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Delaunay Mesh Refinement on the GPU
Zhenghai Chen, Tiow-Seng Tan, and Hong-Yang Ong

Abstract—We present three GPU algorithms for performing 2D and 3D Delaunay mesh refinement. For 2D, we present a GPU
constrained Delaunay algorithm which takes in a plane straight line graph as input and generates a conforming quality mesh. For 3D,
we present a GPU constrained Delaunay algorithm and a GPU restricted Delaunay algorithm, which both take in a piecewise linear
complex as input and generates a conforming quality mesh and an approximating quality mesh respectively. These algorithms adopt a
set of design strategies, aimed at improving GPU utility, which can be possibly applied to other mesh refinement solutions.
Experimental results show that our algorithms are faster than the current state-of-the-art counterparts (for both sequential and
multi-threading CPU versions) by up to an order of magnitude, while maintaining similar number of Steiner points being inserted. The
source codes of our mesh refinement software are made available online.

Index Terms—Parallel Meshing, Delaunay Triangulation, GPGPU, CUDA.
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1 INTRODUCTION

M ESH refinement is an important computation step in
many engineering and scientific applications, such

as finite element analysis, interpolation, GIS, path plan-
ning, etc. These applications usually require meshes, besides
being Delaunay, to conform to input constraints on line
segments or facets, and to meet certain quality criteria
such as bounds on the triangle area, angle, edge length,
tetrahedron volume, dihedral angle, aspect ratio, etc. Qual-
ity of meshes can significantly impact the performance of
applications, from the actual processing time required to
even whether the applications can terminate correctly. To
this end, Delaunay mesh refinement algorithms have been
proposed [1], [2] to refine meshes by inserting additional
points, called Steiner points, while maintaining the Delaunay
property of the output mesh. It is generally not desirable
for a mesh refinement algorithm to use excessively many
Steiner points as a large resultant mesh generally implies
that more computation is required for any following use of
the mesh in applications.

There are several good mesh refinement software im-
plementations in the past thirty years to address Delaunay
mesh refinement in 2D and 3D, notably, Triangle by
Shewchuk [3], TetGen by Hang [4], and CGAL’s 2D and
3D mesh generation packages [5], [6]. These software add
Steiner points one by one (or a few at a time in multicore
CPU) to refine a mesh until a quality one is reached. How-
ever, even on the most powerful CPU to date, it typically
takes a very long time for such implementations to compute
the result for large inputs. We thus want to explore the
use of the GPU, which is relatively affordable, to do mesh
refinement in a concurrent manner.

Our review of prior works shows that there was no
recent notable progress in the use of GPU for Delaunay
mesh refinement with input plane straight line graph in
2D or piecewise linear complex in 3D. It is known that this
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problem is irregular [7], as the number of required Steiner
points and the associated dependency-related issues are not
known beforehand. Thus, adapting the sequential approach
in a straight-forward manner for a parallel version will not
result in a performant algorithm.

To this end, we have studied 2D and 3D Delaunay
refinement problems and published our earlier findings in
two conference papers [8], [9]. Consolidating our learning,
the current paper presents a set of design strategies for GPU
solutions for mesh refinement problems. We show how it is
used to improve the performance of our previous works [8],
[9] and apply it to a different refinement problem (Section 7).
Specifically, the paper makes the following contributions:

1) A set of design strategies based on changes in
workload and computational resource utilization to
potentially achieve better speed up on the GPU.
These strategies are possibly applicable to many
other mesh refinement problems.

2) A GPU algorithm for 2D constrained Delaunay
mesh refinement (gDP2d) showing an order of
magnitude speed up to the CPU algorithms in
Triangle [3] and CGAL [5].

3) A GPU algorithm for 3D constrained Delaunay
mesh refinement (gQM3d) showing an order of mag-
nitude speed up to the CPU algorithm in TetGen
[4]; see Figure 1(a) and (b).

4) A GPU algorithm for 3D restricted Delaunay mesh
refinement (gDP3d) showing an order of magnitude
speed up to the multi-threading CPU algorithm in
CGAL [6]; see Figure 1(c) and (d).

Section 2 provides background on Delaunay mesh, fol-
lowed by Section 3 reviewing some previous works. Sec-
tion 4 describes the set of design strategies used in our
proposed algorithms. Section 5, Section 6, and Section 7
present our GPU algorithms for the 2D constrained, 3D
constrained and 3D restricted Delaunay mesh refinement
problems respectively, with the experimental results high-
lighted in Section 8. Section 9 concludes the paper. Source
codes, pre-built executable (for Windows) and the problem
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Fig. 1. Meshes generated by our GPU algorithms. (a) and (b) 3D quality CDT and its cut-off view generated by gQM3d on the Model 763718, Jacket.
(c) and (d) 3D quality RDT and its cut-off view generated by gDP3d on the Model 940414, Voronoi Lamp.

datasets referred in this paper are available at our project
webpage.

2 PRELIMINARIES

In 2D, consider a planar straight line graph (PSLG) G =
(P,E), where P is the set of points and E is the set of non-
crossing edges (with endpoints in P ). A mesh or triangulation
T of G is a decomposition of the convex hull of P into
triangles with all points and edges of G appearing as vertices
and union of edges in T . When E is empty, T is the
(unconstrained) Delaunay triangulation of G if the circumcircle
of each triangle t in T contains no other vertices. When E is
not empty, T becomes the constrained Delaunay triangulation
(CDT) of G if the circumcircle of each of its triangle t does
not contain any vertices except for possibly those not visible
(as blocked by edges in E) to all three vertices of t. If the
mentioned exception is dropped, T is also a conforming
Delaunay triangulation that conforms to G.

In 3D, consider a piecewise linear complex (PLC) G =
(P,E, F ), where P is the set of points, E is the set of edges
(with endpoints in P ) and F is the set of polygons (with
edges in E). Then, the Delaunay, constrained Delaunay and
conforming Delaunay triangulations of G can be defined
similar to that in 2D, but with the empty circumsphere of
tetrahedron and polygons in F blocking the visibility.

For the subsequent discussion, we call an edge in E a
segment, an edge in T which is also a part or whole of some
segment a subsegment, and a triangle in T which is a part or
whole of some polygon in F a subface.

There is another type of triangulation named restricted
Delaunay triangulation (RDT) T of PLC G = (P,E, F ) which
approximate G for use in applications. It is a Delaunay trian-
gulation where all vertices of T are sampled from edges in
E and polygons in F , such that the facets (triangles) of T
identify with polygons in F as follows. The Voronoi dual of
a facet (triangle) f of T is either (1) a line segment joining
the centers of circumspheres of the two tetrahedra (if exist)
incident to f , or (2) a ray that is perpendicular to f and starts
at the center of the circumsphere of the only tetrahedron
incident to f . A facet f identifies with a polygon g in F if
the Voronoi dual of f intersects g (and g is the closest to
f among all such polygons in F ). Such a facet f is also
termed a subface. That is, a facet f of a RDT T is a subface
representing the boundary of G when it can identify with
some polygon in F ; otherwise, it is in the interior of T .

The output of a mesh refinement algorithm can be an
unconstrained, constrained, conforming or restricted Delau-
nay triangulation, subjected to the input PSLG or PLC G
and the user’s requirements. In practice, such an output
triangulation usually contains, besides the points in G, some
Steiner points inserted to improve the triangulation quality.

We adopt the triangle-based and tetrahedron-based data
structure to represent the 2D and 3D triangulation respec-
tively, both of which are shown to be effective on the
CPU [4] and GPU [10], [11]. The point coordinates, vertex
lists of mesh elements (vertices, subsegments, subfaces,
triangles, or tetrahedra) and the neighborhood information
among mesh elements are stored in simple lists, which make
navigation and manipulation of the triangulation efficient.
We also adopt the infinite vertex from [3] to connect all
boundary edges to form virtual triangles in 2D, and to all
boundary faces to form virtual tetrahedra in 3D.

3 LITERATURE REVIEW

The sequential and parallel algorithms for Delaunay mesh
refinement are discussed in the following two subsections.

3.1 Sequential Algorithms
Given an input point set, the unconstrained Delaunay
refinement produces Delaunay triangulation with well-
shaped triangles or tetrahedra. Frey [13] and Weatherill
[14] eliminate poorly shaped triangles from a 2D Delaunay
triangulation by inserting their circumcenters and centroids
respectively. Dey et al. [15] and Chew [16] refine a 3D
Delaunay triangulation by inserting Steiner points at the
centers of circumspheres of tetrahedra with bad shapes,
both of which produce uniform meshes whose tetrahedra
are of roughly the same size.

For 2D, Chew’s algorithm in [1] performs constrained
Delaunay refinement which takes a PSLG as its input and
outputs a CDT, but sometimes has many more triangles
in the output than necessary. To overcome this shortcom-
ing, Ruppert’s algorithm [2] and Chew’s algorithm in [17]
have been proposed to produce constrained and conform-
ing Delaunay triangulation, respectively, with well-shaped
triangles of graded sizes. The popular open source program
Triangle by Shewchuk [3] and CGAL 2D mesh generation
package [5] are widely used for constrained and conforming
Delaunay refinement.

For 3D, conforming Delaunay refinement [18] produces
conforming Delaunay triangulation, where each subface has
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No. Strategies Bandwidth Efficiency Load Imbalance CPU Leveraging Load Fluctuation
S1 Compaction X
S2 Regularization X X X
S3 Filtering X
S4 Irregularization X X
S5 Deferment X X X

TABLE 1
Performance issues addressed by the design strategies used in mesh refinement. S1 and S2 are adapted from Table 2 in [12], while S3 to S5 are

conceptualized for mesh refinements to address different issues, including the added column of load fluctuation. The other strategies of tiling,
privatization, scatter to gather conversion, binning, data layout transformation and granularity coarsening in [12] are not in focus in this paper.

empty diametral sphere, by repeatedly splitting subseg-
ments and subfaces until all segments and polygons in the
input PLC appear as unions of subsegments and subfaces.
However, this process may result in inserting impractically
many Steiner points. By contrast, constrained Delaunay
refinement [19] reduces the expected number of Steiner
points needed by starting with a computed CDT of the PLC
before proceeding to refining the subsegments, subfaces and
tetrahedra iteratively. The popular TetGen [4] has a well-
implemented constrained Delaunay refinement algorithm.

For restricted Delaunay refinement such as [20] and [21],
the Delaunay triangulation is created from sampled vertices
of the input constraints. It has several advantages over
constrained and conforming Delaunay refinement: it is not
dependent on the quality of the input constraints; it may
lead to a better approximation of the input constraints and a
better quality mesh as well. The DelPSC [22] and CGAL 3D
mesh generation [6] software are based on this approach.

3.2 Parallel Algorithms
Many parallel algorithms, such as [23], [24], use domain
partitioning strategy to select a set of independent points
to refine the mesh. Blandford et al. [25] and Foteinos and
Chrisochoides [26] each presents an algorithm based on
memory locks. The CGAL 3D mesh generation software
mentioned in the previous subsection also implements a
CPU multi-threading version using this approach. These
works incorporate one or two design strategies, but may
still have room for improvement to achieve better speed up.

The works of [7], [27], and [28] build up a pattern language
of strategies and the accompanying software framework
to aid the development of parallel solutions to irregular
problems such as Delaunay mesh refinement. They provide
user-friendly APIs to exploit the parallelism in a wide range
of irregular algorithms. By comparison, our work in this
paper is of a different perspective to deal with the mesh re-
finement problem directly to explore all possible parallelism
opportunities.

In this respect, our work is most related in perspective
to [12]. They present a set of optimization patterns that can
address performance issues on GPU at low and high level
computation for both regular and irregular problems. We
adapt some of these design strategies but also conceptual-
ize new ones to address, besides their listed performance
issues, the issue of fluctuation workload throughout the
mesh refinement process. Our work focuses on high level
algorithmic design strategies, as summarized in Table 1.

4 DESIGN STRATEGIES ON MESH REFINEMENT

Delaunay mesh refinement is a don’t-care non-determinism al-
gorithm [29], i.e., different orders of refining mesh elements

lead to different resultant meshes that are all acceptable.
Among these results, those smaller in size are generally
more desirable as inputs to downstream applications. As
Delaunay mesh refinement is a process that iteratively re-
fines bad elements that do not satisfy some quality criteria, it
is desirable to be able to control the resultant mesh size and
to try to improve the performance of every iteration.

Each iteration of Delaunay mesh refinement inserts a
set of Delaunay independent points into the mesh. Two
points are termed Delaunay independent if they are not
connected to each other after their concurrent insertion
into the mesh; otherwise, they are Delaunay dependent. The
concurrent insertion of Delaunay dependent points is not
allowed because they can form short edges that can no
longer guarantee the termination of the algorithm. Conse-
quently, the number of Delaunay independent points that
can be inserted in one iteration has an upper bound, and will
usually be much smaller than the number of bad elements
considered in that iteration.

GPU algorithm consists of a serial of kernel programs,
hereafter simplified as kernels. A kernel can launch many
threads at once, where each thread can be assigned to per-
form some computation with respect to some unit of work in
parallel with other threads. For simplicity’s sake, our discus-
sion assumes all work assigned to threads in a launch must
be completed before another kernel can launch new threads.
The duration from the time when the threads are launched
to the time the slowest thread finished its work is the latency
for the launch. And the total amount of work done for the
launch is the concurrency. From Little’s Law [30], the through-
put for the launch is the ratio of concurrency to the latency.
The design strategies aim to achieve good throughput (that,
in general, also means overall good performance) for kernels
used in each iteration to insert Steiner points. This can be
achieved by either increasing the concurrency (subjected to
the mentioned upper bound) or reducing the latency for
each kernel. The following subsections discuss the design
strategies presented in Table 1 with respect to scenarios of
series of low workload, series of high workload, or a series
of mixture of both low and high workloads. In the context
of our algorithms, workload is determined by the number of
points considered for potential insertion into the mesh as
Steiner points, called splitting points.

4.1 Compaction and Filtering
Compaction is used to maintain potentially useful works in
contiguous global memory to make it more efficient when
launching processing threads. Concurrency is expected to
be increased at the cost of increasing the latency. Thus,
throughput can be improved if the former can well offset
the latter, which is most likely when workload is high, i.e.,
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there is more work than threads that can be assigned to
in an iteration. On the other hand, when workload is low,
i.e., there is not enough work to be assigned to most of
the threads, it may be better to forgo compaction to avoid
potentially decreasing the original throughput.

Filtering is a process done before compaction to mark
out work which are known to be useless, so that they can be
prevented from being assigned to threads subsequently. For
example, when a splitting point is to be inserted as a Steiner
point, no other splitting points which are Delaunay depen-
dent can be inserted. Filtering can help prevent processing
of such splitting points which will be useless. Together with
compaction, filtering can reduce the expected amount of
work which will end up not being useful in an iteration,
but at the cost of increased latency due to its processing.

Specifically, let the ideal concurrency of the GPU be C
and the effective concurrency after discounting the useless
work be αC where 0 < α < 1. Then the throughput is
T = αC

L by Little’s Law where L is the latency. Suppose that
we perform filtering before assigning the work. We improve
the effective concurrency to βC, where α < β ≤ 1, but
increased latency from L to L + ` where ` is the additional
computational time due to the filtering (and the subse-
quent compaction). Then, the throughput with filtering is
T ′ = βC

L+` . For T ′ > T , we require L+`
L < β

α . That is,
the proportion of increase in the time to do filtering must
be lower than the proportion of increase in the effective
concurrency. This can be used as an indicator for comparing
the effectiveness of filtering methods in empirical studies.

4.2 Regularization and Irregularization

Regularization is a way to break down a work into small to-
kens for threads to complete with roughly the same latency.
This can help to avoid unnecessarily high latency caused by
large variance in the time threads take to complete work,
resulting in better overall GPU utilization. In our context,
the process of identifying tetrahedra in the neighborhood
of a splitting points (within a mesh refinement iteration) is
broken down to one thread identifying one tetrahedron at a
time over many runs of a kernel in a regularized manner,
instead of one thread identifying all (of some unknown
number of) the tetrahedra in the neighborhood of a splitting
point with just one run of a kernel.

From certain aspects, mesh refinement has to be done in
groups with a certain order, prioritizing processing of some
mesh elements over others by their types (e.g., edges before
triangles, triangles before tetrahedra) to ensure completion
in finite time and with a finite number of Steiner points.
Regularization may cause work to be fragmented in such a
way that results in workloads that vary greatly, for example
processing only a few edges in one run resulting in low
GPU utilization, to a large number of tetrahedra in another
in good GPU utilization. To address this issue, we explore
the merging of two or more compatible groups of previously
regularized works, along with their associated kernels, into
an integrated larger group to try to achieve high overall
throughput. We call this design strategy irregularization.

Formally, let Li and Ci be the latency and concurrency
for work in group i, and Lj and Cj be those respec-
tively for group j. Assume we merge the work in the

two groups so that they are processed concurrently, with
resultant concurrency Cm and latency Lm. It is expected
thatCm ≥ max(Ci, Cj) and Lm = max(Li, Lj)+`, for some
value ` ≥ 0. Compare the expected throughput where we
process the two groups concurrently Tm = Cm

Lm
, against the

throughput if we process the groups in series Ts =
Ci+Cj

Li+Lj
.

In the optimal case where Cm ≈ Ci + Cj , we can achieve
better throughput, i.e., Tm > Ts, if ` < min(Li, Lj). In
the less than optimal case, however, ` may have to be
smaller to achieve improvement, or there may even be cases
where improvements are not possible due to low Cm or
high `. This understanding can guide the appropriate use of
irregularization in practice.

4.3 Deferment
To do computation on the GPU, we usually need additional
work to move and prepare the data. When these setup
costs are known to be high with respect to the speed up
gained from doing the computation on the GPU, it may
be better to perform the computation directly on the CPU
instead. For mesh refinement on the GPU, periods of low
workload can occur when the computation is just start-
ing, while the computation is in mid-progress, and when
the computation is finishing. Computations that will cause
low workload while starting can potentially be avoided by
performing them on the CPU instead, before continuing
on the GPU. Likewise, when there is low workload while
the computation is finishing, it may be more efficient to
transfer the current results back and finish the rest of the
required computations on the CPU. However, using CPU for
low workloads that happen during mid-progress is usually
not feasible, due to the high cost of transferring data back
and forth. Besides irregularization (Section 4.2) that can deal
with low workloads, we discuss below deferment strategy to
address two other situations of low workloads.

Within a mesh refinement iteration, the same kernel is
generally launched multiple times to process each splitting
point, to finally determine if it should be inserted into the tri-
angulation. However, due to the different number of kernel
launches required by each one, we may reach a case where
the majority have completed their computations, while the
kernel is still being launched repeatedly to process the few
remaining points, resulting in increasing expected latency
along with decreasing expected occupancy. One possible
workaround is to stop the current refinement iteration when
the number of splitting points with incomplete computation
is low, and process them in the next iteration instead. This
deferment can help improve the effective throughput of the
current iteration by preventing the latency from getting too
high while the occupancy is low, at the cost of increasing the
workload of the subsequent iteration, and can be effective
if thresholds are chosen such that the expected benefits
outweigh the expected penalties. As a further improvement,
the algorithm can be re-designed such that useful partial
results from interrupted computations of the splitting points
in the current iteration can be saved and re-used in the next
iteration when the same splitting points are processed.

A very similar situation can occur at another level, where
the instructions within a kernel can contain conditional
loops. Different threads may need different number of loops
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to complete, and when a small number of threads requires
many more loops than the other threads, it can result in
the kernel launch taking a long time to finish, even when
majority of the threads are already idling. Thus, a similar
approach may work: by terminating the remaining threads
when majority of threads have completed, and reassigning
the affected work to be processed in subsequent kernel
launches. Let L be latency, and C be the effective concur-
rency for the original case when all completed threads wait
until the slowest thread completes. Suppose that we now
terminate the remaining threads after the fraction of the
remaining threads reaches γ where 0 < γ < 1. Let the
new latency be (L − `), where ` is the reduction in latency.
Assuming that the terminated threads are evenly distributed
with respect to effective concurrency, the mean throughput
will be (1−γ)C

L−` . For the new case to be an improvement, we
need (1−γ)C

L−` > C
L , or when simplified, `

L > γ. That is, the
proportion of reduction in latency must be larger than the
proportion of the loss in effective concurrency.

5 2D CONSTRAINED DELAUNAY

Given an input PSLG G, angle θ and edge length l, the goal
is to output a CDT T of G that contains few, if not zero,
bad triangles. A triangle is said to be bad if it has an angle
smaller than θ or an edge longer than l. If there are some
input angles, formed by segments in G, smaller than 60◦,
the algorithm will end up with some bad triangles near the
small input angles [31]. Such bad triangles are unavoidable
and are acceptable in the output [2].

5.1 Overview of gDP2d

Algorithm 1 shows the high-level flow of gDP2d. It can be
configured to compute CDT like Ruppert’s algorithm [2],
or conforming Delaunay triangulation like Chew’s algo-
rithm [17] using different definitions of encroachment: for
the former, a subsegment ` is encroached if there exists a
vertex p of T or a splitting point inside the diametric
circle; it is similar for the latter with the exception of using
diametric lens instead of circle. In either case, we say p
encroaches `. Midpoints and circumcenters are the splitting
points associated with encroached subsegments and bad tri-
angles respectively. Starting with a CDT T at Line 1 (easily
obtained using [3] on CPU or [10] on GPU), we concurrently
process all mesh elements of encroached subsegments and
bad triangles together (S4) in one iteration (Line 2 to
Line 9) until no further processing needed to improve the
quality of the triangulation. When the circumcenters become
Steiner points, they are also termed free points in T .

Encroached subsegments and bad triangles that need to
be processed are collected into an array L in GPU global
memory (Line 3). The associated splitting point for each
element is computed concurrently in a thread (Line 5).
When there are few mesh elements in L to be processed,
compaction (S1) at Line 3 can be skipped to avoid intro-
ducing additional latency. When selecting a splitting point
for insertion, there is an order of preference (Line 6) where
the midpoint of a longer subsegment is preferred over that
of a shorter one, circumcenter of a larger triangle over that
of a smaller one, and any midpoint over any circumcenter.

Algorithm 1: gDP2d
Input: PSLG G; constant θ and l
Output: Quality Mesh T , which is a constrained or

conforming Delaunay triangulation
1 Compute the CDT T of G
2 repeat
3 Collect encroached subsegments and bad

triangles into L (S1, S2, S4)
4 if L 6= ∅ then
5 Compute the splitting point set S of L
6 Prioritize and locate points of S in T (S1)
7 Filter S with cavity approximation (S3, S5)
8 Insert S into T with adapted Flip-Flop

(S1, S2, S3, S4)

9 until L = ∅

In each thread processing a mesh element, the triangle of
T containing its splitting point is located by walking from
triangle to triangle (Line 6). Note that in the process of
locating a splitting point of a bad triangle, we may pass
by a triangle incident to some subsegment. In this case, we
simply adopt the midpoint of the subsegment as the located
splitting point and also mark the subsegment as encroached.

Let S be the set of splitting points for consideration for
insertion into T via flip operations. A flip is an operation
that replaces two triangles cab and acd sharing ac by the
two alternative triangles abd and dbc. All insertions are to be
done through the flip process while maintaining the Delau-
nay property of T (Line 8). However, to ensure termination
of the algorithm with flips introducing new edges into T ,
there are two scenarios which need to be identified and
handled: first, when a circumcenter s ∈ S is found to be
incident to some other splitting point s′ ∈ S of a higher
priority (i.e., s is Delaunay dependent to s′) in the same
iteration; second, when a free point s is found to encroach a
subsegment (as s becomes a vertex of a new triangle incident
to the subsegment). In both cases, s becomes redundant and
has to be removed. To avoid many such costly removals
of splitting or free points, filtering is added at Line 7.
To further improve the effectiveness, adapted Flip-Flop
from [11] is used at Line 8 to perform both flip and flop
operations appropriately in the same iteration where flop
removes a redundant point along with its incident edges;
see Figure 2. These are discussed in detail in the next two
subsections.

5.2 Filtering

Each triangle in T can be possibly split by at most one
splitting point at the beginning of one iteration. Thus,
when a triangle of T encloses two or more splitting points,
only the one with the highest priority should be retained
(Line 7). This can be done quickly by one kernel where
we assign one thread to each splitting point p and mark the
triangle where p lies with its priority if the triangle is either
unmarked, or previously marked with another splitting
point of lower priority, after which those splitting points
which successfully retain their markings on the triangles
they lie in are retained in S .
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Fig. 2. A redundant point a together with its neighboring vertices are
shown on the left. We first flip ac to bd, and then flip ae to df . These flips
reduce the degree of a to 3. Then, we can remove a by performing the
flop at a, i.e. remove the three edges ab, ad, and af together with a. For
this example, it is also possible to reduce the degree of a to 3 with other
flips in order to remove a. The result is a different configuration from that
shown on the right.

With the above, there can still be groups in S , each with
two or more splitting points, that are Delaunay dependent
to each other but not lying in a same triangle of T at the
beginning of one iteration. Each group can only be known
after all its splitting points were actually inserted into T
and found to be connected by new edges in T . If there are
many such groups, where the splitting points will need be
removed just after being added as Steiner points, it results
in a lot of unnecessary work. Fortunately, it is possible to
reduce this by the following filtering.

A kernel is used (Line 7) to assign one thread for each
splitting point p to attempt to determine Np, the set of
triangles whose circumcircles enclose p, termed cavity of p.
Starting from the triangle p lies in, for each such triangle
found, its neighboring triangles will be queued for testing
if it has not already been tested. However, each thread
is only allowed to test up to a maximum of n triangles,
where n is a predetermined integer, to prevent each from
holding up the other threads which have finished their
work. The incomplete work are deferred to be processed
by Flip-Flop described in the next subsection (S5). Thus,
the computed Np is not the exact but approximated cavity
of p. LetNq be the computed approximated cavity of q. IfNp
and Nq contain a common triangle (that can be detected via
atomic operations to mark triangles), p and q are dependent
and one of them is dropped from subsequent processing.

5.3 Flip-Flop
Line 8 of Algorithm 1 is where the actual insertion of the
splitting points is performed, which also removes free points
and Delaunay dependent points that are discovered to be
redundant along the way. It is an adaptation of Flip-Flop
from [11], incorporating our design strategies to achieve bet-
ter parallelism; see Algorithm 2. Initially, for each splitting
point in S , Flip-Flop uses a thread to insert it into the
triangle it lies in T , subdividing this triangle into smaller
ones (Line 1). Then newly created edges are processed by
Line 2 to Line 8 until the CDT property of T is restored
and there are no redundant points, as explained below.

Subsegments in T are not involved in flip or flop. For
an edge e in T which is not a subsegment, it is termed
flippable when (i) the union of the two triangles incident to
e is a convex region, and (ii) the sum of the two angles (of
triangles) opposite e is larger than π or when e is connected
to redundant points whose degrees are larger than 3. If e is

Algorithm 2: Flip-Flop
Input: Splitting point set S ; CDT T
Output: CDT T , which is augmented with points in

S that are not redundant points
1 Insert splitting points in S into T
2 repeat
3 Collect flippable and floppable edges into K

(S1, S2, S4)
4 if K 6= ∅ then
5 Prioritize and filter edges in K (S1, S3)
6 Perform flip and flop on K and update T
7 Discover redundant points in T
8 until K = ∅

connected to any redundant point with degree of exactly 3,
it is termed floppable. A flip is performed on a flippable edge
ac to replace ∆cab and ∆acd with ∆abd and ∆dbc. A flop is
performed to remove the redundant point a as well as the
three edges incident to a in T . That is, as in Figure 2, the
flop at a resulted in ∆bdf replacing ∆abd, ∆adf , and ∆abf .
In general, to remove a redundant point, flips are performed
to reduce its degree to 3 before a flop is performed.

Although flip and flop both use regularization (S2) to
make workload more balanced among threads (where each
thread performs a single flip or a single flop), performing
flips and flops in separate kernels can result in fluctuating
workload as the number of flips is usually much larger
than flops, since majority of the Delaunay dependent points
would already have been filtered out in Line 7 of Algo-
rithm 1. To address this issue, Flip-Flop performs flip
and flop together using irregularization (S4). Specifically,
in Algorithm 2, Line 3 checks all edges of newly created
triangles from Line 1 or Line 6, and collects those that
are flippable or floppable into a list K using compaction
(S1). However, when the number of flippable plus floppable
edges is small, compaction can be suppressed to avoid
unnecessary increase in latency.

Before the actual flip or flop operations, edges in K
are first prioritized and filtered in Line 5 (S3). Floppable
edges are given higher priority over flippable edges so that
redundant points which have remaining degree of 3 can
be removed quickly. For the same reason, among flippable
edges, those connected to redundant points are given higher
priority than those which are not. A flip performed on an
edge e changes the two triangles sharing e, which may
conflict with other flippable or floppable edges in the two
triangles. Similarly, a flop affects the three triangles sharing
the redundant point. To workaround this, a kernel is first
executed where each thread representing an intended flip
or flop operation attempts to mark the affected triangles
using its assigned priority, which will only be successful
if the triangles are unmarked or were marked with a lower
priority. After this process, only those intended flip or flop
operations which retained all their marks are executed in
Line 6.

Flip and flop, which change the mesh by removing
and creating edges and triangles, can result in more points
becoming redundant. These are identified at Line 7: if a
new edge connects one circumcenter and another splitting
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point, both of which then become Delaunay dependent,
the point with lower priority is marked as redundant; if
a new triangle contains a subsegment that is encroached by
the opposite vertex (a free point), that vertex is marked as
redundant.

6 3D CONSTRAINED DELAUNAY

Given an input PLC G and a constant B, the 3D CDT
problem is to compute a CDT T of G with few, if not zero,
bad tetrahedra. A tetrahedron is bad if the radius-edge ratio,
i.e. ratio of the radius of its circumsphere to its shortest edge,
is larger than B. When boundary polygons in G meet at
small angles, any refinement algorithm will end up with
some bad tetrahedra in the vicinity of these angles [32].
In a situation where the given PLC G includes the water-
tight boundary of an object, the refinement problem usually
concerns only with the part of the triangulation enclosed
within the boundary instead of the convex hull of the
vertices of the PLC.

6.1 Overview of gQM3d

A subsegment or subface e is encroached when there exists
a vertex p of T or a splitting point inside the diametric
sphere of e. In this case, p is called an encroaching point
that encroaches e. For an encroached subsegment, we use its
midpoint as the splitting point; for an encroached subface,
the center of its circumcircle; for a bad tetrahedron, the
center of its circumsphere. Our algorithm gQM3d is shown
in Algorithm 3. First, the CDT T of the input PLC G is
computed (Line 1). For G, we can assume its CDT exists
or can be guaranteed by applying [33] to split some edges.
This can be done directly on the CPU because it is light.
Next, gQM3d splits the encroached subsegments with their
midpoints and the encroached subfaces with the centers of
their circumspheres (Line 2). Although this can be done on
the GPU, experimentation has shown that it does not offer
any particular advantage over doing it on the CPU due to
requiring many iterations with light workload resulting in
underutilization of the GPU. This step is thus carried out in
CPU (S5) before moving the data to GPU to continue the
rest of the computation in GPU (Line 3 to Line 10).

Line 4 first collects and irregularizes (S4) all encroached
subsegments, subfaces and bad tetrahedra into list L, after
which their splitting points are concurrently computed and
stored in S (Line 6). To guarantee termination, the splitting
points for mesh elements of lower dimensions are given
priorities over those of higher dimensions (Line 7). Among
elements of the same dimension, however, experimental
results have shown that better speed up can be achieved
by prioritizing larger elements, based on length for sub-
segments, area for subfaces, or volume for bad tetrahedra.
This can be interpreted as trying to achieve better GPU
utilization by breaking up larger elements earlier, which can
create more elements to process and reduce the variance
with subsequent thread latencies. Line 7 also concurrently
locates tetrahedra containing the splitting points. For s ∈ S
from an encroached subsegment, it is located simply at any
of the tetrahedra incident to the subsegment. For s ∈ S from
an encroached subface or a bad tetrahedron, it is located by

Algorithm 3: gQM3d
Input: PLC G; constant B
Output: Quality mesh T , which is a CDT

1 Compute the CDT T of G
2 Split encroached subsegments and subfaces in T

(S5)
3 repeat
4 Collect encroached subsegments, subfaces and

bad tetrahedra into L (S1, S2, S3, S4)
5 if L 6= ∅ then
6 Compute the splitting point set S of L
7 Prioritize and locate the points in S (S1, S3)
8 Grow and shrink cavities of points in S

(S1, S2, S3)
9 Insert S into T

10 until L = ∅

walking from tetrahedron to tetrahedron, starting from the
encroached subface or bad tetrahedron.

For s to be inserted into T (Line 9), we need to
compute the set of tetrahedra, called the cavity of s, whose
circumspheres encloses s and all vertices being visible to
s (Line 8). When s is indeed inserted into T , the cavity
of s is removed and replaced with new tetrahedra with s
as a vertex, maintaining the CDT property. This dictates
that no two splitting points whose cavities overlap can be
inserted into T concurrently. Thus, during the computation
of cavities (Line 8), some points in S are filtered out when
their cavities are found to be overlapping with cavities from
other splitting points with higher priorities. This is done
by attempting to mark the tetrahedra in the cavity for each
s ∈ S , starting with its tetrahedron t found in the previous
step (Line 7), in an atomic operation, where a marking
is successful only if the tetrahedron is unmarked or has a
marking associated with a splitting point of lower priority.
All splitting points which cannot retain the markings on all
the tetrahedra in their cavities will be filtered out. Line 8
will be further detailed in the next three subsections.

At Line 9, the remaining splitting points can be inserted
into T with one exception: if two splitting points si and sj
have cavities that share a triangle f that is not a subface,
they may be Delaunay dependent and require sisj to be
inserted to the CDT. If this edge is too short, the algorithm
may not terminate. This can be avoided by performing a
simple operation before any insertion: if the circumsphere
of the tetrahedron formed by si and f encloses sj , remove
either si or sj (whichever having the lower priority). After
the insertion, some housekeeping has to be done to main-
tain correct cavity and neighborhood information, further
discussed in Section 6.5.

6.2 A Tuple-based ExpandList Algorithm
Besides the basic triangle and tetrahedron data structure,
higher-level general tuple-based lists (arrays) in the GPU
global memory are used to support concurrent computa-
tions by thousands of threads using regularization (S2). For
example, the list L in Line 4 of Algorithm 3 is a tuple list.
Given a tetrahedron t with its one face f , we write it as
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Algorithm 4: ExpandList
Input: Tuple list H ; Predicate; Op_True;

Op_False
Output: Augmented tuple list H

1 Set left = 0, and right = length(H) −1
2 repeat
3 for each tuple h ∈ H[left . . . right] do
4 if Predicate(h) then
5 Op_True(h)

6 else
7 Op_False(h)

8 Filter out invalid tuples in H (S1, S3)
9 Set left = right + 1, and right = length(H) −1

10 until left > right

a tuple 〈t, f〉. Then, the tetrahedron t′ sharing the face f
with t, which can be obtained in constant time from the
standard tetrahedron data structure, is written as 〈t′, f〉. For
a mesh element e, we write 〈e, 〈t, f〉〉 to indicate that face f
of tetrahedron t is relevant in some way to e.

To support the dynamic nature of growing or shrinking
of tuple-based lists in our algorithm, we design the generic
Algorithm 4 that operates on a tuple listH . In each iteration,
the algorithm performs concurrent operations on a range
of tuples (the operation window) in the list H indicated by
index positions left and right. Each tuple h can be processed
by one of the two pre-designated operations Op_True and
Op_False depending on the result of the Predicate func-
tion which is first applied to it, allowing tuples that require
non-similar operations to be processed together within the
same iteration. Either function can modify existing tuples in
H or add a pre-determined fixed number of new tuples to
another tuple list or H itself (positions are reserved using
prefix sum), thus allowing H and its operation window to
change dynamically during processing.

In Line 8 of Algorithm 4, compaction (S1) and filtering
(S3) of tuples in H can be suppressed if the operation
window does not have many tuples. In other words, we
can skip the compaction and filtering when it is likely to be
ineffective, or even counter-productive due to the inherent
cost of increasing expected latency.

6.3 Growing Cavity
The cavities for splitting points can have a large variance in
size (in number of tetrahedra). Finding the complete cavity
of a splitting point in a single thread will result in severely
unbalanced work: threads which completed their work very
early will be forced to wait a long time for the slowest
thread. To address this, we partition the work of computing
a single cavity further, so that each part can be processed
by a separate thread (regularization, S2), thus reducing the
expected variance in latencies. This approach uses tuples
and is fully compatible with ExpandList (Algorithm 4).

For a mesh element e in L (Algorithm 3) with p ∈ S , Tp
denotes all tetrahedra in T intersecting p. Initially, tuples in
{〈e, 〈t′, f〉〉|f is a facet of t ∈ Tp, f∩p = ∅ and t∩t′ = f} are
added to H . That is, the initially known cavity of p consists
of those tetrahedra t in Tp, and the neighbors t′ of t are

then added to H to be processed. Here, the Predicate
is insphere, where given a h = 〈e, 〈t′, f〉〉, returns True
when the circumsphere of t′ encloses p (retrieved via e);
otherwise it returns False. For Op_True, it will attempt
to mark t′ with the priority of p in an atomic operation to
include t′ into the cavity of p. If successful, it continues to
add the other neighbors (at most three excluding t) of t′ toH
to be processed in the next iteration; if not successful, p is to
be removed from S . As for Op_False, since a tetrahedron
t′ immediately outside the cavity of p is found, it can be
added in a new tuple 〈e, 〈t′, f〉〉 to H , which keeps track of
all tetrahedra that failed the insphere test , which will be
used subsequently for the shrinking of cavities.

When the whole ExpandList has been processed (loop
in Algorithm 4 terminates), each mesh element e with its
corresponding tuples 〈e, 〈t, f〉〉 that successfully retain their
markings on all t will have identified all the tetrahedra that
may be part of the cavity of p where p is the splitting point
of e. The workload is typically high when growing cavity
Line 8 (Algorithm 3) as the list L (Line 4) is directly
dependent on the number of encroached subsegments, sub-
faces and bad tetrahedra collected. Thus, it is desirable to
apply filtering (S3) to reduce waste in computation due to
dependency conflicts. One such means explored is to use 3D
grid approximations of the cavities of splitting points as a
quick test for possible conflicts, similar to gDP2d for the 2D
case. In practice, L is observed to be capable of becoming
very large without filtering, which can result in insufficient
memory on the GPU. To address this, L is kept sorted by
priority and only the portion with the highest priorities is
maintained on the GPU.

The above describes the case where cavities are formed
by tetrahedra. As subfaces are possible constraints from
input, subface cavities, i.e., cavities formed by triangles, may
also need to be identified. Growing cavities on triangles is
similar to the tetrahedra case, with the following two key
differences: (1) the insphere test of the latter is replaced by
the incircle test, which returns True if a point is inside
the circumcircle of the triangle; (2) growing with tetrahedra
can cross subfaces but growing with triangles must respect
visibility and cannot cross subsegments.

At this point, even though some splitting points with
cavities that are non-overlapping have been identified, not
all can be inserted into T yet, as there may be other split-
ting points with higher priorities that are conflicting. More
specifically, splitting points of bad tetrahedra that encroach
existing subfaces or subsegments, and splitting points of
subfaces that encroach existing subsegments cannot be per-
formed until these encroached subfaces and subsegments
have been split; see Figure 3. Disregarding occlusions due
to subfaces during growing of cavity enables easy iden-
tification of splitting points that are not good candidates
for insertion in the following manner. Consider a tuple
〈e, 〈t, f〉〉 in H corresponding to a splitting point p of e.
If e is a bad tetrahedron and f is a subface, check if f
is encroached by p; if e is a subface or a bad tetrahedron,
and f is bounded by some subsegments, check if any such
subsegment is encroached by p. If the check is True in either
case, p is filtered out in the current round of point insertions;
otherwise, if f is a subface, 〈e, f〉 is added to another list
Hs which will be used (together with H) for shrinking of
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Fig. 3. An example where p is the splitting point of some bad tetrahedron
with its cavity grown to include subface abc and subsegment bd. As p
encroaches upon abc, it cannot be inserted before the insertion of the
center q of the circumcircle of abc. In this example, q in turn encroaches
upon bd and thus cannot be inserted until bd has been split into two
subsegments. In another setting, it can happen that p encroaches
upon bd but not necessarily abc. Because visibility was not taken into
consideration in the growing of the cavity of p, all these encroachments
can be discovered by checking tuples in H to avoid any unnecessary
attempts to insert p or q before splitting bd.

cavities discussed in the next subsection.

6.4 Shrinking Cavity
Since visibility was not respected during growing of cavities
by tetrahedra, it needs to be addressed by a cavity shrinking
process. First, for each tuple 〈e, f〉 in Hs, with p as the
splitting point of e, a thread is used to first determine if
f is an interior subface of the cavity of p; i.e., when both
incident tetrahedra to f are marked with the priority of e. If
so, the tetrehedron t with a vertex that lies on the opposite
side of f with respect to p is excluded from the cavity of p
as it is not visible to p. For each of the four faces f ′ in t, the
tuple 〈e, 〈t, f ′〉〉 is added to H (containing tetrahedra which
failed the insphere test during cavity growing stage).

Next,H is an input to ExpandList for processing. Here,
the Predicate is the diffSide test that takes a tuple
〈e, 〈t, f〉〉 due to splitting point p, and checks the vertex
v (not on t) of the other tetrahedron t′ (if exists) sharing
f with t to return True when v and p are on different
sides of the plane passing through f ; otherwise, it returns
False. Op_True marks t′ to exclude it from the cavity of p,
then adds one tuple 〈e, 〈t′, f ′〉〉 for each f ′ 6= f of t′ to H .
Op_False adds the tuple 〈e, 〈t′, f〉〉 to a new list Hr, used
for remeshing described in the next subsection; see Figure 4
for an illustration. When the above-mentioned process has
finished, all tetrahedra known not to be in any cavity are
in H . As such, the list H can be updated through H to
keep only tuples (of tetrahedra) of cavities, and then H is
no longer needed and is set to empty for subsequent use.

At this point, one last filtering process remains that will
ensure that only the splitting points which are indeed mutu-
ally Delaunay independent are retained in S . Consider two
splitting points p and q. They are Delaunay independent if
the intersection of their cavities is either empty or comprises
only of vertices, edges, or triangles which are subfaces. If the
cavities of p and q share a triangle f which is not a subface,
one of them has to be filtered out of S to ensure Delaunay
independence among the remaining splitting points, using
the following procedure: for each 〈e, 〈t, f〉〉 in H , if f is
incident to two tetrahedra (including t) that are also in the
cavities of two splitting points p (of e) and q (of the other
element), if q is in the circumsphere of tetrahedron formed
by p and f , then the splitting point with the lower priority

a b

c

d

i
g

p

Fig. 4. An example where p is the splitting point of subsegment bd
and abc is a subface in the cavity of p. Initially, 〈bd, 〈abcg, acg〉〉,
〈bd, 〈abcg, abc〉〉, 〈bd, 〈abcg, bcg〉〉 and 〈bd, 〈abcg, abg〉〉 are tuples of
H as an input to ExpandList. For 〈bd, 〈abcg, acg〉〉, its neighbor is
〈acgi, acg〉 with i and p on different sides of acg. Thus, acgi is marked
as no longer in the cavity of p, and three new tuples 〈bd, 〈acgi, aci〉〉,
〈bd, 〈acgi, cgi〉〉, and 〈bd, 〈acgi, agi〉〉 are added intoH for further explo-
ration by ExpandList. As for 〈bd, 〈abcg, abc〉〉, its neighbor 〈abcd, abc〉
has vertex d and p on the same side of abc, and this neighbor thus
remains in the cavity of p and is added to Hr for use in remeshing.

between p and q is filtered out of S . After this, the splitting
points in S are ready to be inserted into T .

6.5 Remeshing Cavity

To remesh cavities, the boundary tetrahedra of the cavities
are derived from Hr. Recall that a tuple 〈e, 〈t, f〉〉 was
added intoHr because it was uncertain whether t is actually
inside the cavity of the splitting point of e as t may be
excluded from the cavity in subsequent processing. Each
tuple 〈e, 〈t, f〉〉 in Hr is checked and removed if t is no
longer marked by the priority of e. Then, for each 〈e, 〈t, f〉〉
in Hr , identify each neighbor t′ sharing the triangle f and
add the tuple 〈e, 〈t′, f〉〉 into H (which was set to empty for
reuse here after completed its purpose in shrinking cavities).

To create the new mesh, for each tuple 〈e, 〈t, f〉〉 in H , a
new tetrahedron is created from f and the splitting point p
of e. The neighborhood information is updated in two parts.
First, each new tetrahedron is updated straightforwardly
with (at most) one neighbor outside the cavity as available
in H . Second, two new tetrahedra adjacent to each other
inside the same cavity need to be updated as neighbors.
This is achieved for each such tetrahedron t by walking the
tetrahedra outside the cavity around an edge of t (and of its
neighbor) until its neighbor inside the cavity is reached.

Similarly, for each tuple 〈e, 〈f, h〉〉 in the list used to
record subface cavity, a new subface is formed by edge h
and pwhich is the splitting point of e. In addition, if p is on a
subsegment ab, two new subsegments pa and pb are created.
The neighborhood of the new subfaces and subsegments are
then updated, which can be done straightforwardly.

7 3D RESTRICTED DELAUNAY

Given an input PLC G = (P,E, F ), and constants B, R, θ,
r, the 3D RDT problem is to compute a RDT T of G that
contains no bad subfaces and no bad tetrahedra. A subface
(triangle) f is bad if its minimum angle is smaller than θ,
or if the radius of its Delaunay sphere, the circumsphere of
f centered at the intersection point of the Voronoi dual of
f and the polygon identified with f , is larger than r; see
Figure 5. A tetrahedron t is bad if its radius-edge ratio is
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Fig. 5. a, b and c are three points sampled on E or F of the input
PLC G = (P,E, F ). These points form a facet abc in the Delaunay
triangulation T of the set of sampled points. For here, this facet is a
subface as its Voronoi dual segment de, where d and e are the centers
of circumspheres of the two tetrahedra incident to abc, intersects some
polygon of F at point h. So, abc is one among the many facets to
approximate the boundary of F . Facet abc is bad if its minimum angle
is smaller than θ or the radius |hb| of its Delaunay sphere is larger than
r. In this case, one or more sampled points are needed to refine T and
thus replace abc with other subfaces.

larger than B, or if the radius of its circumsphere is larger
than R.

To simplify the discussion, we assume that polygons
in F form a water-tight 3D volume, i.e., a RDT T of G
is a 3D complex formed by a collection of tetrahedra that
defines the interior or volume of T . However, it should
be noted that the discussion remains applicable to a more
general G (Section 8.3 shows some such examples in the
experimentation).

An approach to the problem such as [6], [20], [21] is
to iteratively refine a bad subface or a bad tetrahedron
by inserting Steiner points until no bad subfaces or bad
tetrahedron remains. In the case of a bad subface, the center
of its Delaunay sphere (such as h in Figure 5) is used as a
splitting point for potential insertion into T to be a Steiner
point. In the case of a bad tetrahedron, the center of its
circumsphere is used instead. During the insertion process,
splitting points of bad subfaces are prioritized over those of
bad tetrahedra. And, facets which were subfaces may lose
that status when they become interior facets. Likewise, new
facets may become new subfaces of T .

7.1 Overview of gDP3d
gDP3d (Algorithm 5) works by inserting multiple Steiner
points concurrently in each iteration (Line 2 to Line 10)
until no bad subface or bad tetrahedron remains. Before this,
it first computes a small Delaunay triangulation T (Line 1)
from a random sampling of vertices from P , which can be
done on the CPU since it is lightweight, or directly on the
GPU. To assist in the computation, T is placed in a bounding
box large enough to contain all elements of G. Both the
interior of T and the exterior of T in the bounding box
are triangulated with tetrahedra.

Algorithm 5 is similar to Algorithm 3, but uses
ExpandList for growing cavities (but not shrinking) and
intersection testing (detailed in the next subsection). Note
that splitting points can have varying sizes of cavities.
Although ExpandList is designed to try to reduce the
imbalance in the work among threads when growing the
cavity, it is still possible to reach a particular case when most
growing are done and the few remaining ones continue to

Algorithm 5: gDP3d

Input: PLC G = (P,E, F ); constants B, R, θ and r
Output: Restricted Delaunay triangulation T of G

with no bad subface nor bad tetrahedra
1 Compute a T with a small number of vertices in P
2 repeat
3 Collect bad subfaces, bad tetrahedra into L

(S1, S2, S3, S4)
4 if L 6= ∅ then
5 Compute the splitting point set S of L
6 Prioritize and locate the points in S (S1, S3)
7 Compute cavities of points in S

(S1, S2, S3, S5)
8 Insert S into T
9 Update status of facets and tetrahedra

(S1, S2, S3, S4)

10 until L = ∅

be worked on over many iterations (Line 2 to Line 10,
Algorithm 4). In other words, there are many iterations with
low workload which underutilizes the GPU. To address this,
the implementation (Line 7, Algorithm 5) is designed to
allow deferment (S5) of the growing of cavities but to record
the partial cavities, so that when the work is rescheduled,
it can be continued from where it was interrupted. In this
particular case, when the number of remaining tuples in H
becomes low, the incomplete cavities are recorded so that
if they are still incomplete when ExpandList terminates,
they can be attached to their associated bad subfaces or
bad tetrahedra which will become part of L (Line 3, Al-
gorithm 5) to be processed in the subsequent iteration.
T approaches G as more tetrahedra are added to it.

During the whole process, the algorithm needs to keep
track the various status of the facets and tetrahedra, up-
dating them as necessary. At Line 9, all existing subface
designations are cleared, and new subfaces are identified
among the facets of new tetrahedra where their Voronoi
duals intersect polygons in F . In addition, new tetrahedra
created at cavities are marked as either being interior or
exterior to T which has implications: interior tetrahedra are
part of the desired result and should not be bad; exterior
tetrahedra have no restrictions but are not candidates for
subsequent refinement, though they may be replaced in
the process. This is determined by an intersection testing
process detailed in the following subsections.

7.2 Intersection Testing by ExpandList

New facets and tetrahedra are formed at Line 8. Newly
created facets, together with existing subfaces, have to be
processed to identify the updated set of subfaces (Line 9):
a facet is (or remains) a subface if the line segment of
its Voronoi dual intersects some polygon in F . For newly
created tetrahedra, they need to be categorized between
being interior or exterior (Line 9): a tetrahedron is interior if
a ray originating within it (approximated by a line segment
ending at where it intersects the bounding box) intersects an
odd number of polygons in F ; otherwise, it is exterior.

Both the procedures on facets and tetrahedra requires
intersection tests of line segments with polygons in F . To
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support this on the GPU, a balanced AABB (Axis-Aligned
Bounding Box) tree is constructed over all polygons in F
and stored as a flat array in the GPU global memory, where
each node records the bounding box over the polygons
represented in its subtree. As such, the root node holds the
bounding box over all polygons in F . At each node, the
polygons are partitioned based on their ordering along the
longest axis of the bounding box, where first half of the
polygons are assigned to the left child, while the remaining
are assigned to the right child, until each leaf node contains
exactly one polygon from F . The AABB tree can be com-
puted efficiently on the CPU before the result is moved to
the GPU where the actual intersection tests are performed.
For a given line segment r, simplified intersection tests are
performed with the bounding box of a node (starting with
the root node) and traversed down the children nodes if they
are positive. This continues until the leaf nodes are reached,
where the intersection test between r and the polygon stored
in each leaf is performed. In practice, the height of the AABB
tree is usually small (≤ 20 in our experiments) and the
intersection tests can reach the leaf nodes quickly.

With the AABB tree, Line 9 of Algorithm 5 works as
follows. For each new tetrahedron, there are 5 line segment
intersection tests required: four from the Voronoi dual of
the facets for the subface test, and one representing the
ray for the interior/exterior test. The ExpandList (Algo-
rithm 4) is implemented for performing these intersection
tests concurrently on each new tetrahedra plus one each to
re-classifying existing subfaces. Each line segment ` to be
tested is stored as a tuple 〈`, node〉 in H to be processed
by a thread, where node is initialized to be the root node
of the AABB tree over the polygons in F . The Predicate
returns True for 〈`, node〉 if ` intersects the bounding box
or the polygon of F stored in the node; it returns False
otherwise. For Op_True, if the node has child nodes, two
tuples 〈`, lnode〉 and 〈`, rnode〉 are appended to H , where
lnode and rnode are the left and right child nodes of node
in the AABB tree respectively. Op_False marks the tuple
to indicate that it no longer requires processing. When the
ExpandList process has completed, each remaining tuple
〈`, node〉 in H represents the intersection of a line segment `
and a polygon stored in node. If ` originates from a Voronoi
dual of some facet f , f is marked as a subface. If ` originates
from a ray out of a tetrahedron t, t is interior if the number
of remaining tuples in H with ` in them is odd. Otherwise,
t is exterior.

7.3 Considerations on Intersection Testing
Regularization (S2) and filtering (S3), as considered in the
intersection testing using ExpandList, are discussed in the
next two paragraphs, followed by irregularization (S4) in
the remaining two paragraphs.

An alternate way of performing intersection testing us-
ing the AABB tree mentioned in the previous subsection
is to perform full traversals of the tree in a thread to
locate and count the actual intersections. This naı̈ve method,
however, suffers from unbalanced work because the actual
number of required intersection tests is unknown for each
line segment. In comparison, ExpandList implements reg-
ularization (S2) by vectorizing the work into traversal steps,
such that better GPU utility can be achieved.

A facet f may have some of its vertices sampled from
polygons in F . In this case, the polygons used are in the
vicinity of f which makes it more likely that the Voronoi
dual of f intersects them. Thus, it is useful to first check
for such an occurrence in a thread per facet and process it
accordingly: if intersection does occurs, f will be classified
as a subface, and will be omitted from the ExpandList pro-
cessing; otherwise, a tuple associated with the Voronoi dual
of f will be inserted into H for processing by ExpandList
(described in previous subsection). The above procedure,
which excludes some facets from being processed in the
ExpandList, is a manner of filtering (S3).

Algorithm 5 processes the group of bad subfaces to-
gether with the group of bad tetrahedra within the same
iteration (Line 2 to Line 10). Although subfaces have
priority over tetrahedra during processing, irregularization
(S4) is adopted to allow concurrent processing of both
element types as a single group with incorporated order
dependency resolution. This is an attempt to improve the
expected throughput by increasing GPU occupancy. How-
ever, it comes with the disadvantage of higher expected
latency. For example, intersection testing for a subface is
expected to be a lot cheaper than that for an interior/exterior
tetrahedron. But after they are unified into a common work
pool, they will all effectively bear the same expected cost
at the slowest thread. The implementation of gDP3d takes
into consideration the following two cases when adopting
irregularization.

At the early stages in the refinement, where T does not
yet form a good approximation of G, high GPU occupancy
caused mainly by the large number of operations on facets
is expected. Adopting irregularization here can penalize
the performance as the resultant latency will be increased
despite minimal or even no expected improvements to
the effective occupancy on the GPU. However, when the
subfaces in T starts to approximate the boundary of G,
there are many more tetrahedra in relative comparison to a
small number of subfaces to be processed to meet the quality
criteria. At this stage, irregularization is expected to perform
better because of the higher expected cost of intersection
tests for tetrahedra. Effectively, the small number of facets
are just piggybacking their intersection tests. This avoids the
need of additional kernel runs with low workloads to do the
tests for only the facets, which will under utilize the GPU.

8 EXPERIMENTAL RESULTS

All experiments presented were conducted on a PC with
an Intel i7-7700k (4 Cores/8 Threads) Processor at 4.2GHz,
32GB of DDR4 RAM and a NVIDIA GeForce GTX 1080 Ti
graphics card with 11GB of video memory. gDP2d, gQM3d
and gDP3d were implemented using the CUDA program-
ming model [34], compiled with all optimization flags en-
abled. For each input, the results presented, such as timing
and triangulation quality, are averages over multiple runs.
Robustness is ensured by using the exact arithmetic and
robust geometric predicate of Shewchuk [35]. Each predicate
consists of two parts: a fast check, which uses floating point
arithmetic, and an exact check, which uses floating point
expansion that requires a lot more temporary memory and
few threads can be executed concurrently. In practice, a fast
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check is usually suffice for threads to compute the parity of
a predicate; otherwise, exact check is followed up for those
few needed to ascertain the parity of a predicate and then
to deal with degeneracy using simulation of simplicity [36]
when parity is still zero. Such a 2-stage approach is also a
form of the regularization strategy (S2).

8.1 2D Constrained Delaunay Refinement
In general, gDP2d, implemented in accordance to the design
strategies, shows 50% improvement in speed up compared
to our prior work gQM [8] that did not incorporate some
of the strategies, in particular, irregularization (S4). For
comparison, we use Triangle [3] as the base reference,
excluding the relatively short computation time for CDT
of the input PSLG at Line 1 of Algorithm 1. The results
from CGAL 2D mesh generator [5] are also included. For
synthetic datasets (uniform, Gaussian, disk, and circle distri-
bution), readers are referred to Chen [37](see Chapter 5.3.1)
on the findings that gDP2d is an order or two magnitude
faster than CGAL and Triangle while using comparable
numbers of Steiner points.

Table 2 shows experimental results on contour maps
available at http://www.ga.gov.au/ under Ruppert’s mode
(Chew’s mode yields similar findings and is thus omitted
here). To obtain the results, θ is set to 20◦ to guaranteed
termination [2], Triangle is extended to support the edge
length criterion l, and l is set to a small value for gDP2d to
still able to run with the available GPU memory. Note that
real world datasets often contain very small input angles
which result in some unavoidable bad triangles in the out-
put triangulations, as indicated in Table 2 (fourth column,
in percentage to the total area of the triangulation). CGAL
inserts fewer points in general, but over-protects vicinity
with small input angles (no Steiner points are allowed in
those places) which results in large bad areas that may
impact the desirability of the outputs for applications. By
comparison, both Triangle and gDP2d inserted enough
Steiner points to achieve practically zero percentage of bad
areas in the outputs. The speed up in running time of
gDP2d over Triangle can reach up to 16 times (see the
8.4M sample). On the other hand, gDP2d inserts slightly
more Steiner points than Triangle when the input sizes
are large. Figure 6(a) and (b) show the input PSLG on the
sample 3.2M and its output by gDP2d.

gDP2d, which incorporates all design strategies men-
tioned, has managed to achieve a very good overall per-
formance. For a more in-depth analysis, variants of gDP2d
are implemented and tested by removing filtering (S3), de-
ferment (S5), and irregularization (S4). Removing filtering
(S3) and deferment (S5) slows gDP2d down by up to 100%,
while removing irregularization (S4) slows it down by up
to 67%; see Figure 7.

8.2 3D Constrained Delaunay Refinement
gQM3d outperforms our previous work [9] by around 100%.
This is mainly attributed to the implementations of the pre-
sented design strategies, made possible by the ExpandList
routine. The recorded running times of gQM3d includes both
the time used for actual computation and the time taken to
transfer data between CPU and GPU. On synthetic datasets

Bad
File ID Software Points Area Time Speed

l (M) (%) (s) Up
Triangle 35.4 0 67 1

1.2M CGAL 4.1 91.1 46 -
0.12 gDP2d 34.1 0 14 5

Triangle 34.1 0 114 1
3.2M CGAL 5.8 92.1 46 -
0.12 gDP2d 33.5 0 15 8

Triangle 30.3 0 116 1
4.3M CGAL 9.0 88.7 65 -
0.11 gDP2d 30.6 0 13 9

Triangle 30.4 0 133 1
5.6M CGAL 8.7 91.6 59 -

0.1 gDP2d 31.5 0 16 8
Triangle 26.6 0 251 1

8.4M CGAL 12.5 87.8 82 -
0.12 gDP2d 29.2 0 16 16

Triangle 29.3 0 345 1
9.4M CGAL 13.9 88.5 93 -
0.16 gDP2d 32.0 0 25 14

TABLE 2
2D CDT experimental results on some contour maps.

Fig. 6. gDP2d working on the sample 3.2M in Table 2.

Fig. 7. Increase in running time (in percentage) of gDP2d without in-
corporating some of the design strategies for the real world samples in
Table 2. Compaction (S1) is used in general where needed. It could be
turned off when workload is low but we observed relatively small impact
on running time. It is thus not featured in the chart. As for regularization
(S2), it is adapted all over the algorithm and thus meaningless to turn it
off to add to the chart too.

(uniform, Gaussian, ball and sphere distribution), gQM3d
achieves more than 40 times speed up over TetGen [4]
while inserting no more than 4% more Steiner points; details
are available in [37] (see Chapter 6.2.1). gQM3d and TetGen
were also tested on samples from the Thingi10k dataset [38].
Table 3 shows some samples of the results with B = 1.4.
These samples are chosen with no particular bias other than
to show the range of possibility on the speed up (sixth
column). In particular, we see that gQM3d can be faster
than TetGen from 9 to 101 times, while maintaining similar



13

Model ID Software Points Tets Time Speed
Name (M) (M) (min) Up
63788 TetGen 4.27 19.7 66.5 1

Skull gQM3d 4.23 19.4 0.7 101
65942 TetGen 4.54 20.6 71.4 1
Sculpture gQM3d 4.50 20.3 1.0 69
63785 TetGen 3.29 15.1 39.3 1
Half-skull gQM3d 3.37 15.4 0.8 52
94059 TetGen 2.54 11.3 24.8 1

Mask gQM3d 2.54 11.2 0.5 50
1717685 TetGen 2.98 13.5 24.6 1

Brain gQM3d 2.99 13.5 0.9 28
793565 TetGen 2.13 9.6 17.2 1
SkullBox gQM3d 2.16 9.7 0.6 28

461112 TetGen 3.29 14.9 28.9 1
Mutant gQM3d 3.40 15.3 1.0 28

763718 TetGen 1.83 8.3 12.1 1
Jacket gQM3d 1.79 8.1 0.5 24

252653 TetGen 2.93 13.6 29.5 1
Thunder gQM3d 2.94 13.5 1.6 19
87688 TetGen 1.20 5.2 5.4 1
Shy-light gQM3d 1.21 5.3 0.6 9

TABLE 3
3D CDT Experimental results on some samples in Thingi10k.

Fig. 8. The distributions of dihedral angles in the output triangulations of
the Model 763718, Jacket as generated by TetGen and gQM3d.

Fig. 9. Increase in running time (in percentage) of gQM3d without in-
corporating some of the design strategies for the first seven real world
samples in Table 3. It is of the same reasoning as in Figure 7 that S1
and S2 are not featured in the chart.

sizes in the output triangulations (third and fourth column).
Because there are already some small angles in these real-
world samples, both software also generated a small per-
centage of bad tetrahedra due to these small angles. On
the whole though, triangulations produced by both software
have similar profiles with respect to the dihedral angles of
the tetrahedra. For example, Figure 8 shows the dihedral
angle distribution (ranging from 0◦ to 180◦) for the output
mesh of the Model 763718, Jacket shown in Figure 1(a)
and (b).

Figure 9 investigates the degree of influence upon the
performance by the design strategies: filtering (S3) used to

Model ID
SoftwareName Points Facets Time Speed

r (M) (M) (min) Up
1706475 CGAL-S 6.60 13.2 17.5 1
Accessories CGAL-M 6.75 13.5 45.6 -

0.08 gDP3d 6.62 13.2 0.7 25
45939 CGAL-S 5.84 11.7 12.0 1

Gandhi Litho CGAL-M 5.98 12.0 40.8 -
0.1 gDP3d 5.86 11.7 0.7 17

236922 CGAL-S 5.89 11.8 15.4 1
Aztec CGAL-M 6.03 12.1 13.6 1.1
0.05 gDP3d 5.91 11.8 0.6 26

551021 CGAL-S 5.35 10.7 14.5 1
Arc Triomphe CGAL-M 5.48 11.0 10.6 1.4

0.03 gDP3d 5.37 10.7 0.6 24
65942 CGAL-S 7.35 14.7 20.5 1
Sculpture CGAL-M 7.53 15.1 14.8 1.4
0.04 gDP3d 7.37 14.8 0.8 26

1088281 CGAL-S 8.32 16.6 449.5 1
Letter Z CGAL-M 8.52 17.0 179.0 2.5
0.03 gDP3d 8.34 16.7 11.0 41

1255206 CGAL-S 6.42 12.8 54.4 1
Hendecahedron CGAL-M 6.57 13.1 16.7 3.3

0.02 gDP3d 6.44 12.9 1.5 36
238423 CGAL-S 6.45 12.9 35.2 1

Treads CGAL-M 6.61 13.2 14.7 2.4
0.04 gDP3d 6.48 13.0 1.7 20

518031 CGAL-S 6.67 13.4 30.3 1
Lampan Hack CGAL-M 6.83 13.7 9.4 3.2

0.11 gDP3d 6.69 13.4 1.1 28
117959 CGAL-S 8.25 16.6 187.1 1
Romanesco CGAL-M 8.43 16.9 36.5 5.1

0.05 gDP3d 8.29 16.6 5.3 35
940414 CGAL-S 5.06 10.1 84.7 1

Voronoi Lamp CGAL-M 5.19 10.4 19.1 4.4
0.3 gDP3d 5.08 10.2 3.2 26

TABLE 4
3D RDT subface refinement results on some samples in Thingi10k.

reduce Delaunay dependency among threads when grow-
ing cavities, irregularization (S4) used to unify the work of
splitting encroached subsegments, subfaces and bad tetrahe-
dra, and deferment (S5) used to run Line 2 of Algorithm 3
on the CPU instead of GPU. The graph shows the percentage
increase in running times of variants each with one of the
design strategies disabled compared to the original version.
It is observed that omissions of S3, S4 and S5 cause slow
down of up to 15%, 190% and 55% respectively.

8.3 3D Restricted Delaunay Refinement

When comparing gDP3d to CGAL 3D mesh generators in-
cluding CGAL-S for single-threading CPU and CGAL-M for
multi-threading CPU, two kinds of tests were performed:
subface refinement and tetrahedron refinement. For subface
refinement, θ is set to 30◦ to guarantee termination [17] and
r is set to not too small a value to ensure gDP3d can run
within the GPU memory limit. For tetrahedron refinement,
where the input is assumed to be water-tight, θ and B are
set to 30◦ and 2 respectively to guarantee termination [18],
and R is also set to not too small a value to ensure gDP3d
can run within the GPU memory limit.

Sample experimental results on datasets from Thingi10k
[38] are shown in Table 4 and Table 5. These are chosen
with no particular bias from the results of larger set of test
samples. The tables are to show the range of possibility
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Model ID
SoftwareName Points Tets Time Speed

R (M) (M) (min) Up
1706475 CGAL-S 7.23 44.3 12.0 1
Accessories CGAL-M 7.60 46.5 3.8 3

0.3 gDP3d 7.32 44.9 0.7 17
551021 CGAL-S 6.33 39.3 10.4 1

Arc Triomphe CGAL-M 6.65 41.2 1.2 9
0.13 gDP3d 6.40 39.8 0.6 17

65942 CGAL-S 7.69 46.3 13.7 1
Sculpture CGAL-M 8.07 48.5 1.8 8
0.13 gDP3d 7.78 46.9 0.8 17

1088281 CGAL-S 6.76 39.5 80.1 1
Letter Z CGAL-M 7.09 41.4 40.5 2
0.09 gDP3d 6.85 40.0 2.9 28

1255206 CGAL-S 6.47 40.6 11.5 1
Hendecahedron CGAL-M 6.80 42.6 1.2 10

0.12 gDP3d 6.54 41.1 0.6 19
518031 CGAL-S 7.11 44.7 11.7 1

Lampan Hack CGAL-M 7.47 46.9 1.1 11
0.65 gDP3d 7.19 45.2 0.6 20

940414 CGAL-S 6.43 36.4 36.3 1
Voronoi Lamp CGAL-M 6.73 38.1 7.0 5

0.63 gDP3d 6.50 36.9 1.9 19

TABLE 5
3D RDT tetrahedron refinement results on some samples in Thingi10k.

Gandhi Litho, Aztec, Treads and Romanesco in Table 4 are not
water-tight with interior and thus do not appear in the above.

Fig. 10. Increase in running time (in percentage) of gDP3d without
incorporating some of the design strategies for the first seven real world
samples in Table 4. The impact of turning off compaction S1 where
applicable during low workload does not have any significant impact and
thus omitted in the chart.

on the speed up (sixth column) while maintaining similar
sizes in the output triangulations (third and fourth column).
Specifically, for subface refinement (Table 4), the speed up
of gDP3d over CGAL-S reaches up to 41 times while that
of CGAL-M over CGAL-S is no more than 6 times. For
tetrahedron refinement (Table 5), gDP3d can be an order of
magnitude faster than CGAL-S (with up to 28 times speed
up) and is a factor of at least close to 2 faster than CGAL-M.
Furthermore, gDP3d inserts up to 1.3% more Steiner points
compared to CGAL-S, and up to 3.8% less than CGAL-M.
Besides good speed up, gDP3d produces quality output of a
reasonable size. See Figure 1(c) and (d) for the quality mesh
of the Model 940414, Voronoi Lamp as generated by gDP3d.

Figure 10 shows results from investigating the contri-
bution of each of the design strategies: regularization (S2,
using ExpandList instead of one thread per intersection
test to traverse the whole AABB tree), filtering (S3, using
a simpler preliminary check to excluding some splitting
points actual tests on the AABB tree), irregularization (S4,
does not unify intersection tests of facets and tetrahedra),

and deferment (S5, carrying forward the computation of
large cavities), by implementing and running variants of
gDP3d on subface refinement each with one strategy re-
moved. In that respective order, the slowdown observed in
the variants are up to 80%, 24%, 48% and 22% respectively.
Corresponding tests were performed for tetrahedron refine-
ment and the findings were similar.

8.4 Limitations

Our implementations of gDP2d, gQM3d and gDP3d in GPU
use the standard triangle-based and tetrahedron-based data
structures that supported efficient walking along different
mesh elements. Similar data structures are used by the
CPU algorithms. However, due to additional GPU mem-
ory required for efficient 3D point insertion during the
ExpandList processing, in the form of a number of aux-
iliary arrays, the 11GB video memory of the GTX 1080 Ti
only supports the generation of 3D meshes up to 10 million
points. In addition, the overheads of our GPU algorithms,
especially in the cost of data transfer between the CPU and
GPU, makes small problem sizes, such as those that result in
outputs with only thousands of points or fewer, infeasible. It
may be more practical to solve small-size problems directly
on the CPU.

From experimentation, althrough gDP2d, gQM3d and
gDP3d generate output quality meshes of sizes comparable
to those of the best CPU counterparts, the output meshes
can sometimes be larger though only by a few percentage.
This is hard to avoid, as it is a result of optimizing efficient
insertion of points (in parallel) with guarantee of termina-
tion over control of the output mesh size.

9 CONCLUDING REMARKS

This paper proposes the efficient algorithms gDP2d, gQM3d
and gDP3d for 2D constrained, 3D constrained and 3D
restricted Delaunay refinement problem respectively. As
presented in the experimental results, they can perform
better than the current state-of-the-art sequential and multi-
threading CPU versions by up to an order of magnitude,
while maintaining comparable sizes and good quality in the
results. This can make it more feasible to integrate larger
scale meshing into interactive applications in engineering
and scientific domains.

The design strategies adopted have been shown to be
effective for the presented problems and solutions. The
simple scenarios based on expected workload or serial of
workloads allows them to be easily applied or adapted to
other similar general computational problems. We therefore
hope that this paper is but a starting point for more future
works on meshing [39] on the GPU and perhaps even other
general problems beyond.
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