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A 	geometric
 triangulation in the plane is a maximal connected plane graph with straight
edges� It is thus a plane graph whose bounded faces are triangles� For a �xed set of vertices�
there are� in general� exponentially many ways to form a triangulation� Various criteria related
to the geometry of triangles are used to de�ne what one could mean by a triangulation that is
optimal over all possibilities� The general problem studied in this thesis is the following�

given a �nite set S of vertices� possibly with some prescribed edges� how can we choose
the rest of the edges to obtain an optimal triangulation�

Just to mention an example� we are interested in computing a min�max angle triangulation of
S� that is� a triangulation whose maximum angle over all its triangles is the smallest among all
triangulations of S�

This thesis presents a number of new algorithms to construct optimal triangulations useful
in engineering and scienti�c computations� such as �nite element analysis and surface inter�
polation� All algorithms are the �rst and� currently� the only ones that construct the de�ned
optimal triangulations in time polynomial in the input size� These main results are described
in three parts�

First� we develop a new algorithmic technique called the edge�insertion paradigm� It com�
putes for a set of n vertices an optimal triangulation de�ned by some generic criterion� From
this� we deduce that a min�max angle and a max�min height triangulation can be computed in
O	n� logn
 time and linear storage� and a min�max slope and a min�max eccentricity triangu�
lation in cubic time and quadratic storage�

Second� we show that amin�max length triangulation for a set of n vertices can be computed
in quadratic time and storage� Length refers to edge length and is measured by some normed
metric such as the Euclidean or any other lp metric�

Third� for a given plane graph of n vertices and m non�crossing edges� we prove that there is
a set of O	m�n
 points so that� for each adjacent pair of points on an edge� there exists a circle
passing through the two points that encloses no other points� This implies an e�cient way
to construct a so�called conforming Delaunay triangulation� which is a Delaunay triangulation
that subdivides the given plane graph�

These results collectively provide a foundation for further algorithmic studies of optimal
triangulations�
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Chapter �

Introduction

The theme of this thesis is geometric triangulations� These are face�to�face decompositions of

domains or spaces into triangles in two dimensions or simplices in general dimensions� Com�

putational work on geometric triangulations� or simply� triangulations� has been plentiful� ever

since the beginning of the computer era� Many interesting theoretical properties have been

discovered about triangulations� which in turn suggest the use of particular types of good or

optimal ones� Unfortunately� many of these optimal triangulations have as yet no polynomial

time construction methods and thus remain of limited signi�cance in practice� Many computer

programs written in the area are either for optimal triangulations of a small class or heuristics

with no guarantee on the quality of the output triangulation� There remain numerous un�

solved problems on constructing triangulations� all waiting anxiously for solutions� The pool of

problems that was open a few years ago motivated our study� and this thesis reports on some

solutions and encouraging results in two dimensions�

In the rest of this chapter� we discuss two representative applications of triangulations

	Section ���
� introduce useful terminology 	Section ���
� survey open problems related to ap�

plications 	Section ���
� and preview material covered by subsequent chapters 	Section ���
�

�



��� Two Sample Application Areas

Triangulating a geometric object or space is a popular decomposition method that has found

many applications� In this section� we describe two major uses of triangulations� other appli�

cations will be mentioned where appropriate in later discussions� The main purpose here is to

shed some light on the role of triangulations that will help us understand the relevance of the

open problems discussed in Section ���� As such� we only highlight the typical steps involved

in applications� speci�c details and other variations can be found in the references��

Finite Element Analysis� This is a discretization technique for solving partial di�erential

equations� Many problems in engineering� including elasticity� electromagnetism� �uid dynam�

ics� structural mechanics� biomechanics and many others� appear as variational forms where in

each case a function is to be found that minimizes or maximizes a given set of equations� Very

often� an exact solution is impossible and thus an approximation is necessary� Finite element

analysis is one such approximation method �BaSu��� StFi����

The analysis starts by creating a so�called mesh
possibly a triangulation
that decomposes

the structure or the object of interest into small pieces called elements � Next� the partial

di�erential equation is solved for each element with some lower order polynomial function� The

solutions for the elements are then integrated into a solution for the problem� Then� some error

indicator is obtained to decide whether any further computation is required to improve the

current solution� The next iteration� if needed� will be performed with higher order polynomial

functions or with improved mesh topology 	via relocating the mesh vertices or re�ning elements

into smaller ones
� or combination of both�

The mesh generation is indeed an important process� The overall quality of a computation

depends on the types and shapes of the elements� and the number and distribution of the

elements� One way to generate a mesh is to �rst spread vertices on the object� possibly taking

distribution requirements into account� and then form non�overlapping elements using these

vertices �Cave���� Another way is to generate elements one at a time from the remaining

object �GeSh��� Trac���� Sometimes� the object is �rst decomposed into some manageable� for

�Because of the huge amount of literature in the area� the references quoted are by no means complete�

�



example� convex portions �Joe��� JoSi��� before a mesh is created� We refer to �HoLe��� Shep���

for surveys on mesh generation methods�

Surface Interpolation� The objective is to construct a surface that passes through a given

set of data points with corresponding data values� This process appears in a wide variety

of scienti�c �elds including mineral exploration� computer aided geometric design� medicine�

digital terrain modeling and weather analysis� In these applications� the given points and values

represent observed or computed values of some physical phenomena� and the interpolation

schemes are used to construct surfaces that approximate other values� which may be di�cult or

impossible to obtain� Conditions� such as the continuity of partial derivatives 	i�e�� smoothness


of the surface� are usually assumed to limit the choice� A comprehensive list of references on

the subject can be found in �FrSc����

Let us consider the example of a given set of planar data points 	xi� yi
 with corresponding

data values zi� The goal is to construct a bivariate function f	x� y
 such that f	xi� yi
 � zi� for

all i� A typical three�step interpolation procedure to achieve this is as follows� First� construct

a triangulation on the set of data points to divide the region of interest into triangles� Second�

estimate partial derivatives of f with respect to x and y at each of the data points 	xi� yi


using the data values of the data points connected to 	xi� yi
 in the triangulation� The plausible

justi�cation for taking the neighbors of 	xi� yi
 is that they tend to be close to 	xi� yi
 and

should thus have an in�uence on this calculation� Third� interpolate the values of points within

each triangle by some polynomial using the data values and the estimated partial derivatives

at the vertices of the triangle� The surface f is then obtained by connecting the interpolated

results on all the triangles� and some error bounds on the goodness of f can also be computed

from the geometry of the triangles�

��� Terminology

This section summarizes basic de�nitions and concepts needed throughout this thesis� The

discussion is predominantly for the two�dimensional plane� R�� because results and problems of

interest here are mostly two�dimensional�

�



Convexity� Denote by xy the edge� or line segment� that connects the points x� y � R
�� and by

jxyj the length of xy� The endpoints of xy are points x and y� they are� however� not considered

as points on xy� For x� y� z � R
�� xyz denotes the triangle with edges xy� yz and zx� A set

C � R
� is convex if for a� b � C� ab lies entirely in C� otherwise� C is non�convex� The convex

hull of a set S� denoted by conv	S
� is the smallest convex set in R
� that contains S� A region

refers to the set of points in R
� bounded by a 	simple
 closed curve� The curve is also the

boundary of the region� For example� a disk is a region bounded by a circle� We always refer

to a region as a open set that does not contain points of its boundary� and use the closure of a

region to mean the region plus its boundary� A convex region is a region whose set of points is

convex�

Plane Geometric Graphs� Let S be a �nite set of n vertices� or points� in R
�� and E a set

of edges determined by S� We call G � 	S�E
 a plane geometric graph if

	i
 for every edge ab � E� ab � S � �� and

	ii
 for every two edges ab �� cd in E� ab� cd � ��

If E � �� we refer to G simply as a 	�nite
 vertex set� or point set� S� The connected components

of R� minus all vertices of S and all points on edges of E are the faces of G�

Triangulations� A triangulation is a plane geometric graph T � 	S�E
 so that E is maximal�

By maximality� edges in E bound conv	S
 and divide its interior into disjoint faces bounded

by triangles� These triangles are referred as triangles of T � We sometimes write T 	S
 to refer

speci�cally to a triangulation T of S� As T is a connected plane graph� its jSj � n vertices�

jEj � e edges� and f faces satisfy Euler�s formula� n � e � f � �� see� for example� �BoMu����

In addition� if h is the number of edges in E bounding conv	S
� then �	f � �
 � h � �e� by

counting the edges in two ways� The left hand side counts � for each bounded face and h for

the unbounded face� the right hand side counts � for each edge� We thus obtain e � �n� h� �

and f � �n� h� �� Because h is �xed for a �xed point set S� it follows that all triangulations

of S have the same number of f � � triangles and e edges�
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Figure ���� Examples on various types of triangulations for the point set S and the plane geometric
graph G � �fa� b� c� d� e� f� g� hg�fbh� ce� cfg��

A plane geometric graph G � 	S�E
 can be augmented with an edge set E� until it is a

triangulation T � 	S�E � E�
� also referred to as a triangulation of G� If E �� �� we call T
a constrained triangulation 	of G
� and E its set of constraining edges� Besides with edges� we

can also augment G � 	S�E
 with a vertex set S�� A triangulation T obtained in this manner

is called a Steiner triangulation 	of G
� and S� the set of Steiner vertices� We call a Steiner

triangulation with constraining edges a conforming triangulation� Refer to Figure ��� for an

illustration� Unless stated otherwise� we talk about triangulations without Steiner vertices and

without constraining edges�

Polygons� A 	simple
 polygon is a plane geometric graph G � 	S�E
 where E and S form a

single cycle� This cycle is the boundary of the polygon� It divides the plane into a bounded face�

its interior� and an unbounded face� its exterior� We use polygon interchangeably to denote

both the boundary 	a curve
 and its interior 	a region or� more precisely� a polygonal region
�

A polygon is convex if its interior is convex� and it is called an n�gon if jSj � n� For example�

triangles are convex ��gons� We de�ne quadrilaterals to be ��gons� and pentagons to be ��gons�

Vertices of a polygon are always written in the order they appear on the boundary� Two vertices
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are adjacent if they are incident to a common edge� A diagonal of a polygon is a line segment

that connects two non�adjacent vertices and lies entirely in the interior� An ear of a polygon is

a triangle bounded by two edges and one diagonal �Meis���� Treating E as a constraining edge

set� we can talk about constrained and Steiner triangulations for G� The restriction of one of

these triangulations to the interior face of G is a polygon triangulation�

Optimal Triangulations� A plane geometric graph G permits� in general� many possible

triangulations � Various 	shape
 criteria can be used to classify some as optimal triangulations�

Many of these criteria are de�ned as max�min 	short for maximizes the minimum
 or min�

max� of some triangle or edge measure� The �rst quanti�er is over all triangulations of G
and the second is over all triangles or edges of a triangulation� Two examples of criteria

are min�max angle and max�min angle� A criterion may or may not de�ne a unique optimal

triangulation� When Steiner vertices are allowed� we prefer optimal triangulations with small

number of vertices� for obvious computational reasons�

A max�min or a min�max criterion� in the case without Steiner vertices� can be extended

naturally to its vector form� For example� consider the min�max angle criterion� For a trian�

gulation A of G� we de�ne its angle vector VA � 	��� ��� � � � � �t
� with �� 	 �� 	 � � � 	 �t

the t largest angles of the t � f � � triangles of A� If B is another triangulation of G with

angle vector VB � 	��� ��� � � � � �t
� we say VB is 	lexicographically
 smaller than VA if there

is an index � 
 j 
 t so that �i � �i for � 
 i � j and �j � �j � Then� the vector form

of the criterion in this case de�nes a triangulation with the minimum angle vector� Similarly�

the vector form of the max�min angle criterion de�nes a triangulation that lexicographically

maximizes the non�decreasing vector of smallest angles of triangles�

Additional optimal triangulations will be introduced in the next section� For now� we

de�ne the most prominent optimal triangulation of a point set S� named after the Russian

mathematician Boris Delaunay�

Delaunay Triangulations� An edge ab� for a� b � S� is a Delaunay edge if there is a circle

through a and b so that all other points of S lie outside the circle� The collection of Delaunay

�Though min�min and max�max versions are possible� they are usually trivial and uninteresting�
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edges de�nes a plane geometric graph D	S
 known as the Delaunay triangulation of S �Dela����

In the non�degenerate case� which excludes four or more points on a common circle� D	S
 is

indeed a triangulation� In fact� it is a triangulation that lexicographically maximizes the non�

decreasing vector of smallest angles of triangles� In the degenerate cases� some faces of D	S
 are
convex polygons other than triangles� and these can further be subdivided into disjoint triangles

using additional edges cd for c� d � S� The resulting triangulation is called a completion of

D	S
� In many situations� we make no distinction between Delaunay triangulations and their

completions� Note that each edge cd of a completion satis�es the so�called empty disk property

	with respect to S
� i�e�� there is a circle through c and d so that all other points of S lie outside

the 	open
 disk bounded by the circle�

For a general plane geometric graph G � 	S�E
 where E �� �� we extend the above de�nition

to de�ne constrained and conforming Delaunay triangulations� Two vertices a and b are visible

from each other if the line segment ab does not intersect any constraining edges in E� A

constrained Delaunay triangulation of G is a triangulation T � 	S�E � E�
� where ab � E� if

a and b are visible from each other and ab satis�es the empty disk property with respect to

only vertices visible from both a and b �LeLi���� A conforming Delaunay triangulation of G is

a completion of D	S � S�
 where each edge of G is the union of some edges and vertices of the

completion �BFL����

Time� and Storage�Complexity� The e�ciency of an algorithm is measured by its time�

and storage�complexity� Time refers to the number of steps� as a function of the input size n�

needed to complete the computation� Storage refers to the amount of memory space needed and

is also measured as a function of n� We assume the random access machine as our computational

model and use the unit�cost measure which charges one unit of time per arithmetic operation

�AHU���� As a common practice� we talk about the asymptotic order or order of magnitude of

a complexity function f	n
 rather than the exact function itself� Thus� we write

	i
 f	n
 � O	g	n

 if there is a positive constant c so that f	n
 
 c � g	n
 for all integers n
exceeding some constant n� 	 ��

	ii
 f	n
 � �	g	n

 if g	n
 � O	f	n

� and

�



	iii
 f	n
 � �	g	n

 if f	n
 � O	g	n

 and f	n
 � �	g	n

�

see� for example� �PrSh��� page ������

The terms linear� quadratic� cubic refer to polynomials in n with degree �� �� and � respec�

tively� A polynomial time algorithm is an algorithm whose time�complexity is some polynomial

in the input size n� For practical purposes� e�cient algorithms commonly refer to those with

low order polynomial time such as linear� O	n logn
� and quadratic� A computational problem

is said to be in the class P if it has a polynomial time algorithm� speci�cally� deterministic

polynomial time algorithm� Besides P� the class NP is of interest here� A problem is in NP if it

has a polynomial time� non�deterministic algorithm 	see �GaJo��� for detailed discussion
� P is

in NP but the converse relation is not known� There are decision problems in NP known to be

equivalent� by a polynomial time transformation� to all other problems in NP� Such problems

are termed NP�complete problems� and are unlikely to be in P�

Data Structures� Data structures are ways to organize data in a computer� Common

examples of data structures are arrays� stacks� priority queues� and trees� These are well�

known and discussed in many standard texts on algorithms� see� for example� �CLR���� We next

introduce the quad�edge data structure �GuSt��� to store a plane geometric graph G� Loosely

speaking� it stores each edge of G four times� twice for its two incident faces and twice for its

two endpoints�� Figure ��� shows an example of the quad�edge structure for a plane geometric

graph that bounds polygonal regions A and B� Strictly speaking� A is not a polygonal region in

the usual sense of the term since A contains a  crack! due to edges fg and gh� The quad�edge

representation treats A as a single region bounded by those 	oriented
 edges for which it lies to

their left� As such� we need not distinguish a region with cracks from a genuine one as long as its

interior remain simply connected� By this we mean that di�erent 	simple
 paths 	disjoint from

the edges
 between two points in the interior can be continuously deformed into each other�

�Often� we do not need all the four �oriented� versions of an edge� but rather only the two versions that
correspond to the endpoints of the edge�
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Figure ���� To the right is a schematic diagram of a quad�edge representation of the plane geometric
graph to the left� Quad�edge records are shown represented by crosses which are linked by solid and dotted
curves�

��� Survey of Problems

In the following subsections� we describe questions about constructing optimal triangulations�

Some of these questions are answered in this thesis� and some remain open� Our emphasis

is on e�ciency� that is� algorithms that run in low order polynomial time� As a �xed set of

n vertices generally has exponentially many triangulations 	an upper bound of ����n on the

number of triangulations of a set of n points in R
� is known �ACNS���
� it is not feasible to

exhaustively search the set of all triangulations for an optimal one� Also� many straightforward

ideas usually do not work as we will see in later chapters� The same can be said about Steiner

triangulation problems� Most existing techniques for constructing optimal triangulations are

surveyed in Chapter ��

Sections ����� to ����� collect problems on non�Steiner triangulations� and Section ����� on

Steiner triangulations� We note that some non�Steiner cases can be extended naturally to con�

strained or Steiner cases� Also� max�min or min�max criteria mentioned in these problems can

be substituted by their corresponding vector forms� As mentioned� all problems are stated as

questions on the existence of e�cient algorithms� particularly� sequential ones� The same ques�

tions can also be asked in relation to other computational issues� such as parallel computation�

dynamic inputs� etc� These questions will not be discussed�
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����� Angle Criteria

For many applications� a  good! triangulation is one without thin or elongated triangles� Put

it di�erently� triangles that di�er as little as possible from equilateral triangles are usually

preferred� One way to capture this notion is to impose angle criteria such as min�max angle

or max�min angle� This indeed agrees with the fact that angle is an important quantity in

bounding the errors of computations in �nite element analysis and surface interpolation� In

particular� there are bounds that relate the error directly to the size of smallest angles� and

others that relate it to the size of the largest angle� see� for example� �Akim��� BaAz���� De�

launay triangulations optimize the max�min angle criterion� and can be computed in �	n log n


time by a number of algorithms 	Section ���
� On the other hand� the construction problem for

min�max angle criterion was open for some time �Hans���� An e�cient solution to the problem

is provided in Section ����

Problem � How fast can we compute a min�max angle triangulation of a point set"

Besides min�max and max�min angle conditions� a limit on the range of the angle values is

another natural condition� We note that this� however� may not always be achievable without

introducing Steiner vertices� For example� it is not always possible to use only acute angles�

The next question is a variant of this general issue� and is still open at this day�

Problem � Given a point set S� how fast can we compute a triangulation of S that minimizes

the number of obtuse angles"

����� Length Criteria

For �nite element analysis� edge lengths are sometimes part of error bounds� Speci�cally�

the sharpness of some error bounds is inversely proportional to the longest side of a triangle

�BrZl��� WGS���� For surface interpolation� we sometimes use vertices of a triangle as  nearby!

locations to estimate the data values of points in its interior� It is thus desirable to have interior

points of the triangle as close to its vertices as possible �Akim��� page ���� Also� this may help

in estimating partial derivatives of other vertices connected to the triangle� Both applications

��



suggest the criterion of min�max length� Of course� this is ignoring the tradeo� and interplay

between angle and length criteria� they may not be optimized simultaneously� We can still

formulate the problem on min�max length criterion 	which also appears in �PeKe��� page �����

�Schu��� page ����� and �WaPh��� page ����
� and provide a solution in Chapter ��

Problem � How fast can we compute a min�max length triangulation of a point set"

The following problems on length criteria are still open� Problem � is the  reverse! of the

previous problem� and Problem � is notoriously di�cult �Lloy��� PlHo��� 	see Section ��� for

some general discussion
�

Problem � How fast can we compute a max�min length triangulation of a point set"

Problem � Given a point set S� how fast can we compute a triangulation of S that minimizes

the sum of edge lengths"

����� Other Reasonable Criteria

As mentioned� error bounds are sometimes expressed in terms of angles as well as edge lengths�

We can thus consider to optimize measures that relate� in some ways� to both� These include�

for instance� the area of a triangle and the aspect ratio� The latter is the ratio of the longest

edge to the altitude from this edge� The degree of a vertex is yet another interesting measure

as it signi�es the importance of the vertex in computations �FrFi���� It is� however� an NP�

complete problem to decide whether a point set with constraining edges has a triangulation

with vertex degree at most � �Jans���� No solution is known for the next problem compiled

from �Schu��� page ����� �Barn��� page ���� �GeSh��� page ����� and �GCR��� Lind����

Problem � Can a min�max or a max�min optimal triangulation based on any one of the

following quality measures be computed e�ciently� area� aspect ratio� degree� radius of inscribed

circle� ratio of the area of the inscribed circle to the area of the triangle� ratio of the diameter

of the inscribed circle to the radius of the circumscribed circle"

��



Two other measures are intentionally left out from the above� these are the max�min height

�GCR��� and the min�max eccentricity �GCR��� WaPh���� Height of a triangle refers to the

length of the altitude from its longest side� and eccentricity of a triangle refers to the in�mum

over all distances between the center of its circumscribed circle to points in the closure of the

triangle� These are formulated separately as they now have e�cient solutions discussed in

Sections ��� and ����

Problem � How fast can we compute a max�min height triangulation of a point set"

Problem � How fast can we compute a min�max eccentricity triangulation of a point set"

����� Data Dependent Criteria

Notice that all the above mentioned optimal triangulations for use in interpolating z � f	x� y


do not take the data values into account� This may not be desirable since some shape infor�

mation  encoded! in the data values has great in�uence on the quality of the interpolation�

Indeed� a study shows that the best triangulation should have triangles with long edges in

the direction of minimum curvature and short edges in the direction of maximum curvature�

rather than simply having triangles close to equilateral ones �Nadl���� This requirement is an

example of a data dependent criterion� In general� a data dependent criteria is one that takes

into account more than just the locations of the vertices�

Work done on data dependent criteria can be found in �DLR��b� QuSc��� Ripp��� RiSc����

We sample only two such criteria for interpolating z � f	x� y
� They are the min�max AABNV�

short for acute angle between normal vectors �DLR��a� DLR��b�� and the min�max slope

�WaPh��� page ����� To understand these� we imagine that a triangulation on points 	xi� yi


in the plane is actually a  spatial triangulation! on 	xi� yi� zi
 in space� i�e�� a terrain formed

by triangular faces� The intrinsic dimension of this triangulation is two and it lives in R
�� It

should be clear that we can talk about normal vectors and slope of these faces with respect to

the plane z � �� This naturally de�nes the mentioned criteria� The plausible justi�cation for

these criteria is that they model gradual change in the z values� in particular z values across

faces� and thus better control the smoothness condition across faces in the interpolation�

��



Problem 	 Can an optimal triangulation de�ned by any one of the following criteria be com�

puted e�ciently� min�max AABNV� minimum sum of AABNV� and minimum sum of the

squares of AABNV"

Problem �
 How fast can we compute a min�max slope triangulation of a point set"

Problem � is still open� heuristic algorithms are used in practice �DLR��a�� On the other hand�

there is an e�cient algorithm for problem �� in Section ����

����� On Steiner Triangulations

Many open problems on Steiner triangulations are summarized in �BeEp���� we will highlight

only two here� We note that constraining edges are commonly used to model important features

of objects or spaces to be triangulated� and they constitute part of the edges in the resulting

triangulation� Popular optimal triangulations with constraining edges include the constrained

and conforming Delaunay triangulation� There are already e�cient construction algorithms for

the former �Chew��� Seid���� but not for the latter �NaSr����

Problem �� How fast can we compute a conforming Delaunay triangulation for a plane geo�

metric graph"

Chapter � contains a polynomial time solution to the problem� The next open problem is

related �BeEp���� since a triangulation without obtuse triangles is indeed Delaunay�

Problem �� How fast can we compute a conforming triangulation without obtuse triangles

for a plane geometric graph"

��� Overview of the Thesis

The following chapters discuss algorithms on computing optimal triangulations� Chapter �

surveys some prior work relevant to our subsequent discussions in Chapters � through ��
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Chapter � discusses a new algorithmic technique� called the edge�insertion paradigm� which

computes optimal triangulations for plane geometric graphs� We present an abstract view of

the paradigm and state two conditions for criteria that can be optimized� Four examples of

criteria known to satisfy these conditions are the min�max angle� max�min height� min�max

slope and min�max eccentricity� these are discussed in Chapter �� The material of these two

chapters also appears in �ETW��� BEEMT����

Chapter � presents a quadratic time solution to the min�max length triangulation problem

of a point set� The result is applicable to edge lengths measured by an arbitrary normed metric�

including the Euclidean distance and the more general lp metrics� It is currently the only 	non�

trivial
 length criterion that can be computed e�ciently� Our solution also provides additional

insight into optimal triangulations under edge length criteria� This chapter also appears in

�EdTa����

Chapter � considers conforming Delaunay triangulations� We show that� for every plane

geometric graph G with n vertices and m edges� there is a conforming Delaunay triangulation

for G with �m�n���mn��n vertices� The result also implies an e�cient algorithm to compute

these vertices and thus a conforming Delaunay triangulation� This is also published in �EdTa����

We note that all solutions found in the above chapters are reasonably simple and not ex�

ceedingly di�cult to implement� They are currently the only solutions of their kinds that run in

polynomial time� The data structures needed are mainly arrays� stacks� priority queues� trees�

and quad�edges� For each algorithm the tricky part is its correctness� which is based on subtle

observations and has a relatively involved and lengthy proof�

Chapter � summarizes our work and notes some di�culties of three�dimensional problems�
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Chapter �

Some Prior Work

This chapter reviews some computational work on triangulations� Materials covered are relevant

to discussions in subsequent chapters� Further information on work done in the area can be

found in the survey papers �Aure��� BeEp��� and the two books on computational geometry

�Edel��� PrSh���� A quick reference to this chapter is as follows�

�� The plane�sweep method computes an arbitrary triangulation for a plane geometric graph

of n vertices in �	n logn
 time and linear storage 	Section ���
�

�� Dynamic programming is a general method to compute optimal polygon triangulations

in polynomial time 	Section ���
�

�� The edge��ip scheme computes the Delaunay triangulation in quadratic time and linear

storage� With some modi�cations� it serves as a popular heuristic for computing other

optimal triangulations 	Section ���
�

�� mst	S
 � rng	S
 � gg	S
 � D	S
� where S is a point set� mst	S
 its minimum span�

ning tree� rng	S
 its relative neighborhood graph� gg	S
 its Gabriel graph� and D	S
 its
Delaunay triangulation 	Section ���
�

�� There is a subgraph approach to compute a triangulation of a point set so that its total

edge length is a factor of O	logn
 higher than that for the minimum length triangulation

of the point set 	Section ���
�
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��� Plane�Sweep

Plane�sweep is a simple way to construct an arbitrary triangulation for a plane geometric graph�

Let us �rst see how to apply plane�sweep to a set of vertices p�� p�� � � �pn��� sorted in this order

from left to right� We conceptually sweep a vertical line from left to right� and maintain a

triangulation for the vertices already encountered� When we reach vertex pi� we add the edge

pipi��� Then we march in a counterclockwise and then a clockwise direction along the convex

hull of p�� p�� � � � � pi�� to add edges between pi and convex hull vertices� To perform this for the

counterclockwise direction� we �rst set pj �� pi�� and let pk be the convex hull vertex following

pj in this direction� If pi� pj and pk form a right turn�� we add pipk� set pj �� pk and repeat the

test� otherwise� we are done for pi� The clockwise direction is done symmetrically�

The time spent to add an edge is constant since marching along convex hull edges in a

quad�edge data structure takes constant time per step� Thus� a total of O	n
 time is needed to

create O	n
 edges for the output� Sorting the n vertices 	with x�coordinate as the primary key

and y�coordinate as the secondary key
 takes �	n logn
 time� which implies that plane�sweep

takes time O	n logn
 to compute an arbitrary triangulation for an unsorted set of n vertices�

Although plane�sweep is a rather simple�minded technique� it constructs a triangulation in

asymptotically optimal time� Indeed� �	n logn
 is necessary because triangulation is no easier

than sorting �PrSh��� page �����

Plane�sweep works equally well in time O	n logn
 to construct a constrained triangulation

for a plane geometric graph� In this case� we need a dictionary� for example� a splay tree� to

record  active! 	constraining line
 segments intersecting the sweep line in sorted order� We

also record the rightmost vertex within the region between two adjacent active segments 	and

above the topmost and below the bottommost active segment
� The triangulation is constructed

incrementally to the left of the sweep line� Each rightmost vertex recorded plays the role of pi��

in the vertex set case� The extra e�ort not encountered for the vertex set case is O	log n
 for

�Three vertices pi � ��i�� �i��� pj � ��j�� �j�� and pk � ��k�� �k�� form a right turn when vertex pk is on the

right of the directed line �pipj� This is the case when the determinant

�����
�i� �i� �
�j� �j� �
�k� �k� �

����� � ��
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each insertion� deletion� and search in the dictionary� The total e�ort is O	n logn
� the same

as before�

��� Dynamic Programming

Dynamic programming �nds the optimal solution by systematically combining solutions of

smaller problems� Let us see how the method computes a minimum length polygon triangula�

tion� i�e�� a polygon triangulation that minimizes the sum of edge lengths� Let P be the simple

polygon with vertices p�� p�� � � � � pn��� Let L�i� i� j� be the total edge length of an optimal tri�

angulation for the region P � bounded by pi�jpi and the edges from pipi�� through pi�j��pi�j �

where indices are modulo n� We compute L�i� i� j� recursively as follows� Clearly� pi�jpi is the

only edge of P � possibly not in P � If pi�jpi crosses the boundary of P � then P � is not a simple

polygon and we thus set L�i� i� j� �� �� Otherwise� pi�jpi is either an edge or a diagonal of

P � In either case� pi�jpi is a side of some triangle in the optimal triangulation of P �� Such a

triangle decomposes P � into two smaller 	possibly empty
 subpolygons of P �� which must also

be optimal in terms of total edge length� we� thus� have

L�i� i� j� �� jpi�jpij� min
k���������j��

	L�i� i� k� � L�i� k� i� j�
�

With the above� we can �nd L��� n� �� by three nested loops� varying j from � to n� �� i

from � to n � �� and k from � to j � �� to �rst solve small problems and then combine their

solutions to solve larger problems� The loop with k also checks whether pi�jpi crosses the

boundary of P by testing whether any edge pi�kpi�k�� crosses� pi�jpi� To obtain the optimal

triangulation for P � we record the k that is chosen to optimize each L�i� i� j�� and use it later

to trace the triangulation� In total� the algorithm takes cubic time for the nested loops� and

quadratic storage for keeping L�i� j� and k �Gilb��� Klin����

It is easy to see that the algorithm can be modi�ed to compute other criteria� For example�

we can compute a min�max angle triangulation for a simple polygon in the same amount of time

and storage� Also� we can compute a triangulation that lexicographically minimizes the non�

�Two edges ac and bd cross i� abcd is a convex polygon� i�e�� abc� bcd� cda and dab are all left turns or all
right turns�
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increasing vector of largest angles of triangles� but the time� and storage�complexity in this case

are a factor of n higher as we need to compare and store vectors of linear size� Incidentally� the

dynamic programming approach is not necessarily the most e�cient way to compute optimal

triangulations� for instance� the min�max angle criterion can actually be computed in O	n� log n


time and linear storage 	Section ���
�

��� Edge�Flip

Edge��ip is a local optimization method that operates on two triangles whose union forms a

convex polygon� It was used in �Laws��� to remove small angles� the edge bd shared by triangles

abd and cbd is replaced or �ipped when the smallest angle in these triangles is smaller than that

of acb and acd� In e�ect� an edge��ip replaces two existing triangles by two new ones� This

operation was incorporated into a plane�sweep scheme 	Section ���
 to incrementally compute

a locally optimal triangulation T 	S
 �Laws���� that is� one that has no edge��ip to improve its

quality� It was found that this locally optimality actually implies that T 	S
 is a completion

of D	S
 �Dela��� Sibs���� Since any two completions of D	S
 have the same value for their

smallest angles� T 	S
 is actually a max�min angle triangulation 	see �Edel��� page ��������
�

There are various possibilities to implement the above scheme� One variant is to �rst

compute an arbitrary triangulation� T 	S
� and then use a stack to schedule edge��ips� First�

all edges of T 	S
 are pushed onto the stack� Then� edges are popped one by one to check

for possible edge��ips� When an edge��ip bd occurs� each of the other four edges of the two

triangles incident to bd is pushed onto the stack if it is not already there� The algorithm stops

when the stack is empty� which occurs after at most O	n�
 edge��ips where n � jSj� see� for
example� �Edel����

Many applications adapt the edge��ip method to optimize other criteria� by changing the

condition for edge��ip� These� however� do not always compute the de�ned optimal triangu�

lations and are thus heuristic schemes� see� for example� �DLR��a�� Also� it is unclear how

long each heuristic runs since edges removed can be recycled back for further edge��ips� One

possible way to cope with this di�culty is to impose a time limit on the algorithm� one other is

to use a priority queue 	instead of a stack
 to schedule edge��ips and stop the algorithm once
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an unsuccessful edge��ip is encountered� When this latter heuristic is applied to the minimum

length criterion 	for which we �ip long edges for short ones
� it guarantees that at most O	n�


edges are �ipped as removed edges do not reappear�

��� Delaunay Triangulations and Related Structures

The Delaunay triangulation has been a prominent subject in the study of triangulations� it is

related to many positive results known in the area� Besides the O	n�
 time edge��ip method

	Section ���
� Delaunay triangulation can be computed in �	n logn
 time by diverse algorithmic

paradigms such as divide�and�conquer �GuSt��� ShHo���� geometric transformation �Brow����

and plane�sweep �Fort���� Furthermore� it can be computed in time O	n logn
 with high proba�

bility by randomized incrementation �GKS���� Among all triangulations of a given point set S�

the Delaunay triangulation optimizes criteria such as the max�min angle �Sibs���� the min�max

circumscribed circle �D�AS���� the min�max smallest enclosing circle �D�AS��� Raja���� and the

minimum integral of the gradient squared �Ripp����

As a graph structure� the Delaunay triangulation of S� D	S
� is the straight line dual of

the so�called Voronoi diagram �Voro��� Voro��� Aure���� Various subgraphs of D	S
 have been
studied in the literature� Three of those subgraphs� satisfying

mst	S
 � rng	S
 � gg	S
� D	S


will now be discussed�

The Gabriel Graph of S� gg	S
� Given a vertex set S� gg	S
 is a unique graph that con�

tains an edge pq� p� q � S� if all points in S � fp� qg are outside the closure of the disk with

diameter pq� It is de�ned by Gabriel and Sokal �GaSo��� for use in geographical analysis� and�

more generally� for clustering points� Obviously� an edge in gg	S
 is also a Delaunay edge� but

the converse is not necessarily true� thus� gg	S
� D	S
�

The Relative Neighborhood Graph of S� rng	S
� An edge pq belongs to rng	S
 if

jpqj 
 min
x�S�fp�qg

maxfjxpj� jxqjg�
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This de�nition goes back to Toussaint �Tous���� who modi�ed a similar de�nition by Lankford

�Lank���� for use in pattern recognition� Equivalently� the lune of pq� denoted by �pq� is the set

fx � R
� � maxfjxpj� jxqjg� jpqjg� and pq in rng	S
 if �pq�S � �� It is obvious that �pq�fp� qg

contains the closure of the disk with diameter pq� thus� each edge of rng	S
 is also an edge of

gg	S
� Therefore� rng	S
 � gg	S
�

A Minimum Spanning Tree of S� mst	S
� It is a spanning tree� i�e�� a connected and cycle

free graph� on S with the minimum total edge length� From the de�nition� the lune of each

edge pq in mst	S
 must be empty� Otherwise� there is a point r � �pq so that pr and qr are

not both in mst	S
� as mst	S
 is cycle free� The spanning tree obtained by replacing pq with

either pr or qr has smaller total edge length than mst	S
� a contradiction� Thus� we have

mst	S
 � rng	S
�

All the graphs� mst	S
� rng	S
� gg	S
� and D	S
 are connected since mst	S
 is connected�

and are plane since D	S
 is plane� An e�cient way to compute mst	S
� rng	S
 or gg	S
 is to

�rst compute D	S
 with some of the methods mentioned above� and then remove invalid edges�

see� for example� �MaSo��� Supo��� Yao����

��� Minimum Length Triangulations

We have seen in Section ��� the cubic time 	dynamic programming
 algorithm for constructing

minimum length triangulation for a simple polygon� The same problem for a point set is open

	Section ������ Problem �
 �Lloy���� We mention in the following an interesting attempt� termed

subgraph approach� for �nding a polynomial time solution to the problem�

The idea is to convert a point set problem to a number of 	simple
 polygon problems� which

can then be solved in polynomial time� for example� by dynamic programming� This conversion

is done by adding su�ciently many non�intersecting edges to the point set so as to divide its

convex hull into a number of polygons� For this to work� we must assert that these additional

edges are indeed part of an optimum and are computable in polynomial time� Unfortunately�

such a set of edges has not been found� Currently� only a small subset of edges can be identi�ed

	see �Gilb��� for details
�
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Despite the above di�culty� the subgraph approach was used as a powerful technique by

Lingas �Ling��� and Plaisted and Hong �PlHo��� OTZ��� to compute a triangulation with a

guaranteed bound on its total edge length� The former uses the union of the convex hull and

a spanning forest to reduce a given point set problem to several polygon problems� Under the

assumption of a uniform point distribution� the result is a triangulation with total edge length

within a factor of O	logn
 from the optimum with high probability� and the expected length of

the solution is of the same order as that of the optimum� The latter generates polygon problems

by computing the convex hull and a star graph from each point to its nearby neighbors� After

optimally triangulating all polygons� this method generates a solution with total edge length

within a factor of O	logn
 from the optimum�
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Chapter �

The Edge Insertion Paradigm

This chapter introduces an operation called the edge�insertion to locally improve a triangula�

tion� Basically� the operation adds a new edge to the triangulation to be improved� deletes old

edges intersecting the new edge� and retriangulates the resulting polygons supported by the

new edge� This is in some sense a generalization of the edge��ip operation 	Section ���

an

edge�insertion generally intersects many old edges� but is the same as an edge��ip when it inter�

sects only one� Its ability to intersect many edges turns out to be very powerful� its formalism

into an iterative improvement scheme� termed the edge�insertion paradigm� computes a few

min�max and max�min optimal triangulations for which edge��ip paradigm fails� as shown in

the next chapter�

In the following� we examine an abstraction of the edge�insertion paradigm based on two

su�cient conditions for the min�max 	and max�min
 criteria that it can optimize� Section ���

formalizes the basic version of the paradigm� and Section ��� states the two su�cient conditions�

Then� Section ��� proves the correctness of the paradigm when applied to such criteria� Section

��� discusses re�nements to the paradigm� Section ��� presents some extensions� and Section

��� summarizes this chapter�
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��� The Paradigm

Let S be a point set in R�� and let x� y� z be points in S� Recall that xy denotes the line segment

that connects x and y� and xyz denotes the triangle with vertices x� y� and z� We call xyz an

empty triangle if all other points of S lie outside the closure of xyz�

A measure � is a function that maps each triangle xyz to a real value �	xyz
� Examples

of measures that are of particular interest here are largest angle� height� slope� and eccentricity

of a triangle� We restrict our attention to min�max criteria� that is� for each � we consider the

construction of a triangulation of S whose maximum �	xyz
 over all its triangles is the smallest

among all possible triangulations of S� Max�min criteria can be simulated by considering ���

The measure of a triangulation A is de�ned as �	A
 � maxf�	xyz
 � xyz a triangle of Ag�
If A and B are two triangulations of a common point set� then B is called an improvement of

A� denoted by B 
 A� if �	B
 � �	A
� or �	B
 � �	A
 and the set of triangles xyz in B with

�	xyz
 � �	B
 is a proper subset of the set of such triangles in A� A triangulation A is optimal

for � if there is no improvement of A�

The formal speci�cation of the edge�insertion of qs� q� s � S� into a triangulation A of S is

as follows�

Function Edge�insertion	A� qs
� triangulation�
�� B �� A�
�� Add qs to B and remove from B all edges that intersect qs�
�� Retriangulate polygons P and R constructed in step ��
�� return B�

q

s

P R

��
�
�
�
�

� ��

�
�

�

�

Figure ���� P and R are created by the removal of edges intersecting qs�

In step �� P and R created are not necessarily simple polygons in the usual meaning of the

term� as shown by Figure ���� Although their interiors are always simply connected� there can
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be edges 	or  cracks!
 contained in the interiors of their closures� Nevertheless� as discussed in

Section ���� each such edge can be treated as if it consisted of two edges� one for each side� which

then allows us to treat P and R as if they were simple polygons� As such� we can triangulate P

and R in step � in an optimal fashion 	minimizing the maximum �
 by� for example� dynamic

programming 	Section ���
�

With the edge�insertion operation� we formulate the most basic version of the edge�insertion

paradigm as follows� it tries all possible edge�insertions and halts when no edge�insertion im�

proves the current triangulation�

Input� A set S of n points in R
��

Output� An optimal triangulation T of S�

Algorithm� Construct an arbitrary triangulation A of S�
repeat

T �� A�
for all pairs q� s � S do

B �� Edge�insertion	A� qs
�
if B 
 A then A �� B� exit the for�loop endif

endfor

until T � A�

To compute an optimal triangulation� this paradigm assumes that there is an edge�insertion

that improves A whenever A is not yet optimal� Section ��� presents two conditions on measures

for which the assumption is true� and Section ��� proves this assertion� Assuming this� we argue

that the above algorithm runs in time O	n�
� A single edge�insertion operation takes time O	n�


when retriangulating by dynamic programming� as long as the measures of any two triangles

can be compared in constant time� Thus� the for�loop takes time O	n�
 per iteration of the

repeat�loop� Finally� the repeat�loop is iterated at most O	n�
 times because there are only
�n
�

�

triangles spanned by S� and each iteration permanently discards at least one of them when it

�nds an improvement of the current triangulation�
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��� Two Su�cient Conditions

Again� let S be a set of n points in R
�� For each triangle xyz� x� y� z � S� we designate one

or more vertices as anchors of xyz� depending solely on the measure �� For all but one of the

measures of interest in the next chapter� vertices with the largest angle are anchors� In these

cases� each non�isosceles triangle has a unique anchor�

Let T be a triangulation of S� and let xyz be an empty triangle of S� We say that T breaks

xyz at y if it contains an edge yt with yt � xz �� �� Note that if T breaks xyz at y� then it can

neither break it at x nor at z since T is a plane graph�

We are now ready to formulate two conditions for measures �� They both su�ce to show

that the edge�insertion paradigm computes a global optimum 	i�e�� min�max �
� The �rst

condition requires that every improvement of a triangulation A of S has an edge that breaks

one worst triangle of A at its 	unique
 anchor� Precisely� we require that

for every triangle xyz of A� if T neither contains xyz nor breaks it at its

anchor�s�� then maxf�	A
� �	T 
g � �	xyz
�
	I


The second condition is a stronger version of 	I
� It further requires that �	T 
 is no better

than measures of those triangles in A which T does not break at their anchors� Speci�cally� we

require that

for every triangle xyz of A� if T neither contains xyz nor breaks it at its

anchor�s�� then �	T 
 � �	xyz
�
	II


We will see in Sections ��� and ��� that the slope and the eccentricity satisfy 	I
 but not

	II
� This shows that 	I
 is strictly weaker than 	II
� Because of the greater generality of 	I
�

we can only derive an O	n�
 time re�nement to the edge�insertion paradigm� as compared to

O	n� logn
 time re�nement for 	II
�
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��� The Cake Cutting Lemma

This section shows that if A is not yet optimal for measure � satisfying condition 	I
� then

there is an edge whose insertion leads to an improvement� speci�cally an edge breaking a worst

triangle at its anchor� This is achieved through the following two lemmas� The argument uses

only 	I
� so also applies when 	II
 is satis�ed�

Cake�Cutting Lemma� Assume � satis�es condition 	I
� Let T 
 A be two triangulations of

a point set S� let pqr be a triangle in A but not in T with �	pqr
 � �	A
� let q be an anchor

of pqr� and let qs be an edge in T that intersects pr� Let P and R be the polygons generated

by adding qs to A and removing all edges that intersect qs� Then there are triangulations P
and R of P and R with �	pqr
 � �	P
 and �	pqr
 � �	R
�

Proof� We focus on triangulating P � R is triangulated similarly� Imagine we have P and T
on separate pieces of transparent paper that we lay on top of each other so that the vertices

of P match those corresponding ones in T � Next� we clip everything of T outside P � Now� we

see generally many edges of T cutting through P � but none of them can meet qs as qs � T �
Let us call each connected component of an edge intersected with the interior of P a clipped

edge� Since P is not necessarily convex� several clipped edges can belong to the same edge of T �
Our plan is to use these clipped edges as guides to successively remove ears from P to obtain

a required P �

If no clipped edge exists� then P has only three vertices and therefore must be a triangle

of T � Because this triangle is not in A and T 
 A� the triangle has measure less than �	A
�
So we are done� In the following� we thus assume the existence of at least one clipped edge�

Denote by q � p�� p�� � � � � pk� pk�� � s the sequence of vertices of P �

Claim �� For � 
 j 
 k� if �pj��pjpj�� � �� then pj��pj�� is a diagonal of P �

Proof 	of Claim �
� By construction of P � it is possible to �nd non�intersecting line segments

pj��x and pj��y� both inside P � so that x and y lie on qs� 	If j � �� then x � pj�� � q� if

j � k� then y � pj�� � s�
 The 	possibly degenerate
 pentagon xpj��pjpj��y is part of P � and

because the interior angles at pj � x� and y measure less than �� edge pj��pj�� is a diagonal of

the pentagon and therefore also of P � This completes the proof of Claim ��
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A clipped edge divides P into two polygons� the near side supported by qs and the far side

not supported by qs�

Claim �� There is at least one clipped edge whose far side is a triangle�

Proof 	of Claim �
� Let xy be a clipped edge so that its far side� F � contains no further clipped

edge� Let ab be the edge in T that contains xy� and let abc be the triangle in T that lies on

the same side of the line through xy as F � We have F � abc for otherwise F contains a clipped

edge belonging to ac or bc� Also� all vertices of F � except possibly x and y� are points in S and

therefore equal to a� b� or c� Thus� F is a required triangle� This proves Claim ��

The clipped edges xy that satisfy Claim � fall into four classes as illustrated in Figure ����

An ear pi��pipi�� so that xy is a clipped edge with far side xpiy can now be removed from

q

s

pi��

pi

pi��

�

�

�
�
�

�

�

�
�
�

�

�

�
�
�

�

�

�
�
�

Figure ���� A clipped edge xy that satis�es Claim � has zero� one� or two endpoints on edges of P �

P � leaving a polygon P � with one less vertex� Claims � and � remain true for P � because the

removed ear is not supported by qs� So we can iterate and compute a triangulation P of P �

Symmetrically� we get a triangulation R of R� Let B be the thus obtained triangulation of S�

Claim �� �	pqr
 � �	abc
 for all triangles abc in P and R�

Proof 	of Claim �
� It su�ces to show the claim for triangle abc in P and R with maximum ��

Assume without loss of generality that abc is in P and �	abc
 � �	B
� At the time immediately

before abc was removed by adding ac� there was a clipped edge xy with far side xby� Hence� T
does not break abc at b� and by construction� A breaks abc at b and therefore neither at a nor

at c�
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If xy � ac� then abc is a triangle in T but not in A� and therefore �	pqr
 � �	abc
� So�

assume xy �� ac� Then� if b is an anchor of abc� 	I
 implies that maxf�	B
� �	T 
g � �	abc


as T does not break abc at b nor does it contain abc� This simply means that �	T 
 � �	abc


because �	B
 �� �	abc
� and therefore �	pqr
 � �	abc
� Otherwise� a or c is an anchor� As in

the previous case only with T replaced by A� we obtain maxf�	B
� �	A
g � �	abc
 from 	I
 and

thus �	pqr
 � �	A
 � �	abc
� This completes the proof of Claim � and also the Cake�Cutting

Lemma�

The Cake�Cutting Lemma now shows that the basic edge�insertion paradigm cannot get

stuck in a local optimum for � satisfying condition 	I
�

Lemma ��� Assume � satis�es condition 	I
� Let A be a non�optimal triangulation of a point

set S� Then there is an edge�insertion operation that improves A�

Proof� Let B be an improvement of A and consider a triangle pqr in A with �	pqr
 � �	A

that is not in B� Assuming q is an anchor of pqr� condition 	I
 implies that B contains an edge

qs with qs�pr �� �� Let P and R be the polygons generated by adding qs and deleting the edges

that intersect qs� The Cake�Cutting Lamma implies that there are polygon triangulations P
and R of P and R with �	P
 and �	R
 both smaller than �	pqr
�

��� Re�nements of the Paradigm

We now re�ne the basic paradigm for measures satisfying 	I
 and 	II
� Both re�nements are

specializations of the algorithm given below� It di�ers from the basic paradigm in two major

ways� First� edge�insertions are restricted to candidate edges qs that break a worst triangle

pqr at its anchor q� These edges are tried in a sequence� say qs�� qs�� � � �� etc� Second� the

two polygons created by adding qs are retriangulated by repeatedly removing ears 	as in the

proof of the Cake�Cutting Lemma
� rather than by dynamic programming� We use the notation

si�� � next	si
�
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Input� A set S of n points in R
��

Output� An optimal triangulation T of S�

Algorithm� Construct an arbitrary triangulation A of S�
repeat

T �� A�
�nd a worst triangle pqr in A� let q be its anchor� and set s �� s��
while s is de�ned do

B �� A� add qs to B� and remove all edges that intersect qs�
	partially
 triangulate the two polygons P and R

by cutting o� ears xyz with �	xyz
 � �	pqr
�
if P and R are completely triangulated then

A �� B� exit the while�loop
else s �� next	s


endif

endwhile
until T � A�

Two remarks are in order� First� this algorithm �nds a triangulation with min�max triangle

measure� but not necessarily an optimal triangulation in the sense that the set of worst triangles

is minimal� To achieve this slightly more ambitious goal� the repeat�loop must not halt until

all worst triangles have subjected to unsuccessful edge�insertions� This requires only minor

modi�cation to the algorithm� Second� in an implementation of the algorithm we would not

really copy an entire triangulation� Instead of the assignment T �� A� we would use a �ag to

check whether an iteration of the repeat�loop produced an improvement� And� the assignment

of B �� A and the subsequent A �� B can be avoided by making changes directly in A and

undoing them to the extent necessary�

The following subsections explain some of the steps in greater details and analyze the time�

and storage�complexity of the two re�nements�

����� Triangulating by Ear Cutting � Part �

As implied by the proof of the Cake�Cutting Lemma� the sequence in which ears are removed

from P is immaterial so long as only the last is supported by qs� Additionally� three consecutive

vertices is an ear of the remaining portion of P yet to be triangulated if they form an angle
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less than � inside P � This condition is equivalent to they form a left turn when vertices of P

are listed in a counterclockwise order� Thus� the triangulation of P can be implemented using

a stack and with simple test of an ear� so that it runs in time linear in the size of P � Here are

the details� We �rst initialize the stack� say stackP� by pushing q followed by p� After that� we

consider the other vertices of P one by one in order� Each time a vertex pi is considered� we

�rst reset the stop indicator� repeat the cutearP	pi
 procedure until stop is set or stackP has

only one vertex� then push pi onto stackP�

procedure cutearP	s

suppose pk is the topmost vertex on stackP followed by pk���
if pk��pks is an ear of the remaining portion of P yet to be triangulated

and �	pk��pks
 � �	pqr
 then
use pk��pks in triangulating P �
pop pk from stackP

else

set stop �� true
endif�

The triangulation is complete if� at the end of the process� there are only two vertices on stackP�

Similarly� we use stackR and procedure cutearR	s
 to triangulate R�

����� Analysis under �I�

The above ear�cutting process speeds up the algorithm for measures satisfying 	I
 and 	II
� But�

we can do better for 	II
 by further re�nement� This is because partial e�ort on unsuccessfully

triangulating P and R can be saved for subsequent attempts� This results in further speed up

when integrated into a clever way to search for a good edge�insertion� We will return to this

discussion after we analyze the current re�nement�

Theorem ��� Let S be a set of n points in R
� and let � be a measure that satis�es 	I
� A

triangulation of S that minimizes the maximum � can be constructed in time O	n�
 and storage

O	n�
�

Proof� To achieve the claimed bounds� we use the algorithm above� along with two data

structures requiring a total of O	n�
 storage� First� the quad�edge data structure 	Section ���


��



stores the triangulation in O	n
 storage and admits common operations� such as removing an

edge� adding an edge� and walking from one edge to the next in constant time each�

Second� to record the status of candidate edges� we use an n�by�n bit array whose elements

correspond to the edges de�ned by S� If the insertion of a candidate edge qs is unsuccessful�

that is� the triangulation of P or R cannot be completed� then we know by the Cake�Cutting

Lemma that qs cannot be in any improvement of the current triangulation� We then set the bit

for qs� so that we do not attempt the insertion of qs again� If the insertion of qs is successful�

we set the bit for pr since it cannot be in any later improvement 	as implied by 	I
 that every

improvement breaks pr
� The bit array is also used to compute the sequence of candidate edges�

scan the row corresponding to q and take all edges qs that intersect pr and whose �ags have

not yet been set�

Each edge�insertion� whether successful or not� causes a new �ag set for one of the
�n
�

�
edges

de�ned by S� Therefore� at most
�n
�

�
edge�insertions are carried out� taking a total of O	n�


time� The claim follows because an initial triangulation can be constructed in time O	n logn
�

most straightforwardly by plane�sweep 	Section ���
�

����� Triangulating by Ear Cutting � Part �

We now continue to re�ne the ear cutting process to triangulate P and R for measures satisfying

	II
� To be accurate� we should mention that the task of cutting ears and that of searching for

a candidate edge are woven together� The complete algorithm is given in the next subsection�

The re�nement centers at saving partial work done in an unsuccessful edge�insertion of qsi��

to qsi� In particular� some removed ears due to qsi�� may remain valid for qsi � qs� Thus�

we just need to restore P and R to the extent necessary and then triangulate their remaining

portions on their stacks� For reason of e�ciency 	Section �����
� we alternate removing an

ear from each� and when one polygon is successfully triangulated� we attempt to complete the

polygon that remains� This is formalized in the following CutEars procedure�
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procedure CutEars
stop �� false�
while stackP and stackR each has 	 � vertices and not stop do
cutearP	s
� if not stop then cutearR	s
 endif

endwhile�
while stackP has 	 � vertices and not stop do cutearP	s
 endwhile�
while stackR has 	 � vertices and not stop do cutearR	s
 endwhile�

If the procedure �nishes without raising the �ag 	stop � false
� then we must have only one

vertex on each stack� and thus the triangulations for P and R are complete and an improvement

has been obtained� Otherwise� the �ag is raised while testing either P or R 	so we should really

have used two �ags to be able to distinguish the two cases
we pretend we did
�

Let us now consider the case where the triangulation of P cannot be completed due to the

insertion of candidate edge qs� Let P � be the portion of P de�ned by vertices q � p�� p�� � � � � pk

on stackP and s � pk��� By construction� each possible ear pj��pjpj��� j 
 k of P � is such that

�	pj��pjpj��
 � �	pqr
� The next lemma is crucial for de�ning next	s
�

Lemma ��� Let B be an improvement of A for � satisfying condition 	II
� Then all edges of

B that intersect the interior of P � also intersect qs� In particular� all edges of B incident to q

avoid the interior of P ��

Proof� As in the proof of the Cake�Cutting Lemma� we consider P � as a  window! through

which we see clipped edges of B� Now suppose the claim is not true� that is� there is at least one

clipped edge with no endpoints on qs� As before we thus �nd such a clipped edge xy whose far

side is a triangle xpjy� But now condition 	II
 implies �	B
 � �	pj��pjpj��
 if pj is an anchor

of the ear pj��pjpj��� and �	A
 � �	pj��pjpj��
 if pj�� or pj�� is an anchor� This contradicts

the assumption that P � has no such ear�

It is interesting to observe that the proof of Lemma ��� breaks down if we assume that

� satis�es only 	I
� Symmetrical result holds for R�� the portion of R de�ned by vertices q �

r�� r�� � � � � rm on stackR and s � rm��� when R cannot be completed due to the insertion of

candidate edge qs�
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����� Searching for a Proper Edge

As we search for an edge�insertion� we maintain an open wedge W containing all the remaining

candidate edges� Initially� W is the wedge between the ray 	qp and the ray 	qr� If the edge�

insertion of qsi turns out to be unsuccessful because the triangulation of P cannot be completed�

then Lemma ��� allows us to re�ne W as the part of the old W on R�s side of 	qsi� see Figure

���� Similarly� if the triangulation of R cannot be completed� then W can be narrowed down to

�
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pk
rm

r�
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R
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�
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� �
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Figure ���� The two rays de�ne the current W � and the broken line segments indicate those triangles
removed from P and R� If P is found to be noncompletable� then the next candidate edge qsi�� lies in the
updated W de�ned by �qsi and the ray passing through R�

P �s side of 	qsi� 	As a consequence� if neither P nor R can be completed� then it is impossible

to improve the current triangulation by breaking pqr at q� This� however� turns out to be too

costly to check� see Section ������


Assume that qsi has failed because P could not be completed� Because qsi�� intersects

rmsi� and thus moves away from P �� all ears cut o� P � remain the same and do not have to be

reconsidered� On the other hand� si is no longer a vertex of R� so all ears cut o� R� that are

incident to si must be returned to the territory of R��

We can now integrate the tasks of searching for a good edge�insertion and triangulating P

and R� This is shown in the next procedure� The searching is done by stepping from triangle to

triangle� The �rst vertex s that we test is the third vertex of the other triangle of pr 	if no such

triangle exists� then pr is an edge of the convex hull of S and no appropriate vertex s exists
�

In general� each subsequent s is just the third vertex of the triangle incident to pkrm where s

and q lie on opposite sides of the line through pkrm� This vertex is denoted by third	pk� rm
�

For each new vertex s obtained in this fashion� we distinguish two cases� if s � W � then an
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edge�insertion is performed� else� we remove ears as much as possible� Note that W is de�ned

by 	qpw and 	qrw�

Input� A triangulation A of S with triangle pqr so that �	pqr
 � �	A
�

Output� An improved triangulation or a message that the measure cannot be improved�

Algorithm� Set pw �� p� rw �� r� push q then p onto stackP � and q then r onto stackR�
loop
if third	pk� rm
 is not de�ned then

return the message that the measure cannot be improved and stop
else

set s �� third	pk� rm
� and remove pkrm from A�
if s � W then

add qs to A and attempt the triangulation of P � and R� by CutEars
case �� The attempt succeeds� Return the new triangulation and stop�

case �� The �ag was raised while testing P �

Set pw �� s� and push s onto stackP�

restore ears cut o� R� that are incident to s�

case �� The �ag was raised while testing R�

Set rw �� s� and push s onto stackR�

restore ears cut o� P � that are incident to s

else 	i�e�� s �� W 

if srm intersects W then

stop �� false� while not stop do cutearP	s
 endwhile�
push s onto stackP

else 	i�e�� spk intersects W 

stop �� false� while not stop do cutearR	s
 endwhile�
push s onto stackR

endif

endif
endif

forever�

����� Analysis under �II�

Because of the alternation between removing an ear from P � and one from R�� at most only one

more than half of the removed ears are restored� This is also true if one polygon is completely

triangulated while ears are still removed from the other� because in this case only the ears of

the former polygon need to be restored� and their number is smaller than those cut o� from the
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other� Thus� the total number of removed ears while edge�inserting qs�� qs�� � � � � qsl is linear in

the number of old edges intersected by qsl� and so does the running time of the procedure�

We next prove that the old edges removed will never be reinserted in any later successful

edge�insertion� which then implies the claimed time�complexity of the algorithm�

Lemma ��� Let A be a triangulation of S� with worst triangle pqr� and let B be obtained

from A by the successful insertion of an edge qsl� Then no edge xy in A that intersects qsl can

be an edge of any improvement of B�

Proof� Lemma ��� implies that every improvement of B has an edge qw that lies inside the

wedge W computed when qsl is inserted into A� Every edge xy in A that intersects qsl also

intersects every other edge qt with t � W � In particular� xy � qw �� � which implies that xy is

neither in B nor in any improvement of B�

Theorem ��� Let S be a set of n points in R
�� and let � be a measure that satis�es 	II
� A

triangulation of S that minimizes the maximum � can be constructed in time O	n� log n
 and

storage O	n
�

Proof� As before� the algorithm uses the quad�edge data structure to store the triangulation�

The bit array� however� is replaced by a priority queue that holds the triangles of A ordered

by measure� It admits inserting and deleting triangles and �nding a triangle with maximum

measure in logarithmic time each �CLR���� Lemma ��� implies that only O	n�
 edges and

triangles are manipulated in the main loop of the algorithm� which thus takes time O	n� logn
�

Lemma ��� also implies a quadratic upper bound on the number of iterations of the repeat�loop�

which implies that the total time needed to �nd worst triangles pqr is also O	n� log n
�

��� Extensions

In this section� we address the extensions to constrained problem and to problem de�ned by

vector of measures� The Cake�Cutting Lemmas and Lemma ��� remain valid for constrained
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triangulations provided the measures satis�es 	I
 or 	II
 also in this more general setting� In

this case� we only need to modify the algorithm so that edges intersecting constraining edges

can never be used as candidate edges for insertions� This modi�cation does not increase the

time�complexity�

It follows that the unique triangulation that lexicographically minimizes the decreasing vec�

tor of triangle measures can be constructed for the non�degenerate case where no two triangles

of the point set have the same measure� First� construct a min�max triangulation� T�� and
declare the three edges of the triangle with the largest measure as constraining edges� Second�

construct a min�max triangulation T� for the thus constrained input and introduce new con�

straints to enforce the second largest measure in future triangulations� Continue this way and

construct triangulations T�� T� and so on� until the constraining edges add up to a triangulation

themselves�

Interestingly� the time� and storage�complexity remain the same� As before� for measures

satisfying 	I
� it is because each edge needs to be inserted at most once during the entire

process� For measures satisfying 	II
� each edge once removed cannot reappear in any future

triangulations� We summarize the results as follows�

Corollary ��� Let S be a set of n points in R
�� with or without constraining edges� Let � be

a measure that satis�es 	I
�

	�
 A triangulation of S that minimizes the maximum � can be constructed in time O	n�


and storage O	n�
�

	�
 In the non�degenerate case� when �	xyz
 �� �	abc
 unless xyz � abc� the triangulation

that lexicographically minimizes the decreasing vector of measures � can be constructed

in the same amount of time and storage�

Corollary ��� Let S be a set of n points in R
�� with or without constraining edges� Let � be

a measure that satis�es 	II
�

	�
 A triangulation of S that minimizes the maximum � can be constructed in time O	n� log n


and storage O	n
�
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	�
 In the non�degenerate case� the triangulation that lexicographically minimizes the decreas�

ing vector of measures � can be constructed in the same amount of time and storage�

��	 Discussion

The main result of this chapter is the formulation of the edge�insertion paradigm as a general

method to compute optimal triangulations� and the identi�cation of two classes of criteria for

which the paradigm indeed �nds an optimum� The algorithm for measures satisfying 	I
 appears

in Sections ��� and ������ and for 	II
 in Sections ���� ������ and ������

Though usually simple to verify� conditions 	I
 and 	II
 are somewhat restrictive� Currently�

only four measures are known to satisfy them 	next chapter
� It would be interesting to �nd

conditions weaker than 	I
 even though the price to pay may be implementations of the paradigm

that take more than cubic time� On the other hand� it remains open whether further speed up

is possible for the two re�nements presented�

Another problem suggested in Section ��� is how to optimize vectors of measures in the

degenerate case where multiple measures occur� We note that the special case of this problem

for a simple polygon can be handled easily by dynamic programming in time O	n�
 and storage

O	n�
�
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Chapter �

Applications of Edge Insertion

This chapter shows four applications of the edge�insertion paradigm� The main result is the

following theorem derived from corollaries ��� and ����

Theorem ��� For a set of n vertices S in R
�� with or without constraining edges�

	�
 a min�max angle triangulation can be computed in time O	n� logn
 and storage O	n
�

	�
 a max�min height triangulation can be computed in time O	n� logn
 and storage O	n
�

	�
 a min�max slope triangulation can be computed in time O	n�
 and storage O	n�
� and

	�
 a min�max eccentricity triangulation can be computed in time O	n�
 and storage O	n�
�

In addition� the generalization of each criterion to the vector form can be computed in the same

amount of time and storage� provided the input is non�degenerate�

To prove Theorem ���� we show that the measure � satis�es condition 	II
 when de�ned

as the largest angle or the 	negative
 height 	Sections ��� and ���
� and it satis�es 	I
 when

de�ned as the slope or the eccentricity 	Sections ��� and ���
� In each case� the proof also holds

under the more general setting with constraining edges� For these to be a worthy exposition�

we must �rst be convinced that other known methods� especially the edge��ip scheme� fail to

optimize these measures� In addition� we must ascertain that these criteria� plus the empty
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disk property� do not necessarily de�ne the same optima� These issues are discussed in the next

few paragraphs�

Recall that the edge��ip scheme iteratively �ips an edge as long as it makes a local improve�

ment� As each �ip is allowed only for two abutting triangles forming a convex quadrilateral�

it is highly probable that the method gets stuck in local optima� For instance� consider the

triangulation of Figure ��� when subject to edge��ip under min�max angle� max�min height�

or min�max eccentricity� It is a regular pentagon abcde that was slightly perturbed� More

�

�

��

�

a

e

dc

b

Figure ���� Flipping be or bd cannot locally improve this triangulation� Thus� the edge��ip scheme cannot
change the shown triangulation into the optimal one containing edges ac and ad�

precisely� the perturbation is such that jbcj � jdej� �abc � �aed � �bcd � �cde� and also

h	d� ce
 � h	c� bd
 � h	e� ad
 � h	b� ac
 � h	a� be
� where h	y� zx
 denotes the minimum dis�

tance between y and a point on the line through zx�

Take this same example� and imagine that vertices are not perturbed and thus form a regular

pentagon� If we set the elevations 	or data values
 of a� b� c� d� e to �� �� ��� �� �� in this sequence

to assign slopes to triangles� we again have a bad example for edge��ip on the slope measure�

One quick way to estimate the slope of a spatial triangle #pi#pj #pk given by its planar projection

pipjpk 	as in our example
 is as follows� Assume the given elevations of the vertices are such

that �k� 	 �j� 	 �i�� If �j� � �i�� then the slope is simply �k���i�
h	pk�pipj


� Otherwise� let z be the

projection of a point on #pi#pk with elevation �j�� From simple calculation� z can be computed

and so does the slope
�j���i�
h	pi�zpj


�

We can stretch the same example so that it is also the Delaunay triangulation of the vertices�

It thus follows that Delaunay triangulation is not necessarily the same as a min�max angle� a

max�min height� or a min�max eccentricity triangulation� Trivially� we can say the same for
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Delaunay triangulations and min�max slope triangulations� Since slope and eccentricity satisfy

	I
 but not 	II
� they de�ne di�erent optima from largest angle and height� Lastly� each pair

can be distinguished by a simple example with four vertices� and thus they are all distinct�

��� Minimizing the Maximum Angle

A min�max angle triangulation of a point set S minimizes the maximum angle of its triangles�

over all triangulations of S� As mentioned� such optimal triangulation has potential applications

in �nite element analysis and surface interpolation �BaAz��� BaLi��� Greg����

For x� y� z � S� we de�ne �	xyz
 � maxf�x��y��zg as the measure of triangle xyz� The

measure of a triangulation A of S is �	A
 � maxf�	xyz
 � xyz a triangle of Ag� For triangle

xyz� we designate vertices y with �y � �	xyz
 as anchors� Then� the next lemma shows that

� satis�es condition 	II
�

Lemma ��� Let xyz be a triangle of a triangulation A of S� and y be an anchor of xyz� Then

�	T 
 � �	xyz
 for any triangulation T of S that neither contains xyz nor breaks xyz at y�

Proof� Assume that xyz is not in T and that T does not break xyz at y� Then� there exists

a triangle uyv in T so that either u � x and uv � yz �� � 	rename vertices if necessary
� or uv

intersects both yx and yz� In both cases� �	T 
 	 �	uyv
 � �	xyz
 because �xyz is properly

contained in �uyv�

We thus establish part 	�
 of Theorem ���� We note that the edge�insertion paradigm

actually evolved from the algorithm for min�max angle triangulations �ETW���� rather than

the order materials are presented here� The Cake�Cutting Lemma was also the main idea behind

the algorithm� Its original proof has a strong �avor of  cutting cake! from which the lemma

gets its name� For this historical and sentimental reasons� we repeat the proof in the rest of

this section� Though the proof may look slightly longer� it is conceptually simpler than the one

in the previous chapter�
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Lemma ��� �Cake�Cutting
 Suppose triangulation T is an improvement of triangulation A�
Let pqr be a triangle in A with �pqr � �	A
 but not in T � and let qs be an edge in T that

intersect pr� Let P and R be the polygons generated by adding qs to A and removing all edges

that intersect qs� Then there are triangulations P and R of P and R with �	pqr
 � �	P
 and
�	pqr
 � �	R
�

Proof� We prove the claim for P � it follows for R by symmetry� As before� we lay P on top of

T so that their corresponding vertices match� and called each connected component of an edge

of T intersected with the interior of P a clipped edge� Again� we use these clipped edges to cut

	the cake
 P to obtain P �

Given a point x on the boundary of P � let the path from x to q 	or x to s
 be the part of the

boundary between x and q 	or x and s
 that does not contain qs� We distinguish four classes

of clipped edges xy� see Figure ����
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Figure ���� The class I edges in this example are eg and mv� the class II edges are cj� ck� cz� and sp�
the class III edges are cl and cw� and the class IV edges are jh� jd� un� zb� and sa�

I� Both endpoints� x and y� are not vertices of P and thus lie on edges of P �

II� Both endpoints are vertices of P �

III� Endpoint x is a vertex of P � y is not� and y lies on the path from x to s�

IV� The same as class III except that y lies on the path from x to q�
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At any vertex x of P � the clipped edges with one endpoint at x de�ne angles at x that are

all smaller than �	A
� because the clipped edges come from T � The only disadvantage of the

division of P de�ned by the clipped edges is that some of their endpoints lie on edges of P

rather than at the vertices� We will now construct a triangulation of P based on the clipped

edges� It proceeds step by step where each step either removes or rotates a clipped edge or

introduces a new edge�

�� All class I edges are removed� This does not harm any angle�

�� All class II edges remain where they are�

�� Let xy be a class III edge with y on the edge �
 of P � where � precedes 
 on the path

from x to s� We replace xy by x
�

Note �rst that x
 is indeed a diagonal of P � Otherwise� it intersects the boundary of P � which

implies that either x or 
 is not visible from qs� This is a contradiction to the way P is

constructed� Note second that the angle at x that precedes xy in the counterclockwise order

increases in step �� Still� the angle formed by x
 is strictly contained in an angle at x in A
because all edges of A that intersect the interior of P also intersect qs� It follows that the angle

formed by x
 is smaller than �	A
� Another issue that comes up is that there can be class IV

edges x�y� with y� on the same edge �
 of P � these edges now intersect x
� To remedy this

situation we replace x�y� by x�x� By the same argument as above� x�x is a diagonal of P � and

the angle at x� that precedes x�y� in the clockwise order� and which increases as we replace x�y�

by x�x� remains smaller than �	A
�

�� If xy is a class IV edge with y on the edge �
 of P � where � precedes 
 on the path from

x to q� then we replace xy by x
�

�� After steps � through � we have a partial triangulation of P which we complete by adding

edges arbitrarily� This �nishes the construction of P �

We have �	P
 � �	A
 since we started out with all angles smaller than �	A
� each time an

angle increases it remains smaller than �	A
 as argued above� and step � decomposes angles�

thus creating only smaller angles�
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��� Maximizing the Minimum Height

Recall that the height �	xyz
 of triangle xyz is the minimum distance from a vertex to the

opposite edge� i�e�� �	xyz
 � minfh	x� yz
� h	y� xz
� h	z� xy
g� We write �	A
 � minf�	xyz
 �
xyz a triangle of Ag for the measure of a triangulation A of S� A max�min height triangulation

of S maximizes �	A
 over all triangulations A of S� Such triangulations have been suggested

for use in surface interpolation �GCR��� WaPh����

We next show that �� satis�es condition 	II
� when we de�ne vertices of xyz with largest

angle to be anchors� This establishes part 	�
 of Theorem ����

Lemma ��� Let xyz be a triangle of a triangulation A of S� and let y be an anchor of xyz�

Then �	T 
 � �	xyz
 for any triangulation T of S that neither contains xyz nor breaks xyz at

y�

Proof� Since y is an anchor� we have height �	xyz
 � h	y� zx
� which is the distance between

y and a point s � zx� Assume that xyz is not in T and that T does not break xyz at y�

Then there exists a triangle uyv in T so that either u � x and uv � yz �� � 	rename vertices if

necessary
� or uv intersects both yx and yz� In both cases� �	uyv
 
 h	y� uv
 � �	xyz
 because

uv � ys �� ��

We insert the following paragraph on the relations of non�obtuse triangulations with some

of the above optimal triangulations� These� as we will see� have some implication to the imple�

mentation of the edge�insertion algorithm� We call a triangulation non�obtuse if the sizes of all

angles� three per triangle� are less than or equal to �
� � It should be clear that not every point

set S admits a non�obtuse triangulation� If T is a non�obtuse triangulation of S� then it is the

Delaunay triangulation� or a completion of it in degenerate cases� This is because T is optimal

with respect to the edge��ip operation� Besides those properties of Delaunay triangulations

	Section ���
� a non�obtuse triangulation T of a point set also minimizes the maximum angle

since it is unique up to choosing diagonals of rectangles� The next lemma implies that T also

maximizes the minimum height�
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Lemma ��� If T is a non�obtuse triangulation of S� then there is no other triangulation that

improves T with respect to ��

Proof� We show that there is no edge whose insertion could improve T � the Cake�Cutting

Lemma then implies the assertion� Let pqr be a triangle in T with �	pqr
 � h	q� rp
 � �	T 
�
and assume there is an edge qs� with qs � rp �� �� whose insertion improves T � Let pqt be

the triangle in the improvement that lies on the same side of the line through pq as pqr� If

h	p� sq
 
 h	q� rp
� then �	pqt
 
 h	p� tq
 
 h	p� sq
 
 h	q� rp
 � �	pqr
� a contradiction

to the assumption that pqt is a triangle in the improvement of T but not in T � Therefore�

h	p� sq
 � h	q� rp
� and symmetrically h	r� sq
 � h	q� rp
� It follows that �pqs � �qpr and

�rqs � �qrp� But now �pqs � �rqs � �pqr � �qpr � �qrp which can be the case only if

�pqr � �
� � a contradiction to the assumption�

Lemma ��� implies that during the construction of a max�min height triangulation the

heights of non�obtuse triangles need not be stored in the priority queue� This is because the

height of such a triangle can be smallest only if the current triangulation is already optimal�

��� Minimizing the Maximum Slope

Consider a function f � R� � R de�ning a surface x� � f	x�� x�
 in R
�� The gradient of f is

the vector rf � 	 �f
�x�

� �f
�x�


� each component of which is itself a function from R
� to R� De�ne

r�f � 	 �f
�x�


� � 	 �f
�x�


�� and call
pr�f at a point 	x�� x�
 the slope at this point�

Let S be a set of n points in R
� and let #S be the corresponding set in R

� where each point

of S has a third coordinate called elevation� For a point x of S� we write #x for the  lifted!

point� that is� the corresponding point in #S� Analogous to the de�nitions in R�� #x#y denotes the

line segment with endpoints #x and #y� and #x#y#z denotes the triangle with vertices #x� #y� #z� We can

think of #x#y#z as a partial function f on R�� de�ned within xyz� At each point in the interior of

xyz� the gradient is well de�ned and the same as for any other point in the interior of xyz� We

can therefore set �	xyz
 equal to the slope at any point in the interior of xyz� and call it the
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slope of xyz� For a triangulation A of S de�ne �	A
 � maxf�	xyz
 � xyz a triangle of Ag� as
usual� A min�max slope triangulation of S minimizes �	A
 over all triangulations A of S�

Observe that the direction of steepest descent at any point in the interior of a triangle xyz

is given by $ � �rf at that point� We call vertex y an anchor of xyz unless the line y � �$�

� � R� intersects the closure of xyz only at y� In the non�degenerate case� xyz has only one

anchor� but if $ is parallel to an edge� then there are two anchors� Call the intersection of the

closure of #x#y#z with the plane parallel to the x��axis through y � �$ the descent line 
	xyz
 of

xyz� assuming y is an anchor of xyz�

The remainder of this section shows that measure � satis�es condition 	I
� For technical

reasons it is necessary to assume that no four points of #S are coplanar� Indeed� the strict

inequality in the next lemma is incorrect without this assumption� This general position as�

sumption� however� does not diminish the generality of our algorithm� because a simulated

perturbation of the points can be used to enforce general position �EdM�u���� This perturbation

is in�nitesimal� Consider the triangulation of the unperturbed points that corresponds to an

optimal triangulation of the perturbed points� This triangulation must minimize the maximum

slope over all triangulations of the unperturbed points�

Lemma ��� Let xyz be a triangle of a triangulation A of S� and let y be an anchor of xyz�

Then maxf�	A
� �	T 
g � �	xyz
 for every triangulation T of S that neither contains xyz nor

breaks xyz at y�

Proof� The slope of xyz� �	xyz
� is also the slope of the descent line 
� � 
	xyz
� Assume

without loss of generality that 
� descends from #y down to where it meets the closure of #x#z�

	If it ascends� we use the same argument only with the x��axis reversed�
 Assume also that T
neither contains xyz nor breaks it at y� It follows that T contains an edge uv so that either

u � x and uv � yz �� � 	rename vertices if necessary
� or uv intersects both yx and yz� If

�	uyv
 � �	xyz
� then �	T 
 � �	xyz
 and there is nothing to prove�

Otherwise� the edge #u#v must pass above 
� in R�� By this we mean that there is a line parallel

to the x��axis that meets #u#v and 
�� and the elevation of its intersection with #u#v exceeds the

elevation of its intersection with 
�� as in Figure ���� Then at least one of #u and #v must lie
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Figure ���� The triangle xyz with anchor y in A is neither contained in T nor is it broken at y by T �
Therefore� T contains a triangle uyv that intersects xyz as shown� It is possible that u � x or v � z� but
not both at the same time�

above the plane h� through points #x� #y� #z� say #v lies above h�� Consider the triangle yvz� and

note that it is not necessarily a triangle of A or T � nor even an empty triangle of S� We have

�	yvz
 � �	xyz
 because the projection 	along x��axis
 of 
� onto the plane h� through #y� #v� #z

is steeper than 
� but not steeper than 
� � 
	yvz
� We distinguish three cases depending on

which vertex is the anchor of yvz� that is� through which one a line of steepest descent of #y#v#z

passes�

Case �� v is an anchor of yvz� Then 
� connects #v with a point on the closure of #y#z� Consider

the intersection of A with a plane parallel to the x��axis through 
�� This intersection includes

a polygonal chain that connects #v with that same point on the closure of #y#z 	since yz is an

edge in A
� One of the segments in the chain must have slope at least the average slope of the

chain� hence one of the triangles abc in A has �	abc
 	 �	yvz
 � �	xyz
� and �	A
 � �	xyz
�

Case �� z is an anchor of yvz� Then 
� connects #z with a point on the closure of #y#v� Then we

use the same argument as in Case �� only applied to T � Since yv is an edge in T at least one of

the triangles abc in T that intersect the projection 	along x��axis
 of 
� has �	abc
 	 �	yvz
 �

�	xyz
� and therefore �	T 
 � �	xyz
�

Case �� y is an anchor of yvz� In this case 
� connects #y with a point #w on the closure

of #v#z� Furthermore� it is impossible that 
� descends from #y to #w because #w lies above h��

which contradicts �	yvz
 � �	xyz
� Thus� it must be that 
� descends from #w down to #y�

Then �	uyv
 � �	yvz
 because #u#v passes above 
�� But �	yvz
 � �	xyz
� so we have shown

�	T 
 � �	xyz
�

��



This implies part 	�
 of Theorem ���� An example to show that � indeed violates 	II
 is

given in Figure ���� so an O	n� logn
 time algorithm for min�max slope triangulations seems

out of reach at this moment�

�
�

� �

�

�

#x� � #z� �

#y� ��
#v� ��

#w� �

#u� ��

Figure ���� Triangulation T with diagonals uv� vw� and wu is an improvement of A with diagonals xy�
yz� and zx� T has no triangle with slope as large as ��xyz�� but does not break xyz at any of its vertices�

��� Minimizing the Maximum Eccentricity

Consider a triangle xyz and let 	c�� ��
 be its circumcircle� with center c� and radius ��� Recall

that the eccentricity of xyz� �	xyz
� is the in�mum over all distances between c� and points in

the closure of xyz� Clearly� �	xyz
 � � i� c� lies in the closure of xyz� Note that eccentricity is

related to the size of the largest angle� �	xyz
� Speci�cally� unless �	xyz
 � �	abc
 � ��

�	xyz
 � �	abc
 i�
�	xyz


��
�

�	abc


��

where �� is the radius of the circumcircle of abc� This suggests we call y an anchor of xyz

if the angle at y is at least as large as the angles at x and z� As usual� we de�ne �	A
 �

maxf�	xyz
 � xyz a triangle of Ag� A min�max eccentricity triangulation of S minimizes �	A

over all triangulations A of S 	see �WaPh���
� Obviously� a non�obtuse triangulation� when it

exists� for a point set S also minimizes its maximum eccentricity�

Figure ��� shows that measure � does not satisfy condition 	II
� On the other hand� � does

satisfy condition 	I
 as shown by the next lemma� which then implies part 	�
 of Theorem ����
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Figure ���� T is the triangulation with diagonals uv� vw� and wu� and A is the one with diagonals
xy� yz� and zx� We have ��T � � ��uyv�� As vertices u and v lie very close to yx and yz� respectively�
the circumcircle of uyv is signi�cantly smaller than the one of xyz and ��uyv� � ��xyz�� So� T is an
improvement of A� yet T does not break xyz of A at any of its vertices�

Lemma ��� Let xyz be a triangle of a triangulation A of S� such that �	xyz
 � �� and let y be

an anchor of xyz� Then maxf�	A
� �	T 
g � �	xyz
 for every triangulation T of S that neither

contains xyz nor breaks xyz at y�

Proof� Assume that T neither contains xyz nor breaks it at y� Therefore� T contains a triangle

uyv so that u � x and uv � yz �� � 	rename vertices if necessary
� or uv intersects yx and yz�

Let 	c�� ��
 be the circumcircle of xyz� If neither u nor v are enclosed by this circle� then

�	T 
 	 �	uyv
 � �	xyz
� Otherwise� assume that v is enclosed by 	c�� ��
 and consider the line

segment c�v� It intersects a sequence of edges of A� ordered from c� to v� For an edge ab in

this sequence let abc be the supporting triangle so that c and c� lie on di�erent sides of the line

through ab� Assume that ab is the �rst edge in the sequence so that 	c�� ��
 encloses c but not

a and not b� Then �	A
 	 �	abc
 � �	xyz
�

��� Discussion

This chapter shows that the edge�insertion paradigm can optimize the min�max angle� the max�

min height� the min�max slope and the min�max eccentricity criteria� These polynomial time

solutions are the �rst� and currently the only ones� for these problems� An interesting side

��



result is that non�obtuse triangulations also optimize the above criteria except for the min�max

slope�

We remark that conditions 	I
 and 	II
 have also been tested for other measures mentioned

earlier in Section ���� None of them seems to meet the requirements� Of course� the techniques

of retriangulating regions and searching for a good edge�insertion can still serve as a heuristic

that is more powerful than edge��ip when applied to these problems�
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Chapter �

Minimizing the Maximum Length

This chapter is devoted to the study of the min�max length criterion� Generally speaking�

length criteria are known to be di�cult to optimize� no optimal triangulations de�ned on 	non�

trivial
 length criteria has previously been computed e�ciently� In the face of this apparent

di�culty� the quadratic time algorithm on constructing min�max length triangulations for point

sets presented here is somewhat surprising� There is evidence for the potential usefulness of

such a triangulation �BrZl��� WGS����

The developments in the forthcoming sections to solve the min�max length problem are ele�

mentary� but lengthy and occasionally involved� Some of the details contribute insight into edge

length criteria� Before we continue� let us �rst rule out some seemingly promising approaches

to computing min�max length triangulation� Note �rst that the Delaunay triangulation does

not minimize the maximum edge length� as shown in Figure ���� Second� the iterative methods

that use the edge��ip 	Section ���
 or the more general edge�insertion operation 	Chapter �


can get caught in local optima� see Figure ����

Third� the incremental greedy method� that repeatedly adds the shortest edge that does

not intersect any previously added edges 	see� for example� �LeLi���
� also fails to minimize the

maximum edge length� For the six points in Figure ���� this method computes the triangulation

with diagonals xy� wu� and uy� Finally� let us take a brief look at the decremental greedy method

that throws away edges in the order of decreasing length� It stops the deletion process if another
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Figure ���� The length of the longest edge in the shown Delaunay triangulation approaches �p
�
the

length of the longest edge in the other triangulation� as � approaches 	� Indeed� �p
�
is the worst possible

ratio achieved by a Delaunay triangulation� This follows from the fact that it minimizes the radius� r� of
the maximum smallest enclosing circle of all triangles �Raja�	
� Hence no edge in the Delaunay triangulation
exceeds 
r and every other triangulation has an edge of length at least r

p
��

deletion would render the set of edges so that it does not contain any triangulating subset� The

trouble with this approach is that it is not clear how to e�ciently decide whether the evolving

edge set is still su�cient to triangulate the point set� Indeed� Lloyd �Lloy��� proves that the

general version of this problem 	decide whether a given edge set contains a triangulation
 is

NP�complete�

The organization of this chapter is as follows� Section ��� formulates the global algorithm�

its straightforward implementation using dynamic programming takes time O	n�
� The only

� �

�

��

�

u
x

v

yw

z

Figure ���� The diagonals are such that jxyj � juvj � jvwj � jwuj � jyzj � jzxj � juyj � jxwj � jzvj�
So� neither edge��ip nor edge�insertion can locally improve the shown triangulation A containing diagonals
xy� yz and zx� However� the min�max length triangulation is not A but the one with diagonals uv� vw� and
wu�
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intricate part of this algorithm is the proof of correctness provided in Section ���� Sections

��� to ��� present a specialized polygon triangulation algorithm that can be used to speed

up the general algorithm to time O	n�
� Section ��� discusses implementation issues� While

Sections ��� through ��� assume that the Euclidean metric is used to measure length� Section

��� demonstrates that all results extend to general normed metrics� Indeed� the arguments in

Sections ��� through ��� are axiomatically derived from a few basic lemmas in order to minimize

the number of changes necessary to generalize the results� Finally� Section ��� summarizes the

contribution of this chapter�

��� The Global Algorithm

Let S be a point set� We de�ne ch	S
 as the smallest convex polygon whose closure contains

the convex hull of S� In the case where three or more collinear points of S lie on the boundary

of this polygon� we think of each such points as a vertex of the polygon� Thus� edges are taken

only between adjacent collinear points� Each edge of ch	S
 is an edge of every triangulation of

S� and therefore also of every min�max length triangulation�

The circle with center x and radius � is denoted by 	x� �
� Recall 	from Section ���
 that

rng	S
 stands for the relative neighborhood graph of S� and the lune of ab is the intersection

of the two disks bounded by 	a� jabj
 and 	b� jabj
� Edge set of rng	S
 contains ab i� jabj 

minx�S�fa�bgmaxfjxaj� jxbjg� i�e�� the lune of ab is disjoint from S� We will see in the next

section that there is a min�max length triangulation mlt	S
 that contains all edges of rng	S
�

For convenient� ch	S
 and rng	S
 will be interpreted as edge sets where appropriate�

Because ch	S
�rng	S
 is a connected graph� it decomposes the convex hull of S into simply

connected regions� Though the boundary of each region is not necessarily a simple polygon�

we can always treat it as one computationally 	Section ���
� Thus� we can construct mlt	S
 by

computing ch	S
� rng	S
 and then 	optimally
 triangulating each resulting simple polygon�

Input� A set S of n points in R
��

Output� A min�max length triangulation of S�

��



Algorithm� �� Construct ch	S
 and rng	S
�
�� Determine the polygons de�ned by ch	S
� rng	S
�
�� Find a min�max length triangulation for each such polygon�

Step � can be carried out in time O	n logn
 using results documented in �PrSh��� Supo����

Using the quad�edge data structure of Guibas and Stol� 	Section ���
 for storing the plane

geometric graph ch	S
 � rng	S
� step � can be accomplished in time O	n
� Then� at step ��

we can use dynamic programming 	Section ���
 to compute an optimal triangulation for each

polygon in time cubic and storage quadratic in the number of its vertices� This adds up to time

O	n�
 and storage O	n�
� The correctness of the algorithm is established next�

��� The Subgraph Theorem

The main result of this section is what we call the Subgraph Theorem mentioned earlier� We

begin with two elementary lemmas about distances between four points in convex and in non�

convex position�

��Lemma� For a convex quadrilateral abcd� we have jabj� jcdj � jacj� jbdj�

Proof� Let x be the intersection point of the two diagonals� ac and bd� Clearly� jabj� jcdj �
	jaxj� jxbj
 � 	jcxj� jxdj
 � jacj� jbdj�

In words� the total length of the two diagonals of a convex quadrilateral always exceeds the

total length of two opposite edges� This is true even if three of the four vertices are collinear�

It implies that if one diagonal is no longer than one of the edges� then the other diagonal is

longer than the opposite edge�

$�Lemma� Let a� b� c� d be four distinct points so that the closure of the triangle abc contains

d� Then jadj � maxfjabj� jacjg�

Proof� If a� b� c� d are collinear the result is obvious� Otherwise� let d� be the intersection of the

edge bc with the line through ad� and note that jadj 
 jad�j� Of all points on bc � fb� cg� only
the endpoints 	b and c
 can possibly maximize the distance to a� The assertion follows because

if d� is an endpoint of bc� then d �� d� and therefore ad is strictly shorter than ad��

��



Note that the length of the longest edge of any minimum spanning tree is no longer than

the longest edge of any triangulation of S� This follows trivially from the fact that every

triangulation contains a spanning tree� It is not very di�cult to prove that the same is true for

the relative neighborhood graph of S� Note that the bisector of two points p and q is the set of

points equidistant to both�

Length Lemma� Every triangulation of S contains an edge that is at least as long as the

longest edge of rng	S
�

Proof� Let pq be the longest edge of rng	S
 and let A be an arbitrary triangulation of S�

If pq � A� there is nothing to prove� Otherwise� pq intersects edges r�s�� r�s�� � � � � rksk of A�
sorted from p to q� with all ri on one side of the line through pq and all si on the other� If pq is

longer than all edges in A� then r� and s� are both inside the circle Cp � 	p� jpqj
� because pr�
and ps� are both edges of A� By the de�nition of rng	S
� r� and s� are thus outside or on the

circle Cq � 	q� jpqj
� Therefore� r� and s� lie in the half�plane of points closer to p than to q�

Symmetrically� rk and sk lie inside Cq and outside or on Cp and therefore in the half�plane of

points closer to q than to p� For each � 
 i 
 k��� we have either ri � ri�� or si � si��� which

implies that there is an index j so that rj and sj do not lie on the same side of the bisector

of pq� But then the ��Lemma implies that jrjsj j � jpqj� because jpqj is no longer than each of

two opposite edges of the convex quadrilateral prjqsj � a contradiction�

The proof of the Subgraph Theorem is similar to that of the Length Lemma� although

considerably more involved� The basic idea is to assume an extremal counterexample and to

contradict its existence by retriangulating parts of it using no long edges� In the following�

we �rst develop three facts showing the possibilities of retriangulations� and then prove the

theorem�

Let T be a min�max length triangulation of S that does not contain some edge pq of rng	S
�

Suppose pq intersects the triangles t�� t�� � � � � tk of T � sorted from p to q 	see Figure ��� left
�

The deletion of the edges that intersect pq would result in a simply connected region� whose

boundary can be interpreted as a simple polygon
we treat each edge in its boundary as a

pair of edges with opposite directions� and to trace the boundary of the region we traverse all

directed edges that have the region on their left side� Any two consecutive 	directed
 edges
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Figure ���� To the left we see the triangles of T that intersect pq� If we remove the edges intersecting
pq we get a polygon whose boundary is oriented in a counterclockwise order� The pre�x P and the su�x Q
de�ned for this con�guration are illustrated to the right� Although b and a� are the same point� they refer to
di�erent angles of this point�

de�ne an angle 	see Figure ��� middle
� Note that a vertex can correspond to many angles�

although the common situation is that it corresponds only to one� We will therefore sometimes

ignore the di�erence between vertices and corresponding angles� Points p and q correspond to

only one angle each� An angle is convex if the two de�ning edges form a left turn� Call the

sequence of edges from p to q the lower chain and the sequence from q to p the upper chain�

Each chain contains at least one convex angle di�erent from p and q�

A pre�x is an initial subsequence of t�� t�� � � � � tk� and a su�x is a terminal subsequence

of t�� t�� � � � � tk� We say that a pre�x 	su�x
 covers an angle of the polygon if it contains all

triangles incident to this angle� Let i be minimal so that the pre�x P � t�� t�� � � � � ti covers a

convex angle other than p� and let j be maximal so that the su�x Q � tj � tj��� � � � � tk covers

a convex angle other than q� P and Q consist of at least two triangles each� We let b be the

convex angle 	vertex
 covered by P
it is incident to both ti and ti��
and d be the other

vertex common to ti and ti��� Furthermore� c is the third vertex of ti�� and a is the third

vertex of ti 	see Figure ��� right
� Symmetrically� de�ne vertices b�� d�� c�� a� of Q� We say that

P 	Q
 is type � if the last 	�rst
 two triangles of P 	Q
 are the only ones incident to b 	b�
� and

it is type �� otherwise 	see Figure ���
� If P is type �� then a� b� c belong to the same chain and

d belongs to the other chain 	this includes the case that c � p
� and if P is type �� then a� b

belong to one chain and c� d to the other�

Fact ��� P � t�� t�� � � � � ti and Q � tj � tj��� � � � � tk share at most two triangles� that is� i�� 
 j�
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Figure ���� The pre�x P with vertices a� b� c� d and the su�x Q with vertices a�� b�� c�� d� are de�ned
depending on pq� P is type 	 and Q is type �� For illustration purposes the constraint that all vertices must
lie outside the lune of pq has been ignored�

Proof� We show that the su�x R � ti��� ti� � � � � tk covers at least one convex angle other than

q� so Q cannot be bigger than R� If P is type �� then R covers b� which is convex� Otherwise�

R covers all angles between d and q� d included� Since all angles between p and d� p and d

excluded� are non�convex� at least one angle between d and q must be convex� and this angle is

covered by R�

It should be clear that abcd and a�b�c�d� are both convex quadrilaterals by the choice of

their vertices� The next two facts imply that either abcd� or a�b�c�d�� or both have alternate

triangulations using ac or a�c�� while maintaining the maximum edge length of T � In other

words� bd� or b�d�� or both can be switched� Formally� we call bd 	b�d�
 switchable if ac 	a�c�
 is

no longer than the longest edge of T � Fact ��� shows strong locality constraints for a and d 	a�

and d�
 if bd 	b�d�
 is not switchable� De�ne

A � fx � R
� � jxpj � jpqj and jxpj � jxqjg and

D � fx � R
� � jxpj 	 jpqj and jxqj � jpqjg�

with the understanding that A and a belong to one half�plane de�ned by the line through pq�

and D and d belong to the other 	see Figure ���
�

Fact ��� If bd is not switchable� then a � A and d � D�

Proof� Since bd is not switchable� ac must be longer than the other �ve edges de�ned by

a� b� c� d� and� by the Length Lemma� it must be longer than pq� We �rst show that jacj 
 japj
and then derive the four inequalities needed to establish the claim�
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Figure ���� The regions A and D as de�ned for the case when a is on the upper chain�

	i
 jacj 
 japj� We can assume that c �� p� Note that c is contained in the closure of bdp� Since

the line through bd separates a from p� the closures of abp and adp cover bdp completely�

and therefore one of them contains c� If c lies in the closure of abp� the claim follows from

jabj � jacj and the $�Lemma for abp� and if c lies in adp� it follows from jadj � jacj and
the $�Lemma for adp�

	ii
 japj � jpqj� This follows from 	i
 and jacj � jpqj implied by the Length Lemma�

	iii
 jdqj � jpqj� Assume jdqj 	 jpqj� The ��Lemma for paqd implies jadj � japj� and thus

jadj � jacj because of 	i
� a contradiction�

	iv
 jdpj 	 jpqj� This is immediate from 	iii
 because pq is an edge of rng	S
�

	v
 japj � jaqj� Assume japj 
 jaqj� By the ��Lemma for paqd and 	iv
� we get jadj � jaqj�
This implies jadj � japj by assumption� and jadj � jacj by 	i
� a contradiction�

The proof of Fact ��� is now complete because 	ii
 and 	v
 are equivalent to a � A and 	iii
 and

	iv
 are equivalent to d � D�

Symmetrically� we de�ne regions A� and D� which is where a� and d� must lie if b�d� is not

switchable� Using Facts ��� and ��� we can now show that there is always an edge that can be

switched�

Fact ��� It is not possible that both bd and b�d� are non�switchable�

��



Proof� If bd and b�d� are both non�switchable� then ad lies on q�s side of the bisector of pq

and a�d� lies on p�s side� by Fact ���� Because of Fact ��� and because ad is the last edge of P

and a�d� is the �rst edge of Q� we have fa� d� a�� d�g � fa� b� c� dg � fa�� b�� c�� d�g� Furthermore�

the fact that bd and b�d� are both edges of T implies that they are the same and thus b � d��

d � b�� a � c�� c � a� 	see Figure ���
� It follows that the polygon has the shape of a diamond

p q

c�a�

d�b�

a�c�
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Figure ���� If bd and b�d� are both non�switchable� then b and d are the only convex angles besides p
and q�

with p� b� q� d as the only convex angles� This contradicts the locality constraints for a� b� c� d

stated in Fact ���� In particular� the chain from p to d � D is concave or straight and therefore

enclosed by the circle 	q� jpqj
� It follows that this chain is disjoint from A�� which is where

c � a�� the predecessor of d in this chain� is supposed to lie�

With the above results and notations� we now choose an extremal counterexample to prove

the main result of this section�

Subgraph Theorem� Every point set S in R
� has a min�max length triangulation mlt	S
 so

that rng	S
 � mlt	S
�

Proof� We assume there is a set S so that no min�max length triangulation contains rng	S
�

Let T be a min�max length triangulation of S that satis�es the following extremal properties�

where later properties are contingent upon earlier ones�

	�
 T minimizes the number of edges that intersect pq�

	�
 T minimizes the number of edges incident to b that intersect pq�

	�
 T minimizes the number of edges incident to b� that intersect pq�
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It is conceivable that T is not unique� but it will be su�cient to assume that T is any one of

the remaining triangulations�

By Fact ���� either bd� or b�d�� or both are switchable� If bd is switchable and P is type

�� then the number of edges that intersect pq decreases when bd is switched� This contradicts

property 	�
� Thus� P must be type � if bd is switchable� and� similarly� Q must be type � if

b�d� is switchable� When we switch bd the degree of b decreases� which contradicts property 	�
�

Thus� it must be that bd is not switchable and b�d� is� But switching b�d� decreases the degree

of b�� which would contradict property 	�
� unless the degree of b increases at the same time�

Remember that 	�
 is contingent upon 	�
� so if 	�
 is not satis�ed any more� then we cannot

draw any conclusion� Thus� the con�guration left for analysis is as shown in Figure ����

p q

c�

d�d�

a�b�b�a�

�

��

�
�

�

Figure ���� In the �nal con�guration bd is non�switchable� so a � A and d � D� and b�d� is switchable�
so Q is type �� Furthermore� switching b�d� to a�c� increases the degree of b� so a� � b and therefore P and
Q overlap in exactly one triangle� The �gure ignores that by rights all points should lie outside the lune of
pq�

To reach the �nal contradiction� we switch b�d� and rede�ne Q based on the new con�gura�

tion� Since all angles from 	the old
 d� to q are non�convex� the new points b� and a� are the

same as before� and the new d� is the old c�� Thus� we can again switch b�d�� and so on� until Q

is type � or c� � q at which point the next switch decreases the number of edges intersecting

pq� This �nally contradicts property 	�
�

��� Preliminaries Results on rng�Polygons

This section introduces some notations� and presents a few elementary lemmas for our sub�

sequent discussion to speed up the cubic time algorithm 	Section ���
 to quadratic time by a

specialized polygon triangulation algorithm� Recall that the �rst two steps of the algorithm
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decompose the convex hull of S into simply connected regions by drawing all edges of ch	S
 and

rng	S
� these steps remain unaltered� Each region is represented by a polygon� termed an rng�

polygon� with directed edges that trace the boundary of the region in a counterclockwise order

around the region� Because rng	S
 is a connected graph that spans S� any rng�polygon has at

most one edge not in rng	S
� this edge is in ch	S
�rng	S
� We call an rng�polygon a complete

rng�polygon if all its edges belong to rng	S
� and an incomplete rng�polygon� otherwise�

Obviously� rng�polygons are not as general as arbitrary polygons because for each edge ab�

except possibly for one� the lune of ab� �ab � fx � R
� � maxfjaxj� jbxjg � jabjg� is free of

points of S� We call pq a diagonal of an rng�polygon if it lies entirely in the interior of the

rng�polygon� For each diagonal pq of an rng�polygon it must be that �pq contains at least one

point of S� We further distinguish between the cases where �pq contains points of S on both

sides of the line through pq and where it does not�

For a directed edge 	pq� let h �pq be the set of points to the left of or on the directed line that

passes through p and q in this order� De�ne the half�lune of 	pq as

� �pq � �pq � h �pq�

By de�nition� �pq � � �pq � � �qp� and we have pq � rng	S
 i� � �pq � S � � �qp � S � �� We call pq

an rng�edge if pq � rng	S
� call it a ��edge if only one half�lune contains points of S� and call

it a ��edge if both half�lunes contain points of S� For a ��edge pq� we say the side where the

half�lune contains points of S is beyond pq� and the other side is beneath pq� Note for example

that if pq is a ��edge bounding an incomplete rng�polygon R� then pq � ch	S
 and therefore R

is beyond pq� We will see later that ��edges are useful in triangulating rng�polygons�

The �rst lemma of this section shows that when we triangulate an rng�polygon R� whether

complete or incomplete� we can ignore all points outside R� More speci�cally� it shows that the

type of any diagonal or edge of R remains unchanged when we remove all points of S that are

not vertices of R�

Reduction Lemma� Let pq be a diagonal or edge of an rng�polygon R� If � �pq contains points

of S� then it also contains vertices of R�
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Proof� Suppose � �pq contains points of S but no vertices of R� Then� it must intersect edges of

R without containing their endpoints� Let yy� be the edge closest to p and q� and let x be a

point in � �pq � S� Since x is not a vertex of R it must lie on the other side of yy�� as seen from

p and q� So yy� � rng	S
� ch	S
� and therefore maxfjxyj� jxy�jg 	 jyy�j� Assume without loss

of generality that jxyj 	 jyy�j� If y� lies outside or on the circle 	p� jpqj
� we consider the convex
quadrilateral pyxy�� Otherwise� y� lies outside or on 	q� jpqj
� in which case we consider the

convex quadrilateral qyxy�� But now we have jxyj 	 jyy�j and either jpy�j � jpxj or jqy�j � jqxj�
a contradiction to the ��Lemma in both cases�

Using the Reduction Lemma� we now address vertices visible from both endpoints of an

edge� We need some terminology� Two points x� y inside or on the boundary of an rng�polygon

are visible from each other if xy is contained in the interior of the rng�polygon� The distance

of a point x to an edge pq is de�ned as the in�mum� over all points z � pq� of jxzj� If

jpqj � maxfjpxj� jqxjg� then this distance is indeed the height of triangle pqx�

Visibility Lemma� Let pq be a diagonal or edge of an rng�polygon R� and let x be a vertex

of R that lies in � �pq and minimizes the distance from pq� Then x is visible from p and also from

q�

Proof� Consider the triangle pqx� let x� � pq be the point with minimum distance from x�

and assume without loss of generality that x is not visible from q� Let yy� be an edge of R

that intersects qx� The proof of the Reduction Lemma implies that at least one endpoint of

yy� lies in � �pq� say y � � �pq� In addition� y and y� lie outside pqx because x is closest to pq

	see Figure ���
� Hence� yy� intersects xp� xq and all edges xz with z � pq� Thus� xyx�y� is a

convex quadrilateral� and because of jyx�j 	 jxx�j by the choice of x� we have jyy�j � jxy�j from

y�
y

p

�
�

� �

�

q

x

x�

Figure ���� The quadrilateral xyx�y� is convex because x� � pq and y� y� �� pqx�
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the ��Lemma� By symmetry� if y� lies in � �pq we have jyy�j � jxyj� which implies yy� �� rng	S
�

This is a contradiction because yy� �� ch	S
� Thus� y� must lie outside � �pq� If y
� lies outside or

on the circle 	p� jpqj
� then jpy�j � jpxj� and therefore jxyj � jyy�j by the ��Lemma for py�xy�

Symmetrically� we get jxyj � jyy�j from the ��Lemma for qy�xy if y� lies outside or on the circle

	q� jpqj
� Together with jxy�j � jyy�j� this contradicts yy� � rng	S
�

We need one more elementary lemma�

Containment Lemma� If x � � �pq� then � �xp � �pq�

Proof� Take a point z � � �xp and consider the four points p� q� x� z� If z � pq� there is nothing

to prove� Otherwise� pzqx or pqzx is a convex quadrilateral 	possibly with three of the four

vertices collinear
 or z � pqx� In each case jqzj � jpqj can be shown using the �� or the

$�Lemma� This implies z � �pq�

The following lemma is of fundamental importance to the quadratic time triangulation

algorithm�

��Edge Lemma� Let pq be a ��edge of an rng�polygon R� and let x be a vertex of R that lies

in � �pq and minimizes the distance from pq� Then px is either an edge of R or a ��edge with pqx

beneath px� and the same is true for qx�

Proof� We have � �xp � �pq by the Containment Lemma� The part of � �xp in � �qp contains no

point of S because � �qp � S � � by assumption� Also� the part of � �xp in � �pq also contains no

point of S because a point y � � �xp � � �pq would be closer to pq than x is� as can be shown using

the ��Lemma for px�yx 	see Figure ���
� So px is an edge of R if � �px contains no point of S

either� and it is a ��edge with triangle pqx on its beneath side� otherwise� The argument for qx

is symmetric�

��� Triangulating Incomplete rng�Polygons

The above lemmas are su�cient for e�ciently triangulating an incomplete rng�polygon� As

de�ned earlier� all edges of an incomplete rng�polygon R are rng�edges� except for one ��edge�

��



� �

�

p q

x

x�

�y

Figure ��	� Vertex x is visible from p and from q� so pqx is empty� It follows that if y � � �xp � � �pq� then
pqyx is a convex quadrilateral�

pq � ch	S
 � rng	S
� which has R on its beyond side� The algorithm below can triangulate

more general incomplete rng�polygons� that is� it is not necessary that pq � ch	S
� but it must

be that pq is a ��edge and R lies beyond pq�

Input� An incomplete rng�polygon R that lies beyond its ��edge pq�

Output� A min�max length triangulation of R�

Algorithm� �� Find a vertex x in �pq that minimizes the distance from pq�
�� Draw edges px and qx� This decomposes R into the triangle pqx�

and two possibly empty incomplete rng�polygons R� and R��
�� Recursively triangulate R� and R��

The correctness of this algorithm follows from the ��Edge Lemma� Indeed� it implies that

if R� is non�empty� then it lies beyond px� which is the only ��edge of R�� Similarly� R� lies

beyond its ��edge qx� provided R� is non�empty� Thus� the input invariant is maintained all the

way through the recursion� This implies that the algorithm successfully triangulates� By the

choice of point x� the edges px and qx are both shorter than pq� It follows that the diagonals

are monotonely decreasing in length� down a single branch of the recursion� and therefore all

diagonals constructed by the algorithm are shorter than pq� A straightforward implementation

of the algorithm takes time quadratic in the number of vertices of R�

Remark� Instead of choosing a vertex x that minimizes the distance to pq� step � of the

algorithm could also choose other vertices as long as they are visible from p and q and lie in their

lune� An interesting choice among these vertices is the vertex y that minimizes maxfjypj� jyqjg�
As long as y is unique� which is the non�degenerate case� this choice leads to a triangulation
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of the polygon R that lexicographically minimizes the non�increasing vector of edge lengths�

Another possible choice is the vertex z that minimizes jzpj� jzqj� This vertex is automatically

visible from p and from q and might be useful in actual implementations because it is often

considerably less expensive to compute the distance between two points than between a point

and a line segment�

��� A Lemma on Polygon Retriangulation

This section presents a technical lemma on retriangulating a polygon� It will �nd application

in the next section� and is also of independent interest� In order to conveniently distinguish

between boundary and non�boundary edges of a triangulation� we call a non�boundary edge a

diagonal � Let X be a polygon� X a triangulation of X � and xx� a diagonal of X that is not in

X � We say that xx� generates X if it intersects every diagonal of X � We give an algorithmic

description of a particular triangulation of X � called the fan�out triangulation Fx	X
 with

�fan�out� center x� The triangulation is illustrated in Figure �����
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�
�
y���
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�

�u
�w

�
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�v

Figure ���
� The polygon X is triangulated by fanning out from x� connecting adjacent neighbors of x�
and recursing in the thus created pockets� The illustration of this process is schematic and ignores some of
the inherent shape constraints for X�

�� Connect x to all vertices of X that are visible from x� Call these vertices and also the

two vertices connected to x by edges of X neighbors of x�

�� Two neighbors of x are said to be adjacent if they are consecutive in the angular order

around x� Connect any two adjacent neighbors u� v of x� unless uv is an edge of X �

�� Every edge uv created in step � decomposes X into two parts� and the part that does not

contain x is called the pocket Xuv of uv� Assume that u is the endpoint of uv so that the
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other incident edge of the pocket� uw� is partially visible from x� Recursively construct

the fan�out triangulation of Xuv with center v�

We need a few more terminology� Among the diagonals of Fx	X
� we distinguish between

fan�out edges constructed in step � and cut�o� edges constructed in step � of the above algo�

rithm� Each call of the algorithm triangulates part of a pocket and recurses in each component

	pocket
 of the remainder� We call a pocket V a child of another pocket Z if V � Z and V is

maximal� The original polygon� X � is also called a pocket and forms the root of the tree de�ned

by the child relation� This tree is exactly the recursion tree of the algorithm� Each pocket Z is

associated with a fan�out center z� The maximum distance between z and any other vertex of

Z is called the width of Z�

The lengths of the diagonals of Fx	X
 are constrained by the length of the longest edge

of X � the length of the longest diagonal of X � and the width of X � Speci�cally� we prove the

following result�

Fan�Out Lemma� Let X be a polygon� with �� the length of its longest edge� let X be a

triangulation of X � with �� the length of its longest diagonal� let xx� be a generator of X � and

let �� exceed the maximum distance of x from any vertex of X � Then jabj � maxf��� ��� ��g for

every diagonal ab of Fx	X
�

Proof� Note that the assertion follows if we prove that maxf��� ��� ��g exceeds the width of

every pocket Z created during the algorithm� To see this� notice that the width of Z is an

upper bound on the length of any fan�out edge emanating from the center of Z� Each cut�o�

edge uv that creates a child pocket V of Z is incident to the fan�out center of V � which implies

that the width of V is an upper bound on its length�

The proof of the upper bound on the widths of all pockets proceeds inductively� from the

top to the bottom of the tree� The width of X is less than ��� by assumption� and therefore also

less than maxf��� ��� ��g� For the inductive step� consider a pocket Z and a child V of Z� We

show that the bound on the width of Z is inherited by V � with some environmental in�uence

from X and X � Let z be the fan�out center of Z� � the width of Z� v the fan�out center of V �

uv the cut�o� edge that creates V � and w the other vertex of V adjacent to u�
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First� we prove juvj � maxf��� �g� By de�nition of fan�out center� v lies in the closure of

uwz� The $�Lemma thus implies juvj � maxfjuwj� juzjg� and we get the claimed inequality

because juwj 
 �� and juzj 
 �� Second� we show that maxf��� �g exceeds the maximum

distance between v and any vertex of V other than u� Let y �� v� u be such a vertex and let

yy� be a diagonal of X that intersects xx�� Such a diagonal exists because xx� generates X �

It follows that yy� intersects uv and that therefore v lies in the closure of yy�z� Using the

$�Lemma� we get jyvj � maxfjyy�j� jyzjg 
 maxf��� �g because jyy�j 
 �� and jyzj 
 �� The

two bounds together imply that the width of V is less than maxf��� ��� �g� and induction shows

that it is less than maxf��� ��� ��g�

In Section ������ we will need a result as given in the Fan�Out Lemma� but restricted to the

fan�out triangulation on one side of the generator� Speci�cally� we need the following corollary

whose proof is almost the same as the one of the Fan�Out Lemma�

Fan�Out Corollary� Suppose W is a polygon� W a triangulation of W � xx� a generator ofW �

and X the part of W on one side of xx�� Let �� be the length of the longest edge of X � �� the

length of the longest diagonal of W � and let �� exceed the maximum distance of x from any

vertex of X � Then jabj � maxf��� ��� ��g for every diagonal ab of Fx	X
�

Remark� The Fan�Out Lemma can also be formulated without the assumption of an initial

triangulation� The condition on the diagonal xx� is now that each vertex of X must be visible

from some point of xx�� The parameter �� needs to be rede�ned as the maximum� over all

vertices y of X � of the in�mum� over all points a of xx� visible from y� of the distance between

y and a�

��	 Triangulating Complete rng�Polygons

This section shows how to triangulate a complete rng�polygon R in quadratic time� The

algorithm is given in Section ������ The basic idea is to divide R into two polygons� each can be

triangulated by the algorithm for incomplete rng�polygons 	Section ���
� This idea is supported

by the ��edge Lemma in Section ������ That is� when vertices are in general position� there

exists a min�max length triangulation of R that contains exactly one ��edge� say pq� Moreover�
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pq indeed divides R into two polygons that behavior as required� and the resulting triangulation

thus has pq as its longest edge� Such a ��edge can� fortunately� be computed in quadratic time

as shown in Section ������ The algorithm thus has the claimed time�complexity�

��	�� The Algorithm

We assume that no two diagonals and edges of the rng�polygon R are equally long� If this non�

degeneracy assumption is not satis�ed� it is necessary to run the algorithm with a simulation

of non�degeneracy� The side�e�ects of this simulation and how they can be undone will be

discussed in Section ����

Let us call a ��edge pq expandable if there are vertices r and s in �pq� on di�erent sides of

the line through pq and both visible from p and q� so that E � fpr� qr� ps� qsg is a set of rng�

and ��edges and the quadrilateral prqs lies beneath the ��edges in E� The algorithm as shown

computes the shortest expandable ��edge pq 	steps � to �
� and then completes the triangulation

using the algorithm for incomplete rng�polygons 	step �
� The resulting triangulation uses no

��edge other than pq� which is thus the longest edge of the triangulation�

Input� A complete rng�polygon R�

Output� A min�max length triangulation of R�

Algorithm� �� Determine the type of each diagonal pq of R�
�� For each ��edge pq� �nd vertices p�� p��� q�� q�� that minimize the

counterclockwise angles �p�pq��qpp����q�qp��pqq��� contingent
upon pp�� pp��� qq�� qq�� being rng�edges or ��edges with pq on
their beneath sides 	see Figure ����
�

�� Find the shortest ��edge pq for which pp�� qq�� pp��� qq�� are such
that p� � q�� or pp� � qq�� �� �� and p�� � q� or pp�� � qq� �� ��

�� As pq is expandable 	Section �����
� �nd E � fpr� qr� ps� qsg and
then triangulate the 	possibly empty
 incomplete rng�polygons
de�ned by pr� qr� ps� qs�

Below we give the algorithmic details of the above steps�

Step �� classifying diagonals� For each vertex p of R� we compute all incident diagonals pq

and their angular order around p� Furthermore� we determine whether or not the half�lune � �pq
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Figure ����� By the choice of p� the counterclockwise angle �p�pq contains no 	�edge with pq on its
beneath side� Symmetric statements hold for p��� q�� and q���

contains any vertex of R� Recall that� by the Visibility Lemma� � �pq contains a vertex visible

from p if it contains a vertex of R at all� We can thus base the decision whether or not � �pq is

empty of vertices solely on the vertices visible from p� As de�ned earlier� pq is a ��edge if both

half�lunes of pq contain vertices of R� Otherwise� pq is a ��edge and its beyond side is where

the half�lune contains vertices of R� We now show that the computation for p can be done in

time linear in the number of vertices� It follows that quadratic time su�ces for step ��

Computing the sorted sequence of diagonals pp�� pp�� � � � � ppm incident to p is a standard

operation for simple polygons and can be done in linear time� see� for example� �ElAv���

JoSi��� Lee���� Let pp� and ppm�� be the two edges of R incident to p and assume that

p�� p�� p�� � � � � pm�� is in a counterclockwise order around p�

To determine whether there is a vertex of R in the half�lune � �ppi for � 
 i 
 m� we scan

the list p�� p�� � � � � pm�� once� from smallest index to largest� During the scan� we maintain a

stack of diagonals ppl whose half�lunes � �ppl are not yet found to contain any vertex of R� Before

pushing ppi onto the stack� we remove all diagonals ppl whose half�lunes contain pi� Using a

straightforward extension of the Containment Lemma� we can show that the order of processing

implies that the edges whose half�lunes contain pi lie on top of the ones whose half�lunes do

not contain pi� Thus� the former can be removed simply by repeatedly popping the topmost

diagonal� When the scan is complete� the stack contains exactly all diagonals ppl whose half�

lunes contain no vertex of R� Since a diagonal can be pushed and popped only once each� the

entire process takes constant time per diagonal�

Step �� �nding rng� and ��edges� For each vertex p� we scan pp�� pp�� � � � � ppm in this order�

In the process� we keep track of the most recent rng�edge or ��edge p&p whose beneath side is in

the direction of the scan� Initially� p&p � pp�� When a ��edge pq is encountered� then p&p is the
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edge pp� that belongs to pq� A symmetric scan is carried out to �nd the edge pp�� that belongs

to pq� The total time� for all vertices p of R� is clearly quadratic�

Step �� locating shortest expandable 	�edge� Step � is computationally trivial� It takes

quadratic time since constant time su�ces to test whether or not pp�� pp��� qq�� qq�� satisfy the

conditions of step �� However� it is not trivial to see that the edge pq obtained by step � is also

the shortest expandable ��edge� We defer the proof till Section ������

Step �� triangulating incomplete rng�polygons� It should be clear that we can simply scan

through the vertices of R once to obtain E� then apply the algorithm for incomplete rng�

polygons 	Section ���
� This step takes time only quadratic in the number of vertices of R�

Incidentally� pq is in fact a ��edge when restricted to only one of the two polygons� So� the step

can actually be simpli�ed to only two applications of the algorithm for incomplete rng�polygons�

The next two subsections show the correctness of the above procedure�

��	�� Triangulating by One �
Edge

Under the non�degeneracy assumption� we note that every triangulation of R� and therefore

also every min�max length triangulation� contains a ��edge� To see this� consider the longest

edge pq of a triangulation� It cannot be an edge of R because the third vertex of the incident

triangle lies in its lune �pq� It is therefore a diagonal with incident triangles pqr and pqs� and

we have r� s � �pq by maximality of pq� Since r and s lie on di�erent sides of the line through

pq� it follows that pq is indeed a ��edge� In fact� we have the following stronger result utilized

by the above algorithm�

��Edge Lemma� Let R be a complete rng�polygon with no two diagonals or edges of the same

length� Then there exists a min�max length triangulation of R that contains an expandable

��edge�

Proof� We assume there is no min�max length triangulation ofR that contains an expandable ��

edge� A contradiction to this assumption will be derived using an min�max length triangulation

of R� R de�ned as follows� Let pq be the longest edge of R and let pqr and pqs be the incident

triangles� By the non�degeneracy assumption� pq is the longest edge of every min�max length
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triangulation of R� Choose R so that the sum of heights of pqr and pqs 	that is� the distance of

r from pq plus the distance of s from pq
 is a minimum� We prove below that pq is expandable

and that r and s are witnesses thereof� that is� the quadrilateral prqs lies beneath every ��edge

in E � fpr� qr� ps� qsg�

Case �� Assume that prqs lies beyond at least one ��edge in E� say beyond pr� Then we can

retriangulate R on this side of pr using the algorithm for incomplete rng�polygons� Among

others� this algorithm removes edge pq� and all new edges are shorter than pr� which itself is

shorter than pq� This contradicts the assumption that R is a min�max length triangulation�

Case �� Assume that one of the edges of E� say pr� is a ��edge� and assume without loss of

generality that r � � �pq� Thus� there is a non�empty set of vertices z of R contained in the

half�lune � �rp� By the Containment Lemma� these vertices z lie in �pq� and by the Visibility

Lemma� a non�empty subset S� of the z are visible from both p and r�

If a vertex z is in S�� then either pz � rq �� � or rz � pq �� �� see Figure ����� Let S�p be

� �

�

p q

r

Figure ����� The points z lie in the interior of � �rp � pqr� which consists of one or two connected
components depending on whether or not the angle at r in pqr is non�acute�

the subset of vertices z of the �rst kind� and let S�r be the subset of vertices of the second kind�

If S�p �� �� choose x � S�p so that the number of edges of R that intersect px is a minimum�

Next� remove all edges from R that intersect px and denote by X the polygon thus generated�

If� on the other hand� S�p � �� then choose x � S�r �� � so that the number of edges in R that

intersect rx is a minimum� again remove all edges from R that intersect rx� and denote the

resulting polygon by X � For convenient reference� we set x� � p in the �rst case and x� � r in

the second� In either case� we construct a retriangulation Fx	X
 of X by fanning out from x�

as described in Section ����

��



We show below that the new triangulation of R has properties that contradict the assump�

tions of case �� Most importantly� the Fan�Out Lemma of Section ���� together with a few

claims which we are about to prove� imply that the edges of Fx	X
 do not exceed pq in length�

Claim �� Except for x� all vertices of X lie outside the half�lune � �rp�

Proof 	of Claim �
� Let y�y�� y�y�� � � � � ym��ym be the edges� sorted from x� to x� that are

removed from R when X is constructed� 	y�y� is either pq or qr� and y� � fp� q� rg�
 Suppose

the claim is not true� Then there is a smallest index j� � 
 j 
 m� �� so that one endpoint of

yjyj��� say yj��� is in � �rp� Consider the polygon Xj of R that is created by removing the edges

y�y�� y�y�� � � � � yj��yj�� from R� Since yj�� is the only vertex of Xj that lies in � �rp� it is visible

from p and from r inside Xj � But this means that yj��x
� intersects fewer edges of R than xx��

This contradicts the choice of x and completes the proof of Claim ��

Claim �� For each vertex y of X � we have jxyj � jpqj�

Proof 	of Claim �
� Clearly� both px and rx are shorter than pq� So let y be any vertex

di�erent from p� r� x� and let yy� be an edge of R that intersects x�x� Because of Claim �� x is

visible within X from p and also from r� so pyxy� and ryxy� are convex quadrilaterals� Since

y� lies outside � �rp� it cannot lie inside both of the circles 	p� jprj
 and 	r� jprj
� If y� lies inside

	r� jprj
� then jpy�j � jpxj which implies jyy�j � jxyj by the ��Lemma for pyxy�� Otherwise�

we have jry�j � jrxj which implies jyy�j � jxyj by the ��Lemma for ryxy�� This concludes the

proof of Claim � because yy� is an edge of R and is therefore no longer than pq�

Claim � and the Fan�Out Lemma imply that all diagonals of Fx	X
 are shorter than pq� In

the case where pq � rx �� �� we now have a contradiction� because the retriangulating process

of X eliminates pq and all edges of the resulting new triangulation of R are shorter than pq�

In the case where rq � px �� �� the new triangulation still includes pq� We show below that the

height of the new triangle incident to pq is smaller than the height of pqr� and thus arrive at a

contradiction�

So assume rq � px �� �� in this case pq is an edge of the boundary of X and p is visible

from x� If q is also visible from x� then the new triangle incident to pq is pqx with height jxx�j�
where x� � pq minimizes the distance to x� Analogously� de�ne r� � pq that minimizes the
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distance to r� Since jprj � jpxj� we have jrr�j � jxr�j by the ��Lemma for prxr�� Together with

jxr�j 	 jxx�j� this implies jrr�j � jxx�j� If q is not visible from x� then pq belongs to the pocket

Xuv de�ned by a cut�o� edge uv� We have u � p� w � q� and the center v of Xuv lies in the

closure of pqx� So again� either pqv is a triangle� and its height is less than that of pqx and

therefore that of pqr� or q is not visible from v� in which case the argument can be repeated�

Eventually� we arrive at a triangle incident to pq whose height is less than that of pqr�

Two remarks are in order� First� the expandable ��edge mentioned in the lemma is clearly

the shortest among all expandable ��edges� Second� the assertion of the Lemma is false without

the condition that no two diagonals or edges of the complete rng�polygon R are equally long� To

see this� take� for example� two equilateral triangles abc and abd and move d slightly towards

the common edge ab� For S � fa� b� c� dg� we have rng	S
 � fac� cb� bd� dag� ab is a ��edge�

and cd is a ��edge� So acbd is a complete rng�polygon� There is only one min�max length

triangulation of acbd� namely� the one with diagonal ab� But ab is not a ��edge�

��	�� Searching for the Right �
Edge

Two results are needed to show that the ��edge pq computed by step � in Section ����� is

indeed the shortest expandable ��edge� First note that there are no expandable ��edges shorter

than pq� This is because all ��edges shorter than pq fail the test of step �� which are thus not

expandable as implied by the following topological lemma�

Crossing Lemma� Let v�� v�� � � � � vn be the sequence of vertices of a simple polygon� and let

v�vi and vjvn be two diagonals� Then v�vi � vjvn �� � i� j � i�

Proof� The edge vjvn decomposes the polygon into two polygons with vertex sequences

v�� v�� � � � � vj � vn and vj � vj��� � � � � vn� If j � i� then neither of the two polygons has v� and

vi on its boundary� It follows that v�vi crosses from one polygon into the other� and because

v�vi is a diagonal� this is only possible by crossing vjvn� To prove the other direction� we assume

v�vi � vjvn �� � and observe that v� and vi belong to di�erent polygons because there is no way

that v�vi can enter the second polygon and leave it again� Thus� j � i�
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We remain to show that the edge pq computed in step � is indeed expandable�

Expandability Lemma� The shortest ��edge pq of R that satis�es the conditions of step � is

also expandable�

Proof� We show below that R can be triangulated on both sides of pq using only edges shorter

than pq� If we now assume that pq is not expandable� we get a contradiction to the ��Edge

Lemma because pq is the longest edge of the triangulation and all expandable ��edges are longer

than pq�

We describe how to triangulate the part of R to the right of 	pq� the other part is symmetric�

Case �� p� � q��� Assume jqq��j � jpp�j� Then jqq��j � jpqj for otherwise p � � �q��q
and qq�� would

neither be an rng�edge nor a ��edge with pq on its beneath side� If we apply the triangulation

algorithm for incomplete rng�polygons 	Section ���
� once for pp� and once for qq��� we get a

triangulation with the desired properties�

Case �� pp� � qq�� �� �� In this case pp� and qq�� are ��edges� Because pp� and qq�� intersect� we

have either jp�qj � jp�pj or jq��pj � jq��qj from the ��Lemma for pqp�q��� Assume without loss of

generality that jq��pj � jq��qj� As in case � we also have jq��qj � jpqj� but note that we do not

necessarily have jp�pj � jpqj�

We now describe the triangulation process� It takes three steps as illustrated in Figures

���� and �����

�� Construct the triangulation Tqq�� of R beyond qq��� using the algorithm for incomplete

rng�polygons 	see Figure ����
�

�� Find the subset V of vertices of R� excluding q� that lie in the closure of pqq��� and compute

ch	V 
� Add the edges of ch	V 
 that are diagonals of R to the triangulation� and connect

q to all vertices of ch	V 
 	see Figure ����
�

�� Step � created untriangulated pockets Yuv � one for each edge uv of ch	V 
 that is a diagonal

of R� Assume that u precedes v on the clockwise path from p to q�� on the boundary of

ch	V 
� The pocket Yuv is triangulated as follows�
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Figure ����� The shaded portion represents the triangulation beyond qq��� it forms part of the �nal
triangulation�

��� Set uL �� v if uv is a ��edge and pq lies on the beneath side of uv� Otherwise� �nd a

vertex uL so that juuLj � jpqj� uuL is a ��edge� pq lies beneath uuL� and uuL does

not intersect ch	V 
� 	The existence of such a vertex uL will be established shortly�


��� Construct the triangulation TuuL of R beyond uuL� again using the algorithm for

incomplete rng�polygons� but retain only those triangles that lie completely inside

the pocket Yuv � Let Xuv denote the untriangulated part of Yuv �

��� Construct the fan�out triangulation Fv	Xuv
�

p�u� q

q���uK

p��um

u�uIui
uj�ui��

v�uJ uk
uL

� �

�

�

�

�

��

��
�

Figure ����� The shaded portion of the pocket Yuv represents the part of the triangulation TuuL beyond
uuL that is retained for the �nal triangulation� The remaining portion is triangulated by fanning out from v�

The remainder of the proof establishes that all diagonals of the thus constructed triangu�

lation are shorter than pq� This is indeed obvious for Tqq�� � as constructed in step �� We now

prove an easy extension of the $�Lemma� which implies that all edges created in step � are

shorter than pq�

Claim �� Let d� e be two points in the closure of triangle abc� Then jdej � maxfjabj� jacj� jbcjg�
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Proof 	of Claim �
� Assume without loss of generality that e lies in the closure of abd�

The $�Lemma for abd implies jdej � maxfjadj� jbdjg� and the same lemma for abc implies

maxfjadj� jbdjg� maxfjabj� jacj� jbcjg� This completes the proof of Claim ��

If uuL � uv� then juuLj � jpqj� which implies that all edges of TuuL constructed in step ���

are shorter than pq� In this case the proof is complete as Xuv � � and no edges are added to

Yuv in step ���� For the remainder of the proof� we thus assume that uL �� v which is the case

only if � �uv contains at least one vertex of R� We show that a vertex uL satisfying the conditions

of step ��� indeed exists� and that all edges of the fan�out triangulation Fv	Xuv
 are shorter

than pq� Assume the sequence of vertices of the part of R beyond pp� is p � u�� u�� � � � � q
�� �

uK � � � � � um � p� 	see Figure ����
�

Claim �� There exists a ��edge uuL that satis�es the conditions of step ����

Proof 	of Claim �
� Construct a triangulation Tpp� of R beyond pp� using the algorithm for

incomplete rng�polygons� This triangulation contains at least one edge uul disjoint from ch	V 
�

The main invariant of the algorithm 	described in Section ���
 implies that uul is a ��edge and

pq lies on its beneath side� If juulj � jpqj� then ul satis�es the conditions for uL and we are

done�

So assume juulj � jpqj� Similar to the Containment Lemma� we can show that the part of

� �uv to the left of 	uul is contained in � �uul and thus contains no vertex of R� It follows that the

vertices in � �uv must be among uK��� uK��� � � � � ul��� By the Visibility Lemma� at least one of

these vertices is visible from u� Let U be the subset of vertices that are visible from u 	including

the ones outside � �uv
� and let uL � U minimize the distance to u� We have juuLj � juvj � juulj
and� as above� the part of � �uuL to the left of 	uul is contained in � �uul � Therefore� this part

contains no vertex of R� The part of � �uuL to the right of 	uul contains no vertex of R by the

choice of uL� It follows that uuL is a diagonal that satis�es the conditions of step ���� which

completes the proof of Claim ��

We now show two easy facts about TuuL before examining the edges constructed by step

����

Claim �� If uiujuk � with i � j � k� is a triangle of TuuL � then uiuk is its longest edge�
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Proof 	of Claim �
� The �rst triangle constructed is uIuluL� for some I � l � L� and its longest

edge is uIuL because ul � �uIuL � The general assertion follows by induction� which completes

the proof of Claim ��

Claim �� The edges of TuuL that intersect uv� sorted from u to v� are monotonely decreasing

in length�

Proof 	of Claim �
� If uiujuk� with i � j � k� intersects uv� u � uI and v � uJ � then either

I 
 i � j � i�� 
 J � k or I � i � J 
 j � k 	see Figure ����
� In both cases� uiuk intersects

uv closer to u than the other intersecting edge� ujuk or uiuj � By Claim �� uiuk is longer than

both� which implies the assertion�

Note that if we delete edges from TuuL that intersect uv� then we get a polygon� say Wuv �

of which Xuv is the part on one side of uv� We can thus interpret uv as a generator of TuuL
restricted to Wuv� Since the edges of Xuv and TuuL are shorter than jpqj� we just need to show

that all vertices ofXuv are closer to v than jpqj� and the rest follows from the Fan�Out Corollary�

Indeed� we prove a stronger bound on the maximum distance from v to a vertex of Xuv �

Claim �� For each vertex x of Xuv we have jvxj 
 jvuj�

Proof 	of Claim �
� Consider the vertices of Xuv in turn from u � uI to v � uJ � and assume

inductively that jvuij 
 jvuj� for all I 
 i � j� Consider uj and the triangle uj��ujuk in TuuL �
By Claim �� we have juj��ukj � jujuk j� If uj��ujvuk is a convex quadrilateral� then the ��

Lemma implies jvuj��j � jvuj j� as desired� Otherwise� uj is contained in the closure of vukuj��

and therefore also in the closure of vuuj��� The $�Lemma implies jvujj � maxfjvuj� jvuj��jg�
which completes the proof of Claim ��

This also completes the proof of the lemma�

The following theorem summarizes the algorithmic implication of the above�

Min�Max Length Theorem� A min�max length triangulation of a set of n points in R
� can

be constructed in quadratic time and storage�
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��
 Undoing the Simulated Perturbation

In general� for every point set S in R
�� there is an arbitrarily small perturbation S� so that S�

satis�es convenient non�degeneracy assumptions 	see �EdM�u���
� For a point p � S� we denote

its perturbed version by p�� In our algorithm� this means that no two pairs of points in S� de�ne

the same distance� Furthermore� the non�degenerate properties of S are maintained� that is�

for four not necessarily distinct points p� q� r� s � S with jpqj � jrsj� we have jp�q�j � jr�s�j�

Let us consider the e�ects of the perturbation on the computation of a min�max length

triangulation� First� if p�q� � rng	S�
� then pq � rng	S
� but not vice versa� In other words� we

may have fewer edges in the perturbed setting� This� however� does not adversely in�uence the

algorithm since rng	S�
 is still connected and spans S�� Second� when the edges of ch	S�
 are

added and the polygonal regions de�ned by ch	S�
 � rng	S�
 are triangulated� it can happen

that triangles a�b�c� are constructed whose unperturbed counterparts abc are �at� that is� a� b� c

are collinear� Although this is not a problem for the algorithm� it is somewhat distressing when

this triangulation is interpreted as a triangulation of S� The remainder of this section shows

how to remedy this de�ciency�

Let T 	S�
 be a min�max length triangulation of S�� and consider its unperturbed version

T 	S
� that is� pq � T 	S
 i� p�q� � T 	S�
� A longest edge of T 	S
 is no longer than a longest

edge of any min�max length triangulation mlt	S
 of S� since mlt	S�
� the perturbed version

of mlt	S
� is a valid triangulation of S� and would otherwise contradict that T 	S�
 is a min�

max length triangulation of S�� The reverse is also true� namely� a longest edge of T 	S
 is no

shorter than a longest edge of mlt	S
� We show this by converting T 	S
 into a min�max length

triangulation of S�

Consider the dual graph T �	S�
 of T 	S�
 and call a node a�b�c� �at if a� b� c� are collinear�

Determine the connected components of the subgraph of T �	S�
 induced by the set of all �at

nodes� Each component corresponds to a collection of collinear points in S� interconnected

by �at triangles� see Figure ����� Carry out the following steps for one component at a time�

Remove all edges of the �at triangles of the component� sort the corresponding points along

the supporting line� and add edges connecting points that are adjacent in the sorted order�

This produces regions bounded by more than three edges� as shown in Figure ����� All vertices
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Figure ����� The �ve points in the middle of the left triangulation are the perturbed versions of �ve
collinear points in the right triangulation�

x of such a region are collinear� except for one vertex y� which is connected to the �rst and

last of the vertices x� Triangulate this region by connecting y to all other vertices x� By the

$�Lemma� the newly introduced edges are no longer than the longer of the two original edges

incident to y�

��� Extension to Normed Metrics

A convex region D � R
� which is symmetric with respect to the origin can be used to impose

a norm on R
�� for a point x � R

�� de�ne kxk � kxkD � � if x lies on the boundary of

�D � f�y � R
� � y � Dg� The norm can then be used to impose a 	normed
 metric on

R
�� for two points x� y � R

�� de�ne jxyj � jxyjD � ky � xkD� D is the unit�disk of the

metric and the boundary of D is its unit�circle� Notice that the three requirements for a metric

are indeed satis�ed� First� jabj � � i� a � b because kxk � � i� x is the origin� Second�

jabj � jbaj because D is centrally symmetric and therefore kxk � k� xk� Third� the triangle

inequality� jacj 
 jabj � jbcj� follows from the convexity of D� Examples of normed metrics

are the lp�metrics� for p � �� �� �� � � �� and the so�called A�metric discussed in �WWW��� for its

applications to VLSI�

In this section� we assume that the triangle inequality is strict unless a� b� c lie on a line in

this order� This is the case i� the de�ning convex region D is strictly convex� that is� no line

intersects the boundary ofD in more than two points� This assumption is convenient and in fact

without loss of generality as every convex but not strictly convex region D� can be approximated

arbitrarily closely by a strictly convex region D� Computationally� this approximation can be
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simulated by de�ning

kxkD � kxkD� � �kxk��

where kxk� is the Euclidean or l��norm and � is an arbitrarily small but positive real number�

Clearly� if � is su�ciently small� then a min�max length triangulation under D is also a min�max

length triangulation under D��

In the remainder of this section� we point out where the developments in Sections ��� through

��� need to be adjusted when the Euclidean metric is replaced by an arbitrary normed metric�

Most importantly� the graphs de�ned in Section ��� can be extended in a natural way� If we

now stipulate that  circle! means a homothetic copy of the unit�circle as de�ned above and

 jabj! means the distance under the normed metric de�ned by D� then the de�nitions ofmlt	S
�

D	S
� rng	S
� and mst	S
 can be taken verbatim� The minimum spanning tree� mst	S
� is

connected and spans S� and the Delaunay triangulation� D	S
� is plane because any two circles

intersect in at most two points� Since we still have mst	S
 � rng	S
 � D	S
� we conclude that

all three graphs are connected and plane and they span S� We remark that these three graphs

are not necessarily plane if D is not strictly convex�

The developments in Sections ��� through ��� are all based on a small number of basic facts�

namely� the distance relations expressed by the ��Lemma and the $�Lemma� the convexity of

the lune of an edge� and the straightness of the bisector of two points� The ��Lemma and the

$�Lemma are direct consequences of the triangle inequality and hold in the stated form 	with

strict inequality
 for arbitrary normed metrics as long as D is strictly convex� The lune of two

points is clearly convex as it is the intersection of two homothetic copies of D� Unfortunately�

the bisector of two points p �� q� 
pq � fx � jxpj � jxqjg� is not necessarily straight� Nevertheless�


pq is still a simple curve that divides R� into two unbounded regions� called half�planes� one

containing p and the other q� The two half�planes are star�shaped with respect to p and q� that

is� any line through p or q intersects 
pq in at most one point� In addition� 
pq is symmetric

with respect to p�q
� because D is centrally symmetric�

There is only one place where the straightness of the bisector is used in a substantial way�

and that is in the proof of Fact ���� We restate this fact and show how to prove it without the
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use of the straightness of the bisector� Recall that bd 	b�d�
 is said to be switchable if ac 	a�c�


is no longer than the longest edge of the triangulation T �

Fact ���� It is not possible that both bd and b�d� are non�switchable�

Proof� As established in Fact ���� if bd is non�switchable� then a and d are contained in the

half�plane de�ned by 
pq that contains q� Symmetrically� if b�d� is not switchable� then a� and

d� are contained in the other half�plane� Unlike in the Euclidean case� it is possible that ad and

a�d� intersect 
pq� It is thus possible that ad precedes a�d� in the order of edges sorted from p to

q by their intersections with pq� as in Figure ����� Below we argue that if this is the case� then

ad 	and symmetrically a�d�
 is switchable� In particular� we show jadj � japj which� together
with japj 	 jacj from Fact ���� implies that ad is switchable�

� �

�

�

�

�

p q

a

d

a�

d�

Figure ����� Although a and d lie on q
s side of the bisector and a� and d� lie on p
s side� ad intersects
pq closer to p than a�d� does� This is not possible if the bisector is a line as for the Euclidean metric� see
Figure ����

One characteristic of the described situation is that ad intersects 
pq in at least one point

inside the lune of pq� Let x be such an intersection point closest to a� If pq � dx �� �� then
pdqx is a convex quadrilateral with jpdj 	 jpqj by construction� The ��Lemma thus implies

jdxj � jqxj � jpxj� It follows that jadj � jaxj� jdxj � jaxj� jpxj � japj� On the other hand� if

pq�dx � �� then consider the point y � ad�pq and note that jpyj 
 jqyj� We derive jdyj � jpyj
from jpyj � jdyj � jpdj 	 jpqj 	 �jpyj� Therefore� jadj � jayj � jdyj � jayj � jpyj � japj as
desired�
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All other steps of the proof of the Subgraph Theorem go through unchanged for arbitrary

normed metrics� We thus get the following generalization�

General Subgraph Theorem� Let S be a point set in R
� equipped with a normed metric

with strictly convex unit�disk� Then S has a min�max length triangulation mlt	S
 so that

rng	S
 � mlt	S
�

So the algorithm for computing a min�max length triangulation is clear
it is the same

as for the Euclidean metric� only that the length of edges is now measured in terms of a

normed metric� We assume that the length of an edge in this metric can be computed in

constant time� A careful reexamination of Sections ��� through ��� shows that the specialized

polygon triangulation algorithm works also in the context of arbitrary normed metrics� We

remark� however� that it includes the distance computation between a point and a line segment�

Although it is certainly reasonable to assume that this can be done in constant time too� the

observation in the remark at the end of Section ��� can be used to avoid this computation� We

thus have the following algorithmic result which generalizes the Min�Max Length Theorem�

General Min�Max Length Theorem� Let S be a set of n points in R
� equipped with a

normed metric with strictly convex unit�disk� Given the relative neighborhood graph� a min�

max length triangulation of S can be constructed in time O	n�
�

As mentioned above� a norm with non�strictly convex unit�disk can be simulated by one

with strictly convex unit�disk� It follows that the quadratic time bound also holds for arbitrary

normed metrics� The result stated in the General Min�Max Length Theorem raises the question

of how fast rng	S
 can be constructed� The trivial algorithm tests all
�n
�

�
edges� each in time

O	n
� and therefore takes time O	n�
� Faster algorithms are known for the lp�metrics where

O	n log n
 time su�ces �JKY��� Kata��� Lee����

��� Discussion

The main contribution of this chapter is the �rst polynomial time algorithm for computing a

min�max length triangulation of a set S of n points in R
�� The components of the algorithm

are described in Sections ���� ���� and ������ Given the relative neighborhood graph of S� the
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algorithm takes time O	n�
� The algorithm works for arbitrary normed metrics� The polynomial

time bound follows because the relative neighborhood graph of S can be found in polynomial

time�

The same problem formulated for general plane geometric graphs can also be solved in

polynomial time provided the minimization condition is de�ned over all edges including the

constraining ones� This follows immediately from a constrained version of the Subgraph Theo�

rem� In the Euclidean metric case� the problem can actually be solved in quadratic time because

the relative neighborhood graph with constraining edges can be computed in O	n logn
 time

�SuCh���� The question remains whether or not a min�max length triangulation� with or with�

out constraining edges� can be computed in less than quadratic time�

The approach used by the solution is a version of the subgraph approach mentioned in

Section ���� Both Plaisted and Hong �PlHo��� and Lingas �Ling��� used this approach to

compute approximations of the minimum length triangulation� It is interesting to see whether

it can also be useful to other criteria� In our case� the technique of retriangulation plays an

important role in the developments� and this will probably be the case also in other applications

of the subgraph approach��

The results of this chapter are an out�growth of our general e�orts to understand triangula�

tions that optimize length criteria� Currently� min�max length is the only non�trivial one known

to be computable in polynomial time� There are many related problems whose complexities

remain open� see Section ������ In particular� the natural extension of the min�max length

criterion to its vector form is not solved
it is no longer true that there is always an optimal

triangulation that contains the relative neighborhood graph as a subgraph� The smallest ex�

ample that illustrates this observation consists of four points a� b� c� d so that c and d lie fairly

close to b� ab and cd intersect� and c and d both lie outside the circle with radius jabj and center

at a�

�Incidentally� retriangulation is also the main idea in proving the correctness of the edge�insertion paradigm�
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Chapter �

Conforming Delaunay

Triangulations

A conforming Delaunay triangulation for a plane geometric graph G � 	S�E
 is introduced in

Section ��� as an extension to the Delaunay triangulation for a point set� It is a genuine Delau�

nay triangulation� or more precisely� a completion of a degenerate Delaunay triangulation� Its

relation to G is that each vertex in S is also a vertex of the triangulation� and each edge of E is

the union of some edges and vertices of the triangulation �BFL���� The problem of constructing

a conforming Delaunay triangulation for a given plane geometric graph is non�trivial� In par�

ticular� it is not clear how many new vertices are really needed to achieve conformity� Previous

work �Bois��� NaSr��� Olou��� Saal��� SaPe��� fails to provide polynomial upper bounds on

this issue� Such a bound� on the other hand� is given in this chapter�

Section ��� formalizes the problem and presents some preliminary results� Section ��� gives

the �rst polynomial upper bound on the number of vertices necessary for a conforming Delaunay

triangulation� Section ��� explicitly formulates the algorithm implicit in the proof of the upper

bound� Lastly� Section ��� summarizes this chapter and mentions some open problems�
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	�� Preliminaries

Let G � 	S�E
 be a plane geometric graph� A completion� C� of a Delaunay triangulation

conforms to G if every vertex of G is a vertex of C and every edge of G is the union of edges

and vertices of C� The problem is to �nd a small point set V so that D	V 
 has a completion

that conforms to G� We call such a completion a conforming Delaunay triangulation of G�
It is also desirable to have an algorithm that constructs V as well as a completion of D	V 


that conforms to G� The next lemma shows that the latter task can be handled by existing

constrained Delaunay triangulation algorithms �Chew��� Seid���� once we have an algorithm

that �nds V � Thus� we can focus on the process of �nding V �

As mentioned before� each edge ab of a completion of D	V 
 satis�es the empty disk property�

that is� there exists a circle through a and b so that no point of V belongs to the disk bounded

by the circle� We now argue that this property is also su�cient for the existence of a conforming

Delaunay triangulation� Call the portion of an edge of G between two contiguous points of V

	but excluding them
 on this edge an interval�

Lemma ��� D	V 
 has a completion that conforms to G i� every interval de�ned by G and V

has the empty disk property with respect to V �

Proof� The only if part follows from the de�nition of a completion of D	V 
� For the if part�

we assume that every interval ab has the empty disk property� If ab is an edge of D	V 
 then

nothing has to be proved� Otherwise� no edge of D	V 
 can intersect ab because the closure of

the disk bounded by any circle passing through the endpoints of such an edge contains a or

b or both� Also� there is no other interval that intersects ab because G is plane� So ab� and

all other intervals that are not edges of D	V 
� can be added to D	V 
 without introducing any

intersection� We can add zero or more non�intersecting edges arbitrarily until a completion of

D	V 
 is obtained�

A Lower Bound� An edge ab � E that belongs to the boundary of the convex hull of S

automatically satis�es the empty disk property� and no points on ab need to be introduced� For

other edges ab� there are points on both sides of the line through ab� It is thus possible that ab
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does not satisfy the empty disk property� in which case points must be added to subdivide ab

into smaller intervals�

In some cases� the size of V must be at least quadratic in the size of G� This bound can be

shown using the example of Figure ��� which consists of m � jEj edges and n � jSj � �m� �k

vertices� The edges are parallel and very close to each other� The isolated vertices come in k

��
��
��

��
��
��

� � �

� � �
Figure ���� An ��mn� lower bound example on the number of vertices of a conforming Delaunay
triangulation� In the example shown� m � 
� k � �� and therefore n � 
m� 
k � ���

pairs� with one vertex on each side of the group of edges� Provided the edges are su�ciently

close to each other� and the vertices are su�ciently close to the edges� it will be necessary to

place a point approximately between the two vertices of every pair on every edge� This proves

that at least mk points need to be added to obtain a conforming Delaunay triangulation� The

lower bound of �	mn
 follows for k � �	n
� For smaller k� the endpoints of half of the m edges

can be used to play the role of the isolated vertices�

Prior Work� A common approach to produce a conforming Delaunay triangulation is to

place su�ciently many points on the edges of the plane geometric graph so that each interval

has a circle that avoids all other edges �Bois��� NaSr��� Olou��� Saal��� SaPe���� This can

always be achieved except maybe at places close to shared endpoints where sharp angles are

formed� This special case is handled by placing points at the intersections of the edges with a

su�ciently small circle drawn around the common endpoint� The method avoids the need for

backtracking as no point placed on any edge harms any interval that already has such a circle�

The price� however� is a possibly horrendous number of new points� Indeed� there is no function

f	n
 that can bound the number of points although for every problem instance it is �nite� In

particular� the number of points added grows as the edges move closer to each other�

An Exponential Upper Bound� An upper bound that depends solely on n can be obtained

as follows� Initially� set V �� S and consider all m edges as unprotected� Treat the edges of G in
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turn� At the time the ith edge is treated� it may consist of various protected and unprotected

intervals� Place su�ciently many points on the unprotected intervals so that each new interval

has a circle that does not enclose any point of the current set V � Each such circle may� however�

intersect other edges� To prevent points from being placed inside the circle later in the process�

we place points at the intersections between the circle and any unprotected interval of another

edge� Declare each new interval as protected if it is enclosed by the circle and unprotected

otherwise� See Figure ����
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Figure ���� The original graph� G� has vertices � through � and edges �	� ��� ��� �� and ��� First�
edge �	 is treated� In the process� two new points are added to �	� The resulting three circles intersect the
other edges in seven points� which are also added� Each edge of G consists now of protected and unprotected
intervals�

The number of points needed to treat the ith edge does not exceed the current size of V since

it su�ces to project the current set V orthogonally onto the ith edge� Similarly� the number of

circles needed for the ith edge does not exceed the current size of V � Assume inductively that

jV j 
 n	�m��
i�� before the next step that treats the ith edge� The next step creates at most

n	�m� �
i�� circles intersecting the remaining edges in at most �m points each� The size of V

thus increases to at most n	�m� �
i�� � n	�m� �
i���m � n	�m� �
i� The total number of

points at the end of the process is therefore at most n	�m� �
m�

This method apparently produces far too many points� An improvement was found by

Mehlhorn� Sharir� and Welzl� Their method combines the projection of points with a divide�

and�conquer scheme and achieves a subexponential although not yet polynomial bound� The

idea of protected and unprotected intervals turns out to be valuable in our e�ort to obtain a

polynomial upper bound on the number of points�
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	�� The Upper Bound

Given a plane geometric graph G � 	S�E
� with jSj � n and jEj � m� this section shows how

to �nd O	m�n
 points so that each resulting interval has the empty disk property� As de�ned

earlier� an interval is the portion of an edge between two contiguous points of V chosen on this

edge� If no point of an edge belongs to V � then this edge itself is an interval�

	���� The Global Idea

The point set V is constructed in two steps� the blocking and the propagation phase� Initially�

V contains only the vertices of G� that is� V �� S�

The goal of the blocking phase is to �nd O	n
 pairwise disjoint disks that contain no points

of S so that the union of their closures is connected and contains S� Each circle bounding such

a disk is called a blocking circle� After �nding these disks� we add the intersections between

blocking circles and edges of G to the set V � In addition� we add the O	n
 points at which

blocking circles touch each other� The new set V forms the vertex set W of a plane geometric

graph H which conforms to G� The edges of H are the intervals of G together with edges

connecting contiguous points of V on blocking circles�

H has two types of edges� Each protected edge is enclosed by a blocking circle� its endpoints

lie on the blocking circle� All other edges are unprotected� By construction� protected edges

have the empty disk property with respect to the current set V � We will make sure that no

points inside the blocking circles are later added to V so that this property persists with respect

to all future sets V �

The unprotected edges are further subdivided into intervals in the propagation phase� For

an edge or interval ab� we de�ne the minidisk of ab� denoted by Mab� as the smallest disk

containing ab� In other words� Mab is the disk bounded by the circle with ab as a diameter� If

ab is unprotected and its minidisk contains a point c � V visible from every point of ab then

a point c� subdividing ab into ac� and c�b is added to V � This point c� will be chosen so that c

lies outside Mac� and Mc�b�
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	���� The Details

The Blocking Phase� We show how to use a minimum spanning tree of S to construct n��

disks D�� D�� � � � � Dn�� that satisfy the following properties�

	�
 Di � S � � for all � 
 i 
 n� ��

	�
 Di �Dj � � for all � 
 i � j 
 n� ��

	�
 D �
n���

i��

	closure of Di
 is connected� and

	�
 S � D�

Recall that a minimum spanning tree of S� mst	S
� is a spanning tree of the complete graph

	S�
�S
�

�

 whose sum of edge lengths is a minimum 	Section ���
� An important property of

mst	S
 is that the minidisk of every edge of mst	S
 is disjoint from S�

Label the vertices of mst	S
 from � through n � � so that for every � 
 j 
 n � � the

vertices �� �� � � � � j induce a subtree of mst	S
� De�ne ij so that ijj is an edge of this subtree�

Notice that ij � j and that ij is unique� The edges ijj are now used to de�ne the disks Dj �

The disk D� is the minidisk of edge ��� The disk Dj � for � 
 j 
 n � �� is maximal so that

	i
 its center lies on ijj�

	ii
 its bounding circle goes through j� and

	iii
 it is disjoint from disks D� through Dj�� constructed earlier�

Clearly� Dj � Mijj � This implies property 	�
� Properties 	�
� 	�
� and 	�
 follow from the

construction�

Let S� be the set of points where the blocking circles intersect the edges of G� and let S�� be

the set of points 	not in S�
 where the blocking circles touch each other� As described above�

the points in S� and S�� are added to V � Let W be the new set V � and let H � 	W�F 
 be a

plane geometric graph with F � F � � F �� de�ned as follows� The set F � contains all intervals

on edges of G� Remember that by construction all points of W lie on the n� � blocking circles�
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Consider a disk Di bounded by a blocking circle Ci� and let p�� p�� � � � � pk��� pk � p� be the

points of W that lie on Ci in this sequence� These points de�ne a convex k�gon with edges

p�p���� � 
 
 
 k � �� termed walls� Some of these walls may be intervals on edges of G
and therefore belong to F �� In any case� F �� is the collection of all walls� This completes the

de�nition of H which conforms to G� see Figure ����
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Figure ���� The original graph� G� has vertices � through � and edges 	�� ��� �� and ��� The edges of
the minimum spanning tree� �	� 	�� ��� 	�� ��� �� and ��� are indicated by broken lines� Each edge of the
tree corresponds to a blocking circle� Each blocking circle encloses protected edges of H�

Note that each wall is protected by a blocking circle� The collection of walls de�nes another

plane geometric graph� I � 	W�F ��
� Clearly� I is a subgraph of H� Note that all faces of H�

excluding the unbounded face� are simply connected because H is connected� For convenience�

we shall adopt the topology of the sphere in our discussion so that all faces of H are simply

connected� Similarly� all faces of I are simply connected because I is connected�

The Propagation Phase� The unprotected edges of H are further subdivided into intervals

during a non�deterministic process� Initially� every unprotected edge is also an unprotected

interval� Consider an unprotected interval ab and its minidisk Mab� Call a point c � V visible

from ab if the interior of abc is disjoint from all edges of H� Suppose a point c � V visible from

ab is contained in Mab� We add c� to V � where c� is the orthogonal projection of c onto ab� and

thus subdivide ab into ac� and c�b� Repeat this step until there is no unprotected interval ab

with such a point c� This completes the description of how the point set V is constructed�
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	���� The Analysis

This subsection shows that the eventual size of V is O	m�n
� The blocking phase adds at most

	�m� �
	n� �
 intersection points between edges and circles and fewer than �n points where

circles touch each other� The latter bound follows from the planarity of the intersection graph

of the blocking circles�

We now focus on proving that each point created in the blocking phase gives rise to at most

O	m
 points in the propagation phase� We begin by proving a few properties of the propagation

phrase� Let ab be an unprotected interval at some point in time during the process� and let

c � V lie in Mab� Then the orthogonal projection c� of c onto the line through ab lies strictly

between a and b� i�e�� c� � ab� Furthermore� c ��Mac� and also c ��Mc�b�

Assume now that c �� x� y is a point on some edge xy of G� All points in V � 	S � S��
 are

of this form� Then we have the following fact�

Lemma ��� There are at most two intervals� ab and a�b�� so that c is visible from both and

contained in their minidisks� Furthermore� ab and a�b� lie on di�erent sides of the line through

xy�

Proof� If c �Mab then �acb � �
� � and if c is visible from ab then a and b lie on the same side

of the line through xy� The same is true for a�b�� So if ab and a�b� lie on the same side of the

line then one endpoint of a�b� must lie between a and b as seen from c� This contradicts the

assumption that c is visible from ab and from a�b��

Next� let c �Mab be visible from ab� and c� be the orthogonal projection of c onto ab� Then we

have the following fact�

Lemma ��� There is no interval a��b�� on the same side of the line through ab as c so that c� is

visible from a��b�� and c� �Ma��b�� �

Proof� Assume such an a��b�� exists� Then �a��c�b�� � �
� which implies that c lies between a��

and b�� as seen from c�� This either contradicts that c is visible from ab or that c� is visible from

a��b���
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Assume now that c � V does not lie on an edge of G� so c � S � S��� Similar to Lemma ����

we have the following fact as there can be at most three angles larger than �
� packed around c�

Lemma ��� There are at most three intervals ab so that c is visible from ab and c �Mab�

A Locality Property� Notice that the propagation phase takes care only of local con�

straints� In other words� it considers only visible point�interval pairs c� ab� Although the

minidisk of ab can contain other points of V � it is indeed justi�ed to ignore such points� as we

will see shortly� Let ab be an unprotected interval� We call the minidisk Mab locally empty if

it contains no point of V that is visible from ab� Furthermore� Mab is empty if it contains no

point of V at all�

To prepare for the next lemma� we consider an interval ab and a point c � Mab� If c is not

visible from ab then there are intervals st that intersect abc� We say that st separates c from ab

if both endpoints� s and t� lie outside Mab� Otherwise� st hinders the visibility between c and

ab but it does not separate� Let Ec�ab be the set of intervals that separate c and ab� and de�ne

Fc�ab as the set of 	non�separating
 intervals that hinder the visibility between c and ab� It is

interesting to observe that Fc�ab � � or there is another point d of V in Mab with Ed�ab � Ec�ab

and Fd�ab � �� To see this� choose a point x in the interior of abc so that the interior of abx

does not intersect any edge of H� Move x continuously and straight towards c until either a

side of abx hits a vertex d or x hits a non�separating interval uv of H� In the second case at

least one of the two endpoints� say u� lies in Mab� Slide x on uv towards u until either a side of

abx hits another vertex d or x reaches u 	then d � u
� whichever happens �rst� The path of x

crosses only intervals that separate c and ab� therefore Ed�ab � Ec�ab�

Lemma ��� If the minidisks of all unprotected intervals are locally empty then they are all

empty�

Proof� Suppose the claim is false� Then� there is an unprotected interval ab whose minidisk

Mab contains a point c � V � As argued in the preceding paragraph� we can make the extremal

assumption that ab and c are chosen so that the number of separating intervals Ec�ab is a global

minimum and Fc�ab � �� Let st be an interval that separates ab from c� Note that st is not
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protected because every circle through s and t encloses at least one of a� b and c� But if st is

an unprotected interval� we have c � Mst because s and t are outside Mab� Furthermore� st

cuts Mab into two pieces� and the piece that contains c is properly contained in Mst� Therefore

Ec�st � Ec�ab and we have proper containment because st � Ec�ab does not belong to Ec�st� This

either contradicts the extremal assumption or that st is locally empty�

Propagation Sequences� We are now ready to analyze the number of points created in the

propagation phase� Our particular goal is to show that each point c created in the blocking

phase generates at most �m points in the propagation phase� We say that a point c generates

another point d if there is a sequence c � c�� c�� � � � � ck � d so that ci�� is created as the

orthogonal projection of ci onto some interval during the propagation phase� for � 
 i 
 k� ��

The sequence c�� c�� � � � � ck is called a propagation sequence� It is non�trivial if k 	 �� and it is

maximal if c� is created in the blocking phase and ck generates no further point� Note that all

ci� i 	 �� of a maximal propagation sequence lie on unprotected edges of H� and these edges

are contained in edges of G�

Every point d created in the propagation phase gives rise to at most one point d�� To see

this� we �rst note that such a point d lies on an edge xy of G� Now Lemma ��� implies that d

is visible from at most two intervals whose minidisks contain d� By Lemma ��� and because d

itself is generated by an orthogonal projection� d generates another point d� on at most one of

these two intervals� Together with Lemma ���� this implies that a point of V constructed before

the propagation phase gives rise to at most three non�trivial maximal propagation sequences�

In fact� there are at most two such sequences per point not in S � S��� To establish that the

length of a maximal propagation sequence is at most m� it su�ces to prove the following�

Lemma ��� No propagation sequence can have two or more points on the same edge of G�

Proof� Suppose the claim is false� Consider a minimal propagation sequence� c�c�� c�� � � � � ck�

d� so that c and d lie on the same edge xy of G� Consider the polygon� P � whose boundary

consists of the line segments cd and cici��� for � 
 i 
 k��� Recall that walls are protected� so

no points are projected on or across them� Thus� P lies completely within a face of I� Since all

vertices of G are also vertices of I� and because all faces of I are simply connected� there can
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be no vertex of G inside P � Thus� each edge of G that intersects P has its endpoints outside

P � It thus intersects the boundary of P in at least two points� Since c�� c�� � � � � ck is minimal�

it follows that k � � and that c� and c� lie on the same side of the edge xy of G that contains

c�� But this contradicts Lemma ����

As mentioned earlier� jS � S��j � �n� Each point c � S � S�� gives rise to at most three

maximal propagation sequences of length at most m � � each� The point c itself is the only

point of these sequences that does not necessarily lie on an edge of G� The number of other

points created during the blocking phase is less than �mn� Each such point gives rise to at most

two maximal propagation sequences of length at mostm each� The total number of points after

the propagation phase is thus less than

�n	�m� �
 � �mn	�m� �
 � �m�n� ��mn� �n�

This proves the main result of this section�

Theorem ��� Let G � 	S�E
 be a plane geometric graph with jSj � n and jEj � m 	 ��

There exists a point set V of size jV j � O	m�n
 so that its Delaunay triangulation has a

completion that conforms to G�

	�� Implementing the Proof

The proof of the O	m�n
 upper bound presented in Section ��� is constructive and can be

translated into an algorithm without much e�ort� The only demanding step is the implemen�

tation of the propagation phase� In order to keep the time�complexity roughly within the same

order of magnitude as the number of points added� we need to project the points in a sequence

that is computationally inexpensive� We will assume that point coordinates can be stored in

constant amount of storage and that basic geometric operations� such as intersecting a circle

with an edge and projecting a point onto a line� can be carried out in constant amount of time�

As usual� plane geometric graphs are stored using the quad�edge data structure of Guibas and

Stol� 	Section ���
�
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	���� The Blocking Phase

A minimum spanning tree of a set of n points in the plane can be computed in time O	n logn
�

This requires the construction of the Delaunay triangulation of the points and running a stan�

dard minimum spanning tree algorithm on the graph of this triangulation� see� for example�

�Edel��� Section �������� Alternatively� a minimum spanning tree can be obtained in time

O	n�
 directly from the complete graph of the points� The slower method is certainly easier to

implement�

After computing the tree� we need to �nd the disks D�� D�� � � � � Dn�� that satisfy properties

	�
 through 	�
� Most straightforwardly� these disks can be constructed one by one as explained

in Section ���� For each j� the largest disk Dj needs to be found so that its center lies on ijj�

j lies on the bounding circle of Dj � and Dj avoids all Di for i � j� This can be done in time

O	j
� The total amount of time for this step is thus O	n�
� The plane geometric graphs H and

I can be computed by intersecting the bounding circles of the Dj with each other and with the

edges of G� The resulting O	mn
 intersection points can be computed and sorted along circles

and edges in time O	mn logn
�

	���� The Propagation Phase

Recall that I is a subgraph of H and contains none of its unprotected edges� A point c � V is

projected onto an interval ab only if ab is unprotected� Thus� projections happen only within

faces of I� We can thus restrict our attention to a single face of I� As mentioned earlier� I is

connected and therefore its faces are simply connected� Each face of I is further subdivided

into regions 	of H
 by unprotected edges of H� Each region is also simply connected� and can

be treated computationally as bounded by a simple polygon de�ned by oriented edges that have

the region on their left 	Section ���
�

A Tree of Regions� Consider a face f of I� LetRf be the graph whose nodes are the regions

of f � and whose arcs connect regions that share unprotected edges of H� Each subdividing

unprotected edge has both endpoints on the boundary of f � which implies that Rf is a free

tree� It will be convenient to �x an arbitrary node as its root and thus impose a parent�child
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relation on adjacent node pairs� Points will be projected onto unprotected edges in three stages�

The �rst stage computes an initial set of projections that avoids di�cult situations in the second

stage� The second stage computes and sorts segments along the boundary of each region� The

last stage consists of a post�order and a pre�order traversal of Rf �

Consider two adjacent nodes � and � of Rf � and let ab be their shared unprotected edge�

Points on the boundary of � that are projected onto ab are said to be exported from � to ��

Symmetrically� we say they are imported by �� The points projected onto ab are stored in two

separate sorted lists� L�� and L�� � one for each side of ab� The complete list of points exported

from � to �� L��� can be computed only after all import lists L�� � for � �� � adjacent to �� are

available� Note that the import list from �� L�� � is not necessary for computing L�� because a

propagation sequence follows only one direction of a path in Rf 	Lemma ���
�

Stage �� subdividing unprotected edges
 A vertex vj of � is re�ex if the angle inside � exceeds

�� i�e�� vertices vi� vj � vk form a right turn where 	vivj and 	vjvk are the oriented edges on the

boundary of �� The �rst stage projects every re�ex vertex c onto all unprotected edges ab

for which there exists a portion a�b� � ab so that c is visible from a�b� and c � Ma�b� � Since

�a�cb� � �
� there can be at most three such edges ab� As a precaution� we do not require that

c be visible from ab� This way c does not need to be reconsidered after ab gets subdivided�

Although such projections are not prescribed by the proof in Section ���� they neither invalidate

the correctness nor the analysis of the construction� Each re�ex vertex is necessarily a vertex

in S � S��� so there are fewer than �n of them� Since each vertex is projected at most three

times� we thus increase the number of unprotected edges by less than ��n�

Here is how we �nd the at most three unprotected edges for a re�ex vertex c� The parts of

the boundary of � visible from c can be computed in a single walk along the boundary of �� see�

for example� �ElAv��� Lee��� JoSi���� The amount of time needed for the walk is proportional

to the number of edges� Select the at most three edges that have connected portions visible

from c along an angle exceeding �
� � Project c orthogonally onto these at most three edges� Each

projection subdivides an unprotected edge into two such edges�

The rest of the algorithm uses the subdivision of H produced in stage �� It will therefore

be convenient to call the elements of this subdivision vertices and edges� After the completion

��



of stage �� no re�ex vertex visible from an unprotected edge ab lies inside the minidisk Mab� It

thus follows that if a point c lies in Mab and is visible from a point on ab then it is also visible

from ab�

Stage �� computing boundary segments
 This stage is a preprocessing step that speeds up

computations in stage �� It prepares the boundary of � in such a way that points can be

projected onto various unprotected edges in a single walk along the boundary of �� To this

end� we associate pieces of the boundary� called segments� with the unprotected edges of �� A

segment for an unprotected edge ab is a maximal connected piece of ��s boundary so that every

point x of the segment is visible from ab and contained in Mab� Note that segments do not

include their endpoints� Since � is simply connected� a point x is visible from ab i� it is visible

from a and also from b� The segments of ab are constructed as follows�

�� Find the part of ��s boundary visible from a� As mentioned above� this can be done in a

single walk along the boundary�

�� Find the part of ��s boundary that is also visible from b� Again a single walk su�ces�

�� Intersect the identi�ed boundary pieces with Mab�

De�ne the rank of �� r	�
� equal to the number of unprotected edges of �� and let j�j be
the total number of edges of �� If an edge bounds � on both sides� that is� the edge belongs to

the interior of the closure of �� then it is counted twice� By construction� this can be the case

only for protected edges� After carrying out � through � for each unprotected edge of �� we

obtain a collection of segments� Because of Lemma ���� the segments along the boundary of �

are pairwise disjoint� In other words� the segments form a sequence� and they can be sorted in

time proportional to j�j plus their number� This is because along an edge of � the segments

are ordered consistently with the order of their corresponding unprotected edges� We will see

later that the number of segments is less than � r	�
 � j�j�

Stage �� traversing the tree
 In a post�order traversal� the children � of a node � are visited

before �� Visiting a node � in this case means computing the export list to its parent �� Notice

that because of stage �� � and � may share several unprotected edges� Still� their union is

the original unprotected edge of � and �� and L�� can be obtained by concatenating the lists
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obtained by projecting points onto these unprotected edges� We can assume that at the time

the export list of � to � is computed� all import lists L�� are available�

List L�� is constructed in a single walk along the boundary of �� Whenever a segment that

belongs to an unprotected edge shared by � and � is encountered� the points on this segment

are projected orthogonally onto the unprotected edge� These points can be vertices of � or

points in import lists of �� The result is the list L�� � It is automatically sorted if we process

the points in their order along the boundary of ��

After the post�order traversal of Rf � all child�to�parent lists are complete� In order to

compute the export lists of a node � to its children �� we need to �rst construct the import

list from its parent� L�� � This is done in a pre�order traversal of Rf � A node is visited before

its children� and visiting a node � now means computing all export lists L��� At the time we

compute these lists� all import lists are complete and stored with their unprotected edges� In a

�nal walk along the boundary of �� we project vertices onto the appropriate unprotected edges�

as before�

	���� The Time Complexity

The analysis of the above algorithm requires some topological and combinatorial results about

regions� We begin with a combinatorial lemma� Let e�� e�� � � � � ek be a sequence of k not

necessarily distinct symbols� It is a DS�	n
�sequence if only n of the symbols ei are di�erent�

ei �� ei�� for � 
 i 
 k � �� and there are no four indices � 
 i� � i� � i� � i� 
 k so that

ei� � ei� �� ei� � ei� �DaSc���� The following is a well�known fact about the length k of the

sequence�

Lemma ��� The length of any DS�	n
�sequence is at most �n� ��

Proof� Suppose z is the symbol that is introduced last when a DS�	n
�sequence is read from

left to right� From the last part of the de�nition� we deduce that z occurs only once� We can

thus obtain a DS�	n � �
�sequence by either deleting z or z and its adjacent symbol� The

latter case happens only when z is sandwiched between a same symbol� Clearly� induction on

n completes the proof since DS�	�
 � ��

��



We use such sequences to bound the number of segments in a region ��

Lemma ��	 The number of segments of � is less than � r	�
 � j�j�

Proof� Consider the ordered sequence of segments� Replace each segment by the name of the

corresponding unprotected edge� The resulting sequence contains no scattered subsequence of

the form

� � � ab � � �cd � � �ab � � �cd � � ��

because otherwise the bounding circles of Mab and Mcd would intersect at four or more points�

So if we compress repetitions we get a DS�	r	�

�sequence� If two consecutive symbols 	unpro�

tected edges
 are the same then there must be a vertex of � separating them� This implies that

the total number of segments exceeds the length of the DS�	r	�

�sequence by at most j�j�

The total number of unprotected edges before the propagation phase is at most O	mn
�

and it is fairly easy to see that this bound is tight� It is plausible that a single region can have

only substantially fewer unprotected edges� We now prove a more general result that implies

a single region indeed cannot exceed O	m � n
 unprotected edges� For a region �� we de�ne

its excess e	�
 � maxf�� r	�
� �mg� The total excess is the sum of the e	�
 over all regions

� of H� We prove an upper bound on the total excess which is su�cient for our purposes but

certainly not tight�

Lemma ���
 The total excess is less than ��n�

Proof� To help the discussion we replace each edge of G by a pair of directed edges� which we

call di�edges� A di�edge pq contributes an edge to a region � if it contains the edge and along

this edge � lies to the left of pq� Consider the sequence of unprotected edges in ��s boundary�

and replace each such edge by the name of the contributing di�edge of G� This results in a

sequence with at most �m di�erent symbols� A straightforward topological argument shows

that there is no scattered subsequence of the form

� � �pq � � �st � � � pq � � � st � � �

���



If we ignore repetitions we have a DS�	�m
�sequence� which implies that the length of the

sequence without repetitions is less than �m� Anything exceeding this number is counted by

e	�
�

Let ab and cd be two consecutive unprotected edges contributed by the same di�edge� pq�

Then 	i
 b � c� or 	ii
 bc is a protected edge of �� or 	iii
 there are two or more protected

edges between b and c� In case 	i
 we can charge the projection in stage � for the repetition�

and there are fewer than ��n of them� Each projected point is counted twice� once for each

side� so we have fewer than ��n repetitions of type 	i
 in total� In case 	iii
 we can charge the

vertex common to the �rst two protected edges after b for the repetition� This vertex must be

in S � S��� We have jS � S��j � �n� and each such vertex is charged at most twice because it

can lie on at most two blocking circles� This implies that there are fewer than �n repetitions of

type 	iii
� In case 	ii
� bc is a protected edge contributed by pq� We argue in the following that

the total number of such edges� over all regions and di�edges� is less than �n� This will imply

the claim�

Since bc is protected� its endpoints lie on a blocking circle Cj bounding Dj � Furthermore�

since bc belongs to a region with at least one unprotected edge� it must be a wall� Consider

Dj and the edges of H that lie on edges of G and decompose Dj � Each such edge has both

endpoints on Cj � It follows that the dual graph of the decomposition is a free tree� The nodes

of the tree are the regions of the decomposition� and the arcs correspond to the edges that

decompose Dj � The edge bc corresponds to an arc incident to a leaf of the dual graph� We

can bound the number of repetitions of type 	ii
 by bounding the total number of leaves of the

n � � dual graphs de�ned for the blocking circles�

To count the total number of leaves� we assume G is a triangulation� If not� it can be

converted into one by adding fewer than �n �m edges� adding these edges can only increase

the count� The advantage of a triangulation is that now each interior node of a dual graph

has degree � or �� Furthermore� the number of leaves of a dual graph is � plus the number of

degree�� nodes� Each degree�� node of the dual graph for Dj corresponds to a triangle of G
each of whose three sides intersects Cj � A triangle can intersect at most one blocking circle in

this manner� Thus� the total number of degree�� nodes is at most the number of triangles� i�e��

�n � �� This number plus twice the number of blocking circles is less than �n� as claimed�

���



A region cannot have more than �n vertices shared by adjacent protected edges� because

each such vertex is a vertex in S � S��� Each such vertex is encountered at most twice� which

implies j�j 
 � r	�
��n� Lemma ���� thus implies a bound on the number of edges of a region�

Lemma ���� For a region � of H� j�j � O	m� n
�

We are now ready to derive the time�complexity of the algorithm� Stages � and � require

at most O	j�j r	�

 time per region �� By de�nition� r	�
 
 �m� e	�
� so the time is bounded

by a constant times
X

j�jm�
X

j�j e	�
�

where the sums are over all regions of H� The �rst sum is O	m�n
 because
P j�j � O	mn
 for

H has only O	mn
 edges and stage � adds only O	n
 to this number� The second sum is O	n�


because
P j�j e	�
 � O		m � n


P
e	�

 by Lemma ���� and

P
e	�
 � ��n by Lemma �����

This implies that O	m�n� n�
 is an upper bound for the time spend in the �rst two stages of

the algorithm� After that� O	m�n
 time su�ces to compute all import and export lists in stage

�� This implies the main result of this section�

Theorem ���� Let G � 	S�E
 be a plane geometric graph with jSj � n and jEj � m 	 �� A

point set V of size O	m�n
 that admits a completion of its Delaunay triangulation conforming

to G can be computed in time O	m�n� n�
�

	�� Discussion

The main result of this chapter is the existence of O	m�n
 points that admit a completion

of their Delaunay triangulation conforming to a plane geometric graph with n vertices and

m 	 � edges� This result is super�cially similar to the triangulation results of �BDE��� BEG���

BeEp��� MeSo���� The best lower bound for the number of points necessary is �	mn
� and its

proof is fairly straightforward� It would be interesting to close the gap between the two bounds�

The O	m�n
 points can be constructed in time O	m�n � n�
� provided in�nite precision

arithmetic in constant time is assumed� This assumption is unrealistic because the number of

���



bits necessary to accurately represent a point increases at each projection along a propagation

sequence� It remains open whether the points can be constructed within the same time�bound

without this assumption�
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Chapter �

Conclusion

Many words have been said in the literature about triangulation for it is� no doubt� an important

decomposition method with various applications in engineering and science� This thesis focuses

on the complexity of constructing optimal triangulations� This theme has not been very popular

in the literature until very recently� Because of a lack of algorithms� most previous work

on constructing optimal triangulations relies on simple heuristics� This thesis substantially

advances our knowledge in this respect and supplements the meager pool of algorithmic methods

known to be e�ective in constructing triangulations�

Now we can compute min�max angle� max�min height� min�max slope� min�max eccentricity�

min�max length� and conforming Delaunay triangulations in low order polynomial time� Besides

formulating new algorithmic and proving them correct� we also address implementation issues�

All algorithms discovered are fairly simple and have interesting visual e�ects when animated�

Roughly speaking� an edge�insertion step 	Chapters � and �
 looks as if it is opening and then

closing a hand�fan� The Subgraph approach 	Chapter �
 grows triangles inside polygons� The

 wall! approach 	Chapter �
 marches up and down faces� We observed the behavior of an

edge�insertion step from the implementation done by Roman Waupotitsch �EdWa���� the other

two approaches are not yet implemented�

This thesis is certainly not the �nal word in the area� As discussed in Section ���� many ques�

tions remain open� Besides two�dimensional cases� there are many three� and higher�dimensional

���



problems� see� for example� �BeEp��� Dey��� Edel��� EdSh��� MiVa��� Raja���� Just by going

up one dimension to three� we reach another dimension of di�culty� Simple questions about

the complexity of triangulating a convex polytope optimally remain open� Moreover� polytopes

may not necessarily have triangulations �Sch�o���� and the corresponding decision problem is

NP�complete and thus unlikely to have a polynomial time algorithm �RuSe���� This explains

some di�culties on extending the results in this thesis to higher dimensions� We leave with

many words yet to be said about triangulations � � � � � �
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