulation for it is, no doubt, an important
decomposition method with various applications in engineering and science. This thesis focuses
on the complexity of constructing optimal triangulations. This theme has not been very popular
in the literature until very recently. Because of a lack of algorithms, most previous work
on constructing optimal triangulations relies on simple heuristics. This thesis substantially
advances our knowledge in this respect and supplements the meager pool of algorithmic methods

known to be effective in constructing triangulations.

Now we can compute min-max angle, max-min height, min-max slope, min-max eccentricity,
min-max length, and conforming Delaunay triangulations in low order polynomial time. Besides
formulating new algorithmic and proving them correct, we also address implementation issues.
All algorithms discovered are fairly simple and have interesting visual effects when animated.
Roughly speaking, an edge-insertion step (Chapters 3 and 4) looks as if it is opening and then
closing a hand-fan. The Subgraph approach (Chapter 5) grows triangles inside polygons. The
“wall” approach (Chapter 6) marches up and down faces. We observed the behavior of an
edge-insertion step from the implementation done by Roman Waupotitsch [EdWa92]; the other

two approaches are not yet implemented.

This thesis is certainly not the final word in the area. As discussed in Section 1.3, many ques-

tions remain open. Besides two-dimensional cases, there are many three- and higher-dimensional
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problems; see, for example, [BeEp92, Dey91, Edel90, EdSh92, MiVa92, Raja91l]. Just by going
up one dimension to three, we reach another dimension of difficulty. Simple questions about
the complexity of triangulating a convex polytope optimally remain open. Moreover, polytopes
may not necessarily have triangulations [Sch628], and the corresponding decision problem is
NP-complete and thus unlikely to have a polynomial time algorithm [RuSe92]. This explains
some difficulties on extending the results in this thesis to higher dimensions. We leave with

many words yet to be said about triangulations ......
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