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Abstract 

Jump flooding algorithm (JFA) is an interesting 
way to utilize the graphics processing unit to efficiently 
compute Voronoi diagrams and distance transforms in 
2D discrete space. This paper presents three novel 
variants of JFA. They focus on different aspects of JFA: 
the first variant can further reduce the errors of JFA; 
the second variant can greatly increase the speed of 
JFA; and the third variant enables JFA to compute 
Voronoi diagrams in 3D space in a slice-by-slice 
manner, without a high end graphics processing unit. 
These variants are orthogonal to each other. In other 
words, it is possible to combine any two or all of them 
together. 

 
 

1. Introduction 
 
Graphics hardware has been utilized to efficiently 

and effectively compute Voronoi diagrams in discrete 
space. Such a discrete Voronoi diagram, and the 
related concept of discrete distance transform, have 
many real-time interactive applications, such as motion 
planning, object selection, mosaics, skeleton, feature 
preserving evolution etc. (see [4], [13]). Moreover, 
discrete Voronoi diagrams can be utilized to achieve 
robustness in the computation of continuous Voronoi 
diagrams [6]. 

Notable works using graphics hardware on 
Voronoi diagrams include Hoff et al.’s paper [4] that 
builds a cone for every input (point) site and renders 
these cones to obtain the Voronoi diagram as the lower 
envelop of these cones. Denny [2] presents a similar 
method using a pre-computed texture in place of the 
cone. This method is faster and produces more 
accurate results; see also Strzodka and Telea’s work 
[13]. Fischer and Gotsman [3] use planes tangent to a 
paraboloid and thus avoid the errors caused by the 
tessellation of the cones. All these algorithms run in 
time linear to the size of the input.  In other words, 
their speeds reduce with the increase in the number of 
sites. 

Recent advances in the graphics processing unit 
(GPU) allow programmed control of the graphics 
pipeline; see [8] for a comprehensive survey. For our 
purposes here, a GPU can be imagined as a collection 
of processors working in parallel on all the pixels 
(information) in a texture with resolution of n×n where 
n is typically 512, 1024, or up to 4096 with current 
state-of-the-art GPU. Such capability is used by Sigg 
et al. [12] to compute distance transform (a concept 
closely related to Voronoi diagram) in 3D space; see 
also Sud et al.’s work [14]. These algorithms need 
significant CPU effort to compute the bounding 
volume of Voronoi cells, and their speeds are still 
dependent on the size of the input sites. 

Rong and Tan [9] introduce the jump flooding 
algorithm (JFA) to compute Voronoi diagrams and 
distance transforms in GPU. Unlike all previous work, 
the speed of JFA is almost independent to the size of 
the input sites. Specifically, given a collection of m 
sites in a texture with a fix resolution, the time to 
compute the Voronoi diagram of these sites is almost a 
constant regardless of m. But, JFA is an approximate 
algorithm and errors at pixels can occur; that is, some 
pixels may not record the correct nearest sites after the 
JFA computation. On the whole, the nice property of 
being fast while not incurring many errors makes JFA 
suitable to compute discrete Voronoi diagrams. 

A similar idea extended to 3D space is proposed 
by Cuntz and Kolb [1]. They solve the problem by 
packing a 3D texture into a 2D one. Due to texture size 
limit in the current GPU, they can handle only small 
resolutions of 3D space. 

In this paper, we propose three new variants of 
JFA. They focus on different aspects of JFA: The first 
variant can greatly decrease the rate of errors of JFA 
with exactly the same computational cost of a previous 
variant in [9]. The second variant can improve the 
speed of JFA by more than 25% while maintaining 
very low rate of errors. The last variant extends the 
algorithm into 3D space in a slice-by-slice manner. 
This is more efficient than the prior work of Sud et al. 
[14] as the speed of JFA is almost independent to the 
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number of sites. All of these three variants are 
orthogonal, so any two or all of them can be combined 
with each other into a more powerful flooding solution. 

The rest of the paper is organized as follows. 
Section 2 reviews the basic idea of JFA. Sections 3 to 
5 introduce our three new variants. Section 6 
concludes the paper with possible directions for future 
work. 

 
2. Review of JFA 

 
Suppose we have a site s at pixel (x, y) in a texture 

with resolution of n×n, and we want to pass its 
information to all the other pixels in the texture. The 
most straightforward way is to use the standard flood 
filling algorithm. In the first pass, we pass the 
information of s to its (maximum) eight neighbors at 
positions (x+i, y+j) where i, j ∈ {–1, 0, 1}. These 
neighbors continue to pass the information to their 
neighbors in the later passes. This process continues 
until all the pixels in the texture receive the 
information of s. Figure 1(a) demonstrates this process 
in an 8×8 texture with a site at the bottom-left corner. 

Now suppose we have many sites in the texture, 
and the information of every site is just its coordinate. 
When all the pixels in the texture get the information 
of the sites, each can use this information to choose the 
nearest site to it. Thus, the Voronoi diagram can be 
computed using this standard flood filling algorithm. A 
simpler version of this idea is also presented in 
Algorithm 4.14 in [7]. However, the number of passes 
and thus time needed by standard flood filling 
algorithm is linear to the resolution of the texture. 

In the standard flood filling algorithm, the step 
length in all the passes is always 1. So every pixel 
effectively only propagates information of a site once 
in the entire process. This is wasteful in the computing 
power of GPU. To rectify this, we can vary (i.e. jump) 
the step lengths in different passes to have the jump 
flooding algorithm. In JFA, the step length in the first 

pass is equal to half of the resolution. (In our 
discussion, we always assume n is a power of 2; in 
more general form, the step length of the first pass is 

log 12 n −⎡ ⎤⎢ ⎥  for a resolution of n×n.) Then the step length 
is halved in every pass until the step length of 1. 
Formally, in a pass with step length of k, a pixel at the 
position (x, y) passes its information to the pixels at the 
positions (x+i, y+j) where i, j∈ {–k, 0, k}. This process 
is shown in Figure 1(b) for the same configuration of 
input site as in Figure 1(a). By using different step 
lengths k, the number of passes needed by JFA is 
reduced to logarithmic of n. 

Same as the standard flood filling algorithm, JFA 
can compute Voronoi diagram. Although JFA may 
cause errors at pixels in the final result, as presented in 
[9], the rate of such errors is very low, and not 
noticeable to the naked eye. Besides Voronoi diagram 
and distance transform, JFA has also been successfully 
used to compute real-time soft shadows [10]. 

With this basic idea of JFA, we next present its 
three new variants in the following three sections. 

 
3. Variant 1: 1+JFA 
 

During the process of JFA, an error occurs when 
the correct site (the nearest site) is killed by other sites 
en route during the flooding. According to Property 4 
of JFA in [9], the necessary condition for two sites 
meeting at a same pixel at step length of 2l is that the l 
last bits (in binary encoding) of their x- and y-
coordinates are exactly the same. So if the very last bit 
of the x- or the y-coordinate of a site s is already 
different to that of another site t, these two sites do not 
meet each other in any pixel in any pass before the 
pass with step length of 1, and thus one cannot kill the 
other.  

This leads to the idea of the first variant, called 
1+JFA. Before performing the standard JFA, we pass 
the information of a site s at position (x, y) to its 
(maximum) eight neighbors at positions (x+i, y+j) 
where i, j∈ {–1, 0, 1}. This is equivalent to performing 
a pass with step length of 1 before the standard JFA, 
and leads to the name of 1+JFA. In effect, we have 
made information of s available at pixels where their 
last bit patterns of x- and y-coordinate cover all 
possible combinations of 1s and 0s. This reduces the 
chances of all the copies of s being killed by other sites 
during flooding. The process of 1+JFA as compared to 
that of the standard JFA is shown in Figure 2. 

Note that this variant cannot totally eliminate all 
the errors, because the other sites are also flooded by 
one pixel to their neighbors before the standard JFA 
and those neighbors together may kill, for example, all 
the copies of s at different passes of flooding. Despite 

(b) 
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Figure 1: Propagation of the content of a site
at the bottom-left corner by (a) standard flood
filling, and (b) JFA. 
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this, we observe very few errors generated by this 
variant in our experiments; see Figure 3. 

It is very interesting to notice that although 1+JFA 
is very similar to the variant JFA+1 [9], the rate of 
errors of 1+JFA is far less than that of JFA+1. Since 
the numbers of passes of 1+JFA and JFA+1 are the 
same, their speeds are the same too. So 1+JFA is a 
better algorithm than JFA+1 because of much smaller 
rate of errors. In Figure 3, we can also see that the rate 
of errors of 1+JFA is also less than that of the slower 
variant, JFA+2 [9] for small number of sites. 

 
4. Variant 2: Halving Resolution 

 
In doubling a texture from n×n to 2n×2n, the 

standard JFA needs an additional pass with step length 
of n to reach among pixels further apart. Besides, each 
pass now deals with 4 times the number of pixels, and 
the speed is thus much slower than before. Turning this 
into a positive way, if we can half the resolution 
needed, the speed can improve accordingly. This is the 
idea of the second variant as explained next. 

Before starting JFA on a texture with resolution of 
2n×2n, we sub-sample a square of 4 pixels into a 
single pixel to result in a texture with resolution of n×n. 
In the sub-sampling, if there is one or more sites in the 

square of 4 pixels, we choose among them one as the 
representative site. Next, JFA is applied on the texture 
with resolution of n×n containing the representative 
sites. After this is completed, we expand the texture 
back to the original resolution of 2n×2n. In doing this, 
one pixel (x, y) in the low resolution becomes 4 pixels 
in the high resolution, and each of these 4 pixels 
derives its nearest site from those sites represented by 
the representative site at (x, y). With this, the edges 
between two Voronoi cells generally form a staircase 
(zigzag) shape. So, we need another pass of flooding 
with step length of 1 to smooth the Voronoi edges. 
Figure 4 shows the process of this variant for the same 
configuration of input sites in Figure 2.  

One important note is in order when performing 
JFA in the low resolution. To compute distance from a 
site to a pixel (and to select the nearest site), we must 
still use the original coordinates in the high resolution. 
This is because the sub-sampling may slightly change 
the relative positions of the sites. Such a change, no 
matter how small, may result in a significant change in 
the final Voronoi diagram. This phenomenon is 
illustrated in Figure 5. 

However, there are cases that such situation is not 
avoidable. For example, in Figure 5, suppose there is 
also a site at the position of a’. After sub-sampling, we 
only have a’, b and c. Many pixels belonging to the 
Voronoi cell of a are in the Voronoi cell of either b or 
c after the computation, and these are thus pixels with 
errors. If the sites are uniformly distributed, this 
situation occurs when the density is very high. So this 
variant works better for cases with sparse distribution 
of sites. In another view, if the density is too high, all 
the Voronoi cells are small in size and some additional 
passes can fix most of these errors too. On the whole, 
this variant, when combined with other variants, may 
not generate many errors while able to accelerate the 
computation of flooding. 

Figure 6 shows the comparison of the speed of this 
variant with those of JFA and its other variants. It is 
clear that this variant is the fastest. As we have 
mentioned, this variant can be combined with the other 

Figure 2: Comparison of processes of JFA and 1+JFA for 10 sites in a texture with resolution of
64×64. Upper row: the process of JFA. Lower row: the process of 1+JFA that has one additional
pass. 

Figure 3: Errors of variants of JFA 
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variants (e.g. JFA+2) to reduce the rate of errors. In 
our experiment on nVidia 6800 GPU, we obtain less 
than 3 errors on average in a texture with resolution of 
512×512 while still enjoy frame rate (of around 70fps) 
better than that of the standard JFA (of around 55fps). 

 
5. Variant 3: 3D Space 

 
The idea of JFA can be easily extended into 3D 

space, where every voxel looks for its (maximum) 26 
neighbors to choose its nearest site. But, only the latest 
GPU processors such as nVidia 8800 that have the 
ability to write into 3D texture to support the 
implementation of such an algorithm. Previous work of 
Rong and Tan [9] can only use the CPU to simulate 
JFA in 3D space to understand its performance. For 
our work here, we show a way to adapt 2D JFA to 
compute a 3D Voronoi diagram in a slice-by-slice 
manner, without the need of writing into 3D textures.   

According to Property 1 of JFA in [9], regardless 
of where a site is, as long as it is not killed by other 
sites en route, its information can reach all the pixels in 

the texture after the pass with step length of 1. This 
property suggests that it is not necessary to put the 
sites at their original positions to perform JFA. In fact, 
we can choose to put the sites at any positions 
convenient to an application. (This may lead to 
different rate of errors in the flooding.) We note that in 
some sense, our variant 2 discussed in the last section 
is of the same spirit; it can be seen as first shifting all 
the sites to the positions with both x- and y-coordinates 
are even numbers in the texture of original resolution, 
and then performing JFA in the original texture for 
these pixels only. 

This understanding can help us to compute 3D 
Voronoi diagram using JFA, in a slice-by-slice manner. 
Suppose we want to compute the intersection of a slice 
and the 3D Voronoi diagram. We first orthogonally 
project all the sites onto this slice. At each pixel of the 
slice, we record the original 3D coordinate of the site 
projected to the pixel. If two or more sites projected to 
a same pixel, only the coordinate of the nearest site is 
recorded, because the Voronoi cells of the other sites 
do not intersect this slice and these sites thus need not 
appear in this slice for flooding. Next, we run JFA (or 
its other variants) using these projected sites in the 
slice while utilizing the original 3D coordinates 
recorded to perform distance computation to find 
nearest sites for each pixel.  

Figure 5: Small change of the position of a site
site can lead to a big change of its Voronoi
cell. During the sub-sampling, a moves to a’
while b and c remain at their original positions.
The black lines show the Voronoi cell of a
before sub-sampling, and the red lines show
the Voronoi cell after. With our approach of
calculating distance using the coordinates in
the higher resolution, we still can obtain the
correct Voronoi cell of a.  

a 
a’ 

b 

c 

Figure 4: The process of variant 2 for 10 sites in a texture with resolution of 64×64. The input is as
shown on the leftmost picture. The second picture on the left is the input after halving the
resolution. The subsequent 5 pictures show the process of standard JFA working on the halved
resolution, and followed by the 2 pictures on restoring to the original resolution and smoothing
Voronoi edges. 

Figure 6: Speeds of JFA and its variants
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The rate of errors of the CPU simulation of JFA in 
3D reported in [9] is shown again as the blue curve in 
Figure 7. Compared with that, the result of this new 
variant (Figure 7, black curve) generate more errors. 
This is expected, since in this variant, JFA is 
performed in a 2D texture, and the number of possible 
paths for a pixel receiving the information of its 
nearest site is far less than that of a real JFA in a 3D 
space. So the chance of a nearest site killed by other 
sites is accordingly higher. On the other hand, the red 
curve in Figure 7 shows the rate of errors when this 
variant is combined with 1+JFA. Again, the rate of 
error is far less than that of the standard JFA. An 
interesting observation is that the red curve almost 
coincident with the blue curve now. In other words, we 
now have a good substitute of the real JFA in 3D but 
computing only in a slice-by-slice manner.  

Since JFA is naturally capable of computing 
Voronoi diagrams of generalized sites, we have also 
applied this variant in computing 3D generalized 
Voronoi diagrams. We have tested different types of 
sites including points, line segments, splines, etc. One 
interesting type of site is sphere. Voronoi diagrams of 
spheres have many applications in various areas, such 
as biochemistry [5]. Our variant can also handle this 
type of sites. Figure 8 shows a screenshot of our 
program using 50 spheres as the sites in a cube with 
the resolution of 512×512×512.  

 
6. Concluding Remarks  

 
In this paper, we present three novel variants of 

jump flooding algorithm to compute Voronoi diagrams 
in both 2D and 3D space. All of these variants retain 
the good property of JFA: their speeds are almost 
independent to the input size.  

The idea of putting sites at positions other than 
their original ones discussed in the third variant is 
interesting. This may help to find some special 
artificial patterns to further reduce the rate of errors or 
to obtain some interesting effects. 

For computing Delaunay triangulation (the dual 
graph of Voronoi diagram) in the continuous space, we 
are investigating the use of these JFA variants to build 
a fast program. The challenge includes converting 
intermediate solution (of Voronoi diagram) in the 
discrete space to final solution (of Delaunay 
triangulation) in the continuous space. Our aim is to 
understand how well this approach can perform as 
compared to existing good sequential programs such as 
triangle [11] in a 2D continuous space. We keep 
further updates on JFA and its applications at 
http://www.comp.nus.edu.sg/~tants/jfa.html. 
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