

AN INTERACTIVE FRAMEWORK FOR
COMPONENT-BASED MORPHING

ZHAO YONGHONG

NATIONAL UNIVERSITY OF SINGAPORE

2003

AN INTERACTIVE FRAMEWORK FOR

COMPONENT-BASED MORPHING

ZHAO YONGHONG
 (M.Eng., Zhejiang University, China)

A THESIS SUBMITTED

FOR THE DEGREE OF DOTOR OF PHILOSOPHY

DEPARTMENT OF COMPUTER SCIENCE

NATIONAL UNIVERSITY OF SINGAPORE

2003

An Interactive Framework for Component-based Morphing

i

Acknowledgements

First and foremost, I would like to thank my supervisor, A/P Tan Tiow Seng, for

his invaluable guidance in my research. What I have learnt from him is not only how to

actively tackle research difficulties and explore original solutions, but also the research

philosophy, which will benefit me forever.

I would also like to acknowledge my gratitude to A/P Teh Hung Chuan and Dr.

Huang Zhiyong for giving me much encouragement and many suggestions.

I am deeply grateful for the assistance of Mr. Ong Hong Yang, Mr. Xiao

Yongguan and Mr. Li Xuetao. I got much motivation and inspiration from the

collaboration with them.

Finally, I would like to add personal thanks to my husband Ying Peizhi for his

love and to my parents for their endless support.

This thesis is to my lovely son and I wish him a happy and healthy future.

An Interactive Framework for Component-based Morphing

ii

Table of Content

Acknowledgements..i

Summary .. vii

Chapter 1 Introduction...1

1.1 Background ...1

1.2 Objectives ...4

1.3 Organization and Contribution ...5

Chapter 2 Related Work ..8

2.1 2D Morphing...8

2.2 3D Morphing...9

2.2.1 3D Volume-based Morphing ..10

2.2.2 3D Boundary-based Morphing ...12

Chapter 3 Component-based Morphing Framework ...20

3.1 Meshes and Components ..20

3.1.1 Polygon Mesh ...20

3.1.2 Component Decomposition ..21

3.2 Component-based Object Representation...23

3.3 Framework Overview ...24

Chapter 4 Component-based Correspondence Control ...28

4.1 Global-level Correspondence..28

An Interactive Framework for Component-based Morphing

iii

4.1.1 Requirement Analysis ...29

4.1.2 Terminology..30

4.1.3 Correspondence between component groups..33

4.1.4 Constraint Tree..38

4.1.5 Candidate Identification..43

4.1.6 Common Connectivity Graph Construction ...46

4.2 Local-level Correspondence ...51

4.2.1 User-specified Local-level Correspondence ...52

4.2.2 Implied Local-level Correspondence..54

4.2.3 Assumed Local-level Correspondence ...58

4.2.4 Automatic Patch Partitioning..62

4.2.5 Patch Parameterization..67

4.2.6 Handling Null-components...71

Chapter 5 Component-based Interpolation Control...77

5.1 Skeleton-based Animation/Deformation ..78

5.2 Skeleton Representation..80

5.3 Skeleton Morphing..85

5.3.1 Common Skeleton Construction ...86

5.3.2 Skeleton Transformation...90

5.4 Skeleton-guided Interpolation...92

5.4.1 Vertex Binding Technique..92

5.4.2 Single Binding ..94

5.4.3 Double Binding...97

5.4.4 Boundary Blending ...99

5.5 Trajectory Editing ...103

An Interactive Framework for Component-based Morphing

iv

Chapter 6 Experimental Results ..106

6.1 Graphical User Interface ...106

6.2 Demo of Whole Morphing Process...110

6.3 Morphing Sequences and Statistics ..114

Chapter 7 Conclusion ..124

7.1 Summary of Framework ...124

7.2 Discussion of Methods..126

7.3 Future Work ..130

References...133

Appendix...140

Interactive Decomposition ..140

An Interactive Framework for Component-based Morphing

v

List of Figures

Figure 3.1 Component representation of a cow model ...23

Figure 3.2 A typical workflow in the framework ...25

Figure 4.1 The source connectivity graph Gs and the target connectivity graph Gt31

Figure 4.2 Common connectivity graph Gst..32

Figure 4.3 Processing constraint and updating ^ ..37

Figure 4.4 Specifying component correspondences using component groups37

Figure 4.5 Constraint Tree ..39

Figure 4.6 Flexible undoing..40

Figure 4.7 Undoing the first constraint in Figure 4.4 ...41

Figure 4.8 Correspondence maintenance after modifying component decomposition.............42

Figure 4.9 Analysis of similarity in connectivity..45

Figure 4.10 Identifying candidates for user-selected components..46

Figure 4.11 Similarity measurement of components ..48

Figure 4.12 Two kinds of paths connecting two vertices ...53

Figure 4.13 Deduced correspondences over boundaries...56

Figure 4.14 Deduced correspondences for the null-component case..57

Figure 4.15 Assumed feature vertex pairs at feature loops...60

Figure 4.16 Assumed feature vertex pair at tips ...61

Figure 4.17Assumed local feature pair at boundaries...62

Figure 4.18 Automatic patch partitioning..66

Figure 4.19 Mapping and Merging of corresponding patches ..69

Figure 4.20 Topological Merging for meshes T and U ..70

Figure 4.21 Updating boundary triangles ...73

Figure 4.22 Automatic handling the disappearing of the tail..74

Figure 4.23 Handling null-component in T-U morph...75

An Interactive Framework for Component-based Morphing

vi

Figure 5.1 Skeleton representation of a woman model...81

Figure 5.2 Bone shape...83

Figure 5.3 Bone connection ..84

Figure 5.4 A moving local frame..85

Figure 5.5 Meta-skeleton ..87

Figure 5.6 Another example of meta-skeleton..89

Figure 5.7 Parameters for binding a vertex to a bone ...94

Figure 5.8 Binding a vertex to a meta-bone..96

Figure 5.9 Fold-over in the interpolation..97

Figure 5.10 Distribution of blending weights ...102

Figure 5.11 Morphing two objects with different orientations ..103

Figure 6.1 Object view..107

Figure 6.2 Component view..108

Figure 6.3 Frame view ..109

Figure 6.4 A demo of duck-dinosaur morph...110

Figure 6.5 A demo of mug-donut morph ..112

Figure 6.6 Global-level trial and error morphing design ..113

Figure 6.7 Local-level trial and error morphing design..113

Figure 6.8 T-U morph ...115

Figure 6.9 Triceratops-woman morph ..116

Figure 6.10 Calf-cow morph...117

Figure 6.11 Triceratops-chimpanzee morph ...119

Figure 6.12 Duck-dinosaur morph..120

Figure 6.13 Rocket-glass morph ...120

Figure 6.14 Mug-donut morph..120

Figure 6.15 T-U morph with a keyframe at f = 0.5...121

Figure 6.16 A morph with walking effects ...121

Figure 6.17 Two different morphs using different component correspondences122

Figure A.1 Cutting a component...141

An Interactive Framework for Component-based Morphing

vii

Summary

This thesis presents an interactive framework to empower users to conveniently

and effectively control the whole morphing process, which includes both establishing

correspondence and calculating interpolation. Although research on 3D mesh

morphing has reached a state where most computational problems have been solved in

general, the novelty of the framework lies in the integration of global-level and local-

level user control through the use of components, and the incorporation of deduction

and assistance in user interaction.

In the correspondence process, this framework enables users to specify only those

requirements of interest at either the global level over components or the local level

within components, whichever is more intuitive. Firstly, given two polygonal meshes,

a user can specify global-level correspondences intuitively by pairing components. To

facilitate such specifications, a proposed constraint tree is utilized to process user-

specified correspondences, identify candidate components for pairing, support

modifications to user specifications, and finally deduce correspondences over all

components. Secondly, within two corresponding components, the user can fine-tune a

morph by specifying correspondences between local features. The framework

automatically derives implied local-level correspondences according to user

specifications, and adds assumed ones where appropriate to improve the morph. An

An Interactive Framework for Component-based Morphing

viii

automatic patch-cutting method is then applied to create compatible patch layouts with

all local feature pairs aligned.

In the interpolation process, not only can the user modify trajectories of individual

vertices at the local level, but also manipulate trajectories of components as a whole at

the global level. Firstly, the user can assign an underlying bone for each component

and all bones in a mesh form its skeleton. Based on global-level correspondences, the

framework can then compute morphing of skeletons. Secondly, a proposed skeleton-

guided interpolation method is applied to transform mesh vertices around underlying

skeletons and thus produces morphing results that are natural, realistic and rigidity

preserving. Thus, the user can predict the final morph from morphing of skeletons at

an early stage, and control the interpolation process at both levels.

On the whole, in the multi-level component-based framework, users can choose to

specify any number of requirements at each level and the system can complete all

other tasks to produce final morphs. Therefore, user control is greatly enhanced and

even an amateur can use it to design a morph with ease.

A prototype for the component-based morphing framework was implemented and

used to produce a number of morphs for meshes with complex structures. In the

experiments, we focused on testing the efficiency of user control. Our results show that

users can conveniently experience different morphing designs and the overall user time

for each morph is only a couple of minutes.

Keywords: mesh morphing, interactive techniques, component decomposition,

animation, shape blending, deformation

 Chapter 1 Introduction

1

Chapter 1 Introduction

1.1 Background

The field of interactive computer graphics has continued to experience enormous

growth. Among techniques in this field, morphing (or metamorphosis) has been an

area of active research in recent years. It has been widely used in many applications

such as scientific visualization, education, entertainment and industrial product design.

The original use of morphing techniques in the movie industry can be traced back to

one century ago. Meliès discovered it by chance and used the cross-dissolving method

in several movies he produced (see [BT97]). There have been many impressive

examples of morphing in the entertainment industry in recent decades. In most cases,

these visual effects were generated using 2D morphing techniques. As 2D

representation of an object lacks spatial information, 2D morphing techniques cannot

solve some problems such as handling changes in viewing and lighting parameters

during a morph. On the contrary, morphing of 3D models directly changes geometry of

objects and has attracted much research interest.

3D Morphing involves the creation of a smooth transition from a source object to

a target object based on consideration of their geometrical forms such as positions and

normals, and possibly other attributes such as colors and textures. For two 3D objects,

there are an infinite number of ways to transform one to the other. Algorithms for

morphing are mainly evaluated by criteria related to the ease of user control and the

 Chapter 1 Introduction

2

aesthetic quality of morphing sequence. Morphing is such an aesthetic problem that

fully automatic methods cannot meet all the needs that arise in all applications.

Therefore, user interaction is important and unavoidable. A good morphing system

should enable a user to design a morph efficiently and effectively and the user control

should be neither time-consuming nor labor-intensive. In terms of aesthetic quality, it

is subjective to judge the visual appearance of morphing sequence. Gomes et al.

[GDC99] listed some principles for evaluating the visual quality of morphs, such as

topology preservation, feature preservation and rigidity preservation.

Generally speaking, a morphing process, whether in 2D or 3D, consists of two

steps: establishing a correspondence to compute the association between the source

object and the target object and calculating the interpolation between them to produce

intermediate objects. Due to the popularity of polygon meshes in the field of

interactive computer graphics, this thesis examines specifically the problem of 3D

mesh morphing. Currently, research on 3D mesh morphing has reached a state where

most computational problems in these two steps have been solved in general [A02].

However, a similar claim cannot be made for user control.

At the early stage, most research methods on 3D mesh morphing focused either on

morphing of a restricted class of objects, or on automatically constructing the

correspondence between two original objects. Users had little or no control over

morphs. Recent morphing methods allow users to specify correspondences in

morphing design. (See the survey papers [LV98, A02].) However, these methods have

not paid much attention to issues about user interaction in morphing; they usually

concentrate on the computational issues and overlook the interactive process of

specifying and modifying user requirements. Thus, there was still no good scheme to

 Chapter 1 Introduction

3

make user interaction intuitive, flexible and efficient. A user still faces a lot of

difficulties in controlling a morph, as discussed below.

In the correspondence step, the most common way for users to specify

correspondence is to assign vertex pairs. Because original meshes in morphing are

often with dense triangulations, many previous algorithms started from a sparse set of

user-specified vertex pairs and then used such a set to get the complete vertex

correspondence between two meshes. Because users were confined to work with low-

level mesh details such as vertices, they had no direct way to specify high-level

requirements. For example, to pair a leg of a duck with a leg of a dinosaur, a user had

to express such a requirement indirectly by specifying many pairs of mesh vertices.

Such a way of specifying correspondence is usually neither intuitive nor convenient.

Worse still, when two original meshes are quite different in shape, there will be no

obvious, natural way for vertex correspondence. In such cases, user interaction usually

becomes rather difficult and cumbersome. Moreover, previous morphing algorithms

generally required users to complete a large amount of workload in order to enable the

system’s computation of morphing sequences; users themselves must be very careful

not to specify contradictory requirements because the system cannot provide them any

assistance in their specification.

In the interpolation step, users usually faced another difficulty of specifying

morphing trajectories. They had to find groups of vertices and adjust morphing

trajectories for individual vertices. Such kind of interpolation control needs proficient

design skills. Furthermore, it is not suitable for specifying a requirement such as

setting a new pose for a human-like object. Thus, users cannot control the interpolation

conveniently.

 Chapter 1 Introduction

4

The reason of the above difficulties in previous morphing methods may be the

lack of an intensive examination on the interactive morphing design. From a user’s

point of view, one should be allowed to specify requirements of different levels. For

example, in the top-down design approach, which is known as one of the popular

design approaches, users can work from global-level conceptual design spaces (e.g. to

specify changes in structure) to local-level technical design spaces (e.g. to modify

mesh vertices). In addition, these methods often ignored the fact that morphing

requirements of users are evolving and much trial and error is needed in the process of

morphing design. They put aside the important process of user control and simply

assumed that all user specifications were already ready for later computation. How to

facilitate user interaction is one of the most challenging issues in 3D mesh morphing

research.

1.2 Objectives

The morphing framework proposed in this thesis aims to empower users to

conveniently and effectively control the whole morphing process.

Firstly, we realize that in addition to the steps of correspondence and

interpolation, user interaction over those two steps is also a vital part in a morphing

process. This framework seeks to facilitate user control by not only providing

assistance during user interaction, but also exploring implied and potential user

requirements through deduction. All assistance and deduction of the system honor user

requirements and do not impose any restriction on users. Thus, users can choose to

specify any number of requirements and the framework completes all other necessary

computations to produce final morphs.

 Chapter 1 Introduction

5

Secondly, being a kind of product design, interactive morphing design also

includes both high-level conceptual design and low-level detailed design. This

framework attempts to enable users to control the whole morphing process at multiple

levels. It makes use of components of objects to support different kinds of user control,

and thus users can interact with their morphing design in a natural and intuitive way.

Thirdly, this framework makes an effort to integrate skeletons as an intuitive and

effective tool in morphing design. By operating on skeletons, not only can users

specify vertex trajectories, but also manipulate objects by modifying their underlying

skeletons. Thus, the users can control the interpolation step conveniently and

effectively.

1.3 Organization and Contribution

The morphing framework proposed in this thesis is termed a component-based

framework as it utilizes components of objects to enhance user interaction in morphing

design. Consequently, morphing of polygon meshes is decomposed into morphing of

components in the framework. Part of the work in this thesis is published in [ZOT03].

The reset of this thesis is organized in the following manner. We begin by

reviewing related works in Chapter 2. In Chapter 3, a component-based object

representation is introduced and then an overview of the component-based morphing

framework is given. Chapter 4 discusses interactive correspondence control. First,

users can directly specify global-level correspondences by pairing components. Using

a proposed constraint tree, this framework provides users great flexibility and

assistance in such specifications. Next, users are able to specify local-level

correspondences by assigning and pairing local features; the framework deduces

 Chapter 1 Introduction

6

implied local feature pairs and adds assumed ones where appropriate. The complete

vertex correspondences are achieved through an automatic patch partitioning method.

Chapter 5 describes interactive interpolation control. First, it discusses morphing

between the skeleton of a source object and that of a target object. Next, a skeleton-

guided interpolation method is proposed to transform vertices around their underlying

bones. Thus, users can edit morphing trajectories at the global level by operating on

skeletons as well as at the local level by operating on vertices. Chapter 6 reports the

experimental results. Finally, Chapter 7 concludes the thesis and discusses the future

work.

Recall that the framework proposed in this thesis aims to address issues about user

interaction in mesh morphing. Specifically, main contributions of the framework are as

follows:

• Multi-level correspondence control

Global-level and local-level user specifications interact with each other, and they

enable users to specify their requirements in either level whichever is more intuitive.

Users can directly specify global-level correspondences by pairing components,

without resorting to the more tedious specification of vertex pairs. Yet, when fine

control is required, users can specify local-level correspondences over local features

within a pair of corresponding components.

• Effective and flexible user control

Because of the incorporation of multi-level user control, the framework can

automatically deduce correspondences from one level to the other. Moreover, several

techniques are presented to provide assistance and deduction in user interaction. At the

global level, we utilize a novel constraint tree to process user specification, provide

candidate counterparts for user-selected components, maintain user specifications after

 Chapter 1 Introduction

7

modifications to components and correspondences, and finally deduce

correspondences over all components. At the local level, the framework derives those

local-level correspondences not stated but implied by user specifications. In addition, it

adds assumed correspondences where appropriate to improve morphs. In general,

using these techniques, this framework frees users from the tedious workload of

specifying detailed correspondences in morphing control. At the mean time, it respects

all user specifications and never imposes any system restriction on users.

• Multi-level interpolation control

Users can choose to attach skeletons to original meshes. In such a case, morphing

of polygon meshes can be abstracted into morphing of their underlying skeletons.

Before specifying any correspondence over mesh details, users can predict final

morphs from morphing of skeletons, and thus modify their specifications if necessary.

This results in short turnaround time in experimenting with different morphing

designs. Moreover, with a proposed skeleton-guided interpolation method, mesh

vertices are transformed with the guidance of skeleton morphing. Thus, users can edit

trajectories by operating on components as a whole and the framework can deduce

trajectories of individual vertices accordingly. When local-level control is desired,

users can also edit trajectories of individual vertices.

Before Proceedings with those technical details in this framework, the next

chapter reviews related works.

 Chapter 2 Related Work

8

Chapter 2 Related Work

Morphing of graphical objects has been investigated for more than a decade. Most

early works studied morphing of 2D objects. In this chapter, 2D morphing approaches

are first discussed in Section 2.1 as they are related and someway are possible to be

extended to 3D morphing. Overview of different 3D morphing approaches is then

provided in Section 2.2, where we focus our discussion on the efficiency of user

control.

2.1 2D Morphing

The problem of constructing a smooth transformation from a 2D object to another

has been extensively studied. Algorithms about 2D morphing can be classified into

those for digital images and those for polygonal shapes. A survey can be found in

[W98].

A digital image is represented as an array of pixel values. To obtain semantic

correspondences in a morph, an image morphing system often requires its user to

identify and pair features at a set of pixels of two original images. Beier and Neely

[BN92] presented a feature-based method based upon fields of influence surrounding

user-specified features. Lee et al. [LCS95] applied a computer vision technique called

snakes to reduce user workload in feature specification.

For two polygonal shapes, Sederberg et al. [SGW93] tried to avoid the shrinkage

 Chapter 2 Related Work

9

or kink effects, which normally occur in the linear interpolation, by interpolating edge

lengths and angles between edges rather than vertex positions. Goldstein and Gotsman

[GG95] utilized multi-resolution techniques to effectively capture geometric properties

for establishing feature correspondence. Surazhsky et al. [SSB01] morphed two

polygons by constructing a xy-monotone surface whose cross-sections at two ends

represented two given polygons respectively. Shapira and Rappoport [SR95] presented

a star-skeleton method for polygon morphing. First, they decomposed two polygons

into the same number of star pieces and constructed a connecting skeleton for each

polygon. Then, the interpolation between skeletons was calculated and then star pieces

were unfolded from the skeletons. This is the 2D work closest to our proposed

framework in partitioning complex objects into simpler forms for morphing. However,

the extension from 2D to 3D is not trivial due to the complexity of mesh connectivity.

In addition, unlike their work, our method does not have the requirement that objects

must be compatibly decomposed. Thus, a user can design a morph more conveniently

and flexibly.

When dealing with 3D objects, 2D morphing algorithms do not suffer from the

complexity of 3D objects. 2D images are generated from those objects and these

algorithms can then produce intermediate images. However, 2D morphing cannot

handle changes of viewpoints or lighting parameters. Besides, users lose the flexibility

of editing 3D objects represented by intermediate frames.

2.2 3D Morphing

Morphing of 3D objects has its own characteristics. Yet, several 2D morphing

approaches can still be extended to 3D morphing research. For example, digital image

morphing algorithms can be directly extended to morphing of voxel-based objects.

 Chapter 2 Related Work

10

According to the way of object representation, 3D morphing algorithms are generally

classified into two categories: volume-based morphing and boundary-based morphing,

as proposed in the survey paper [LV98]. It is also noted that there exist some other

kinds of 3D morphing methods. For example, morphing of image-based 3D objects

can be done by transforming their light fields [ZWG02].

2.2.1 3D Volume-based Morphing

Morphing algorithms in this category describe 3D objects as volumetric models.

Generally, there are voxel-based approaches that sample the 3D space on regular grids,

and implicit surface approaches that work on implicit functions.

Voxel-based morphing works represent a 3D object as a set of voxels. Hughes

[H92] proposed a method that worked in the Fourier domain and treated individual

frequency bands with different functions of time. Lerios et al. [LGL95] extended the

2D morphing work of Beier and Neely [BN92] by using fields of influence of 3D

primitives to warp volumes.

Implicit surface morphing works focus on morphing of 3D objects represented as

implicit functions. Kaul and Rossignac [KR91] provided an interpolation algorithm

based on Minkowski Sums. He et al. [HWK94] decomposed distance functions with a

wavelet transform. Wyvill et al. [WGG98] presented a technique for morphing implicit

surfaces built from convex skeletal elements, also known as blobs or soft objects.

Galin and his coworkers [GA96a, GA96b, GL99] addressed the problem of soft object

morphing by interpolating skeletal elements with Minkowski Sums and then extended

such interpolation to whole objects. Breen and Whitaker [BW01] employed a

deformable surface to smoothly transform the implicit surface model of a source shape

 Chapter 2 Related Work

11

to that of a target shape. After converting the deformable surface into a volume data

set, a set of procedures were applied to transform voxels to create a sequence of

volumes. Blanding et al. [BTS00] computed trimmed skeletons from the symmetric

difference between two original solid models and then utilized them as intermediate

shapes. Such shape generation procedure can be recursively applied to produce a

sequence of shapes in a final morph.

Volume-based morphing works have no restriction on the topological structures of

original objects because they are not burdened with surface parameterization. The

ultimate advantage of volumetric methods is that they support changing of genus well,

for example, transforming a sphere into a donut. On the other hand, algorithms in this

category have several limitations. As intermediate shapes are represented as volumes,

extracting them to boundary-based models may produce topologically complex

objects. In addition, it seems that it is not simple and intuitive for a user to identify

vertices, edges, faces or contours of original objects as features in a user interface. In

particular, since grids in voxel-based approaches are three dimensional, the memory

and computation costs can be prohibitive.

Our proposed framework has some similarities to Galin’s work [GA96a, GA96b,

GL99]. In both, for example, users can directly pair components of two original

objects. However, there exist significant differences between their volume-based and

our boundary-based morphing methods in terms of object and skeleton representations.

For example, in volumetric methods, the problem of binding surfaces to skeletons can

be easily solved as their objects are defined to be constructed from skeletons, while in

mesh morphing, this is complicated due to the different mesh connectivity of two

original meshes. The skeleton-based algorithm in [BTS00] allowed its user to align

 Chapter 2 Related Work

12

global-level features such as extruding parts. In contrast, a user of our framework can

conveniently specify correspondences at both the global and the local levels.

2.2.2 3D Boundary-based Morphing

Algorithms falling into this category focus on morphing of objects represented by

their boundaries. The most popular boundary-based object representation is polygonal

meshes. Morphing approaches for 2D polygonal shapes can be extended to morphing

of 3D polygonal meshes to some extent. A mesh morphing process basically consists

of two steps: establishing the correspondence where each vertex of a source mesh is

mapped to a vertex of a target mesh, and calculating the interpolation where

trajectories are defined for all corresponding vertices.

2.2.2.1 Correspondence Approaches

Most of research works in mesh morphing focus on the problem of establishing

vertex correspondences and many early works focused on automatically establishing

vertex correspondences for original meshes (see the survey papers [A01a, A02]). As

user control is essential in morphing of general meshes, recent works usually allow

their users to assigns sparse sets of feature vertex pairs and the key problem in these

works is to effectively extend such sparse sets to the whole meshes.

Patch-Partitioning Approach

Given two original meshes, this approach partitions each mesh into a collection of

patches based on user-specified feature vertex pairs. Patch layouts of the two meshes

must be compatible such that patches can be paired and morphed one by one to form

the overall mesh morphing. How to establish vertex correspondence over the whole

meshes based on user specification is a key problem that must be solved in this

 Chapter 2 Related Work

13

approach. Parent [P92] presented a recursive method to build a common mesh

subdivision. In this work, correspondences between mesh vertices were automatically

established by using several sheets to cover two original meshes. Some degree of user

control was also supported at the step of sheet subdivision. DeCarlo and Gallier

[DG96] allowed users to divide mesh surfaces into triangular and quadrilateral patches

for morphing with genus change. Bao and Peng [BP98] constructed feature polyhedra

based on user-specified patch partitions and established correspondence between

patches by using a cluster scheme. Gregory et al. [GSL98] presented a feature-based

method where users were asked to specify feature nets on original meshes. Meshes

were then partitioned into patches according to the nets. This method also supported

user control over vertex trajectories by representing them as Bezier curves. Kanai et al.

[KSK00] used harmonic mapping in morphing of arbitrary triangular meshes. Based

on user-specified feature vertex pairs and the connectivity among those vertices at

original meshes, they constructed a common control mesh which was then used to

define compatible patch partitions of the meshes. Zöckler et al. [ZSH00] improved

user interaction in morphing by allowing users to specify corresponding regions as

well as corresponding points. Being able to specify feature vertices inside individual

patches, users need not partition original meshes into dense patches. Recently,

Shlafman et al. [STK02] proposed a method that can automatically partition a mesh

into several patches. However, their resulting patch partitions for two original meshes

were not guaranteed to be compatible and thus cannot be used for general morphing.

When dealing with high-genus meshes, users of this approach are required to

specify proper patch partitions, of which each patch is homeomorphic to a disk.

Although being always possible, such kind of specifications demands proficiency and

skill of users. Generally speaking, a user of this approach must specify a feature net for

 Chapter 2 Related Work

14

each original mesh by first assigning feature vertices and then identifying connectivity

among those vertices. Moreover, the user still has to consider how to create compatible

partitions by specifying enough vertex pairs, without any direct help from the

morphing system. So user interaction of controlling the correspondence step is usually

difficult and cumbersome.

Global Topological Merging Approach

Algorithms in this approach establish vertex correspondences by using global

topological merging techniques. Kent et al. [KPC91, KCP92] automatically morphed

genus-0 polyhedra by projecting each of them onto a sphere. Kanai et al. [KSK98]

made use of harmonic mapping to establish vertex correspondence for meshes with

boundaries. Users can specify vertex correspondences at mesh boundaries and the

system took the main responsibility to associate vertex pairs. Alexa [A00] allowed

users to specify scattered features and then aligned them by using a spherical mapping

and warping method. This work enhanced user interaction in that users were freed

from the workload of specifying connectivity among specified feature vertices.

However, because this work did not examine the shapes of original meshes and

perform deduction of correspondences accordingly, users may need to spend much

time on locally adjusting vertex correspondences.

Multi-resolution Approach

Multi-resolution techniques tackle the problem of convenient manipulation of

meshes with complex structure and tremendous size. In recent years, several

algorithms were proposed to employ it for the purpose of morphing.

In the work of Lee et al. [LDS99], user-specified feature pairs were retained

 Chapter 2 Related Work

15

during the process of multi-resolution parameterization. With all user-specified feature

pairs aligned, this method merged the mesh connectivity of the source mesh and that of

the target mesh by using their coarse models. When system-established vertex

correspondences were unsatisfactory, a user can also perform local adjustment on

coarse models.

Alternatively, some other methods made use of the multi-resolution remeshing

technique to solve the problem of connectivity difference between original meshes.

Michikawa et al. [MKF01] represented each 3D object as a series of semi-regular

meshes, which were organized in a hierarchical way. Then they applied re-meshing to

convert original meshes into common mesh connectivity. Praun et al. [PSS01]

presented a consistent mesh parameterization algorithm that established

parameterization for a set of meshes sharing a base domain. Users of both these

methods were required to specify corresponding vertices in original meshes for each

vertex in the base domain.

Shape Dissection Approach

Algorithms in this approach establish vertex correspondences by dissecting

original meshes into tetrahedra. In the work of Shapiro and Tal [ST98], during a

process called tetrahedralization or realization, two original meshes were transformed

into convex polyhedra. By merging the realized polyhedra of two original meshes, an

isomorphic vertex neighborhood graph was obtained and the complete vertex

correspondence was then established accordingly. Alexa et al. [ACL00] blended the

interiors of original meshes as well as their boundaries by dissecting the meshes into

isomorphic complexes (triangles in 2D and tetrahedra in 3D). Vertex correspondence

in this approach is highly dependent on the process of shape dissection and this may

 Chapter 2 Related Work

16

result in difficulties in user control, especially for complex 3D objects.

Shape Re-sampling Approach

An ultimate difficulty in the correspondence process is the connectivity difference

of two original meshes. This approach obtains common mesh connectivity by re-

sampling two original meshes at the same sampling rate.

A mesh can be represented as a collection of 2D cross-sections. In that case,

vertex correspondences can then be established within each pair of corresponding

cross-sections. Chen and Parent [CP89] proposed an algorithm for morphing 3D

objects represented by planar contours. They first morphed corresponding contours and

then constructed cylindrical volume using intermediate contours. Korfiatis and Paker

[KP97] allowed users to specify vertex pairs for cross-section pairs and established

vertex correspondences accordingly. In the work of Chang et al. [CLK98], a

generalized cylinder was interpreted as the sweep surface of a planar cross-sectional B-

spline under B-spline motion. By editing cross-sections, users can then conveniently

deform 3D objects.

Lazarus and Verroust [LV97] studied morphing of star-shaped meshes around

their underlying skeletal curves. Two original meshes were re-sampled and

reconstructed as cylindrical meshes. A user can control a morph by manipulating the

skeletal curves of meshes. By using different re-sampling rates, this method also

provided different levels of user control. This method only dealt with cylinder-like

meshes and their underlying skeletons were only single 3D curves.

User control in this approach is simple and intuitive. However, this approach

establishes vertex correspondences at the stage of re-sampling, and thus users cannot

 Chapter 2 Related Work

17

control the correspondence step flexibly by specifying desired vertex pairs.

Shape Space Approach

This approach treats each original mesh in a morph as a base shape and the

dimension of the shape space depends on the number of base shapes. Edelsbrunner

[E99] first mentioned the term “shape space”. It was then used by Cheng et al.

[CEF01] for canonical deformation among a set of shapes each of which is represented

by a simplicial complex and a smooth surface. In this work, a complete matching was

performed to avoid the difficulty of determining feature correspondences — such

correspondences were automatically established by removing those redundant pairs in

the matching. Alexa and Müller [AM99] extended this term to “morphing space”.

They declared that morphing could be used to describe objects as a composite of other

objects. They further discussed synthesizing and analyzing of objects in a morphing

space. In this work, the efficiency of user control depended on the employed morphing

technique.

This approach is attractive in that it allows morphing among multiple shapes and

supports a broad range of shape manipulation mechanisms such as shape searching.

However, it does not provide specific solutions for enhancing user control in

morphing.

Parametric Space Approach

This approach represents 3D meshes in 2D parametric spaces and makes use of

2D image morphing techniques to morph between their 2D representations.

Intermediate 3D objects are reconstructed based on the resulting 2D morphs. Chen et

al. [CSB95] utilized cylindrical projections to parameterize certain types of objects,

 Chapter 2 Related Work

18

and warped 2D parametric spaces according to user-specified feature pairs.

Ramasubramanian and Mittal [RM99] extended it to support general topologies. They

represented each 3D object as multiple 2D images and then performed interpolation for

corresponding images. Algorithms in this approach support user specification of

correspondences and avoid the complexity of morphing in 3D spaces. However, as

there is no intrinsic projection method in the planar representation for general 3D

objects, this approach still cannot be applied to arbitrary complex meshes.

2.2.2.2 Interpolation Approaches

Linear interpolation is frequently used in morphing due to its simplicity. However,

it is well known that this method causes problems such as self-intersection and shape

degeneration. Delingette et al. [DWS93] presented a physical-based algorithm that

represented 3D surfaces as simplex meshes. Morphing between two simplex meshes

was obtained by first transforming one mesh connectivity to the other using some

defined mesh operators, and then expressing their geometry as shape parameters that

were well adapted to simplex meshes. In the work of Sun et al. [SWC97], based on

assumed correspondences between two isomorphic meshes, some intrinsic geometric

parameters and a propagation paradigm were utilized to interpolate vertex positions.

Gregory et al. [GSL98] made use of weight factors in the interpolation process. They

allowed users to interactively define the trajectories for some mesh vertices, and the

transformation of those vertices was then propagated to the meshes. Alexa et al.

[ACL00] presented an interpolation method to transform both boundaries and interiors

of original meshes in a morph. This method worked well in 2D cases and provided

some simple 3D examples.

In terms of interpolation control in mesh morphing, the most common way is to

 Chapter 2 Related Work

19

set trajectories for mesh vertices. However, because there is no intrinsic association

among trajectories of different vertices, designing trajectories for a sample of vertices

seems to be inconvenient and thus inadequate for interactive interpolation control

[LV98, A02]. Although some improvements have been proposed by using physical

simulation [DWS93], intrinsic parameters [SWC97] or weights factor [GSL98], users

still cannot control the transformation of 3D shapes directly at a high level. For

example, it is difficult to set a new pose for a human-like object as setting weights or

finding intrinsic parameters to reflect the desired position is hard and tricky. Hence, an

intuitive and convenient way of specifying such a user requirement is still needed.

From the literature review in this chapter, it can be seen that although user

interaction in morphing is essential for producing aesthetic morphs, it was still far from

convenience and efficiency at both the correspondence and the interpolation steps. The

following chapters introduce a framework that employs components to empower users

to control the whole morphing process with ease.

 Chapter 3 Component-based Morphing Framework

20

Chapter 3 Component-based Morphing Framework

This chapter introduces the proposed interactive framework for component-based

morphing. We first introduce polygon meshes and component decomposition in

Section 3.1. Section 3.2 discusses the component-based object representation where a

polygon mesh is composed of a collection of components. Section 3.3 reviews the

framework by briefly introducing its main steps. Using components, this framework

enables efficient and effective user interaction at both the global and the local levels.

3.1 Meshes and Components

3.1.1 Polygon Mesh

Polygon mesh representation is the most common method for representing 3D

objects. In particular, advances in 3D scanning and acquisition technology have made

it a popular representation. In this boundary-based representation method, a polygon

mesh comprises a collection of vertices, edges and convex polygons to form the whole

3D shape.

In this framework, we deal with orientable, manifold and topological equivalent

polygon meshes. A mesh refers to a piecewise linear surface which is made up of a set

of polygons. Each polygon of a mesh is triangular in this framework. Otherwise, the

mesh is triangulated by the system. The topology of a mesh refers to its

vertex/edge/triangle connectivity and its geometry refers to a set of world coordinates

for all its vertices. A boundary of a mesh is a closed loop of mesh edges, each of which

 Chapter 3 Component-based Morphing Framework

21

has only one incident triangle. Two meshes are said to be topological equivalent or

homeomorphic if one mesh can be continuously deformed into the other. In an

orientable mesh, vertices of all its triangles are organized in the same order

(counterclockwise in this framework). A manifold mesh has the property that the

neighborhood of every vertex of the mesh is homeomorphic to a disc or a half disc.

The mesh representation has many advantages. All surfaces in a mesh are

described by linear equations with low computational complexity. Therefore, polygons

are independent entities and can be treated as such by object manipulation and

transformation algorithms. In addition, various algorithms for hiding surface and

shading are easily implemented on polygons since they have well-defined orientations.

However, dense polygonization, arbitrary topology and irregular connectivity of

polygon meshes make it difficult to manipulate them efficiently. Because there is no

high-level information explicitly defined on a polygon mesh, previous morphing

methods asked their users to represent global-level user requirements indirectly

through operations over mesh vertices. Such kind of user control obviously conflicts

with the normal working habit of an artist.

3.1.2 Component Decomposition

To impose high-level information of a mesh, one way is to decompose the mesh

into a collection of primitives, each of which comprises a group of polygons. Such a

primitive is termed a component. Obviously a component is simpler in shape and

smaller in size than the whole mesh.

Component organization is an important technique in the modeling community.

An artist usually constructs a complicated model by composing several simple

 Chapter 3 Component-based Morphing Framework

22

components. For example, there are techniques in modeling volumetric models such as

soft objects [MLP01] and CAD (computer aided design) solid models. In CAD

techniques, components of a model are organized according to a CSG (constructed

solid geometry) tree. The component decomposition of a complex 3D object suits the

work habit of an artist and eases the modeling task as well. In addition, component-

based approaches enable processing of individual components, without requiring a

complete new calculation over the whole object. For the above reasons, objects with

components have been widely used in many applications such as animation and virtual

simulation.

In the field of computer graphics, however, many applications including mesh

morphing usually deal with meshes having no components inside. In such applications,

decomposing a mesh into components can definitely empower a user to manage its

data more effectively. Despite that there have been many publications about mesh

decomposition [FS92, GSL98, MW99, LWT01, STK02], results of decomposition

have not been utilized in mesh morphing for the purpose of enhancing high-level user

control. To some extent, morphing methods using patch partitions of meshes [P92,

DG96, BP98, GSL98, KSK00, STK02] can be considered to be similar to methods

using components. However, these patch-based methods decompose mesh surfaces on

the basis of user-specified vertex correspondences, instead of utilizing decompositions

to support interactive morphing control.

The proposed framework attempts to capitalize on the use of components to

facilitate user interaction in morphing design. This framework does not require the

component decomposition of two original meshes are compatible in the sense of

having the same number of components and the same connectivity among the

 Chapter 3 Component-based Morphing Framework

23

components. As such, users can freely decompose meshes based on their morphing

requirements.

3.2 Component-based Object Representation

A mesh M can be decomposed into a collection of components. Thus, we have

= ∪ iM C , where Ci is a component of M and i = 1, 2, …, n. Users can create or

modify mesh decompositions according to their requirements in morphing design. In

this framework, a component does not necessarily have to be semantically meaningful.

When a user wants to manipulate some polygons as a whole, these polygons can be

grouped as a component. Figure 3.1(a) shows the component decomposition of a cow

model. This model contains a set of components such as its head, body, ears and tail.

Using such components, a user can easily specify high-level morphing requirements in

morphing process.

right_ear

body

left_ear

right_horn

left_horn

head

leg1

leg2

leg3

leg4

teat1

teat2

teat3

teat4

tail

(a) Decomposition (b) Component (c) Connectivity Graph

Figure 3.1 Component representation of a cow model

A component connects some other components in the mesh, each of which is

defined to be an adjacent component of the component. Two connected components

connect each other at some common mesh edges and vertices, which are termed a

boundary of the components. A component contains a list of boundaries, each of which

 Chapter 3 Component-based Morphing Framework

24

represents a connection with an adjacent component. Figure 3.1(b) shows the body

component of a cow model and highlights its boundaries by coloring them in yellow.

For a mesh, we represent its components and the connections between them as a

connectivity graph. In this graph, each component is represented as a node, and each

connection between two components as an edge connecting the two nodes of the

components. This abstract graph effectively encapsulates structural information of the

mesh. Note that because each mesh edge has only two incident triangles, a connection

is only between two components and an edge of a connectivity graph connects only

two nodes. Figure 3.1(c) shows the connectivity graph for the cow model. To achieve

the component decomposition, users can directly make use of pre-defined components

in meshes, such as from groups in OBJ or VRML files. Alternatively, automatic

methods [MW99, LWT01, STK02] can be used to compute initial decomposition for

users’ further modification. In addition, the framework provides several interactive

tools to assist users in specifying components, as discussed in the Appendix.

3.3 Framework Overview

Given two homeomorphic polygon meshes, a user of the component-based

morphing framework can design a smooth, desirable transition from one mesh to the

other with ease. Instead of simply starting from given user inputs, as in other works,

this framework empowers its users to interactively specify and modify their

requirements during the whole morphing process. Specifically, in this interactive

framework, users are able to perform their morphing design in a flexible way—at any

step in the overall process, they can (1) choose to specify any number, inclusive of

none, of requirements and (2) re-visit any previous step to modify their specifications.

Figure 3.2 shows main steps in the propose framework. For clarity, these steps are

 Chapter 3 Component-based Morphing Framework

25

connected according to a typical workflow in this figure. The whole morphing process

consists of user interaction and system calculation, which are shown in different colors.

Global-level Correspondence

Local-level Correspondence

User Process

Two Meshes
Ms and M t

Morph

Local Feature
Correspondence

Specification

Complete Vertex
Correspondence

Computation

Component
Correspondence

Specification

Common
Connectivity Graph

Computation

System Process

Local-level Interpolation

Vertex
Interpolation

Component
Correspondence

Deduction

Vertex Trajectory
Deduction

Local Feature
Correspondence

Deduction

Vertex
Trajectory

Editing

Morphing
Sequence

Global-level Interpolation

Skeleton
Keyframe
Editing

Skeleton Morphing
Skeleton
Keyframe
Deduction

Figure 3.2 A typical workflow in the framework

It can be seen from this figure that a morphing process in this framework

comprises a global-level process (including global-level correspondence and global-

level interpolation) and a local-level process (including local-level correspondence and

local-level interpolation). Thus, a user can conveniently specify morphing

requirements at either level. In addition, he only needs to specify those requirements of

interest, and the system can complete the remaining work through deduction.

Global-level Correspondence: Given a source mesh Ms and a target mesh Mt, a

user can decompose each of them into a collection of components and specify global-

Global-level

Local-level

 Chapter 3 Component-based Morphing Framework

26

level correspondences over their components. By utilizing a proposed constraint tree,

this framework provides several kinds of assistance in user specification in this step:

When a user wants to specify correspondence for selected components, it is able to

highlight possible counterparts; after the user’s modification to component

decomposition or component correspondences, it is able to maintain other unaffected

user specifications. Moreover, the framework deduces implied correspondences in the

process of user specification; at the end of this step, it works out the common

connectivity graph which associates individual components of one mesh with those of

the other.

Global-level Interpolation: For each original mesh, the user can choose to attach

an underlying bone to each component and all these bones form the skeleton of the

mesh. In such a case, before referring to mesh details, the user is able to get a draft

version of the final morph from the morph between Ts to Tt, where Ts is the skeleton of

Ms and Tt is the skeleton of Mt. Due to the structural difference between Ts and Tt, a

common skeleton of Ts and Tt is calculated from the common connectivity graph and

utilized to morph Ts to Tt. Skeleton morphing serves as an indication of the final

morph and can be obtained soon after user specification of global-level

correspondences. Thus, the user can modify those specifications at an early stage, and

the turnaround time in the global-level morphing process is very short. In addition, the

user can add/modify keyframes of the skeleton morphing to set global-level component

trajectories.

Local-level Correspondence: Within a component pair containing one

component from Ms and one from Mt, the user can specify and pair several kinds of

local features, including feature vertices, feature lines and feature loops. The

 Chapter 3 Component-based Morphing Framework

27

framework deduces implied local features according to user specifications and adds

assumed ones where appropriate. To establish the complete vertex correspondence for

the component pair, an automatic patch partitioning method is then applied to partition

the components into compatible patch layouts. For the case where one component of a

mesh has no counterpart in the other mesh, the framework applies an automatic

method to establish vertex correspondence.

Local-level Interpolation: Besides the linear vertex interpolation method, the

user can choose to employ our skeleton-guided interpolation method in this step. Using

the latter method, mesh vertices follow the movement of their underlying bones and

conform to user-specified feature correspondences at the same time. Therefore, not

only can the user modify trajectories of individual vertices at the local level, but also

manipulate trajectories of components as a whole at the global level. From user-

specified component trajectories, the framework can deduce vertex trajectories

accordingly.

In summary, the component-based morphing framework utilizes components to

make user control in the whole morphing process easy. Given two meshes, a user can

intuitively specify correspondences either at the global level by pairing components, or

at the local level by pairing local features. In addition, the user can also control the

interpolation process at both levels. The following chapters provide more details about

user interaction in main steps of the framework.

 Chapter 4 Component-based Correspondence Control

28

Chapter 4 Component-based Correspondence Control

At an early stage of a morphing design, a user mainly concerns the structures of

two original meshes. In the component-based morphing framework, users can specify

such global-level correspondences by paring components. Section 4.1 discusses user

control in the step of global-level correspondence. A proposed constraint tree is

utilized to effectively organize user specifications, provide candidate counterparts for

user-selected components and maintain user specifications upon the user’s

modification. The common connectivity graph, which associates individual

components of one mesh with individual components of the other mesh, is finally

constructed. The user is also allowed to fine-tune a morph at the local level by

specifying local feature pairs within component pairs. Section 4.2 discusses user

control in the step of local-level correspondence. The framework is able to deduce

implied local feature pairs and add assumed local feature pairs according to user-

specifications. Then the complete vertex correspondence, which associates individual

vertices of one component with individual vertices of its corresponding component, is

established through an automatic patch partitioning method.

4.1 Global-level Correspondence

Global-level correspondence refers to correspondence over components. It is a

convenient way for a user to specify a requirement over the structures of original

meshes. First, we introduce and analyze several user requirements in Section 4.1.1.

 Chapter 4 Component-based Correspondence Control

29

Then, several terms are defined in Section 4.1.2. We discuss the processing of user-

specified global-level correspondence in Section 4.1.3. After that, a proposed

constraint tree is introduced in Section 4.1.4. By using the constraint tree, the

framework provides assistance in user interaction and effectively deduces global-level

correspondences according to user input, as discussed in Section 4.1.5 and Section

4.1.6 respectively.

4.1.1 Requirement Analysis

By pairing components of the source mesh Ms and components of the target mesh

Mt, a user can intuitively indicate requirements of global-level correspondences. The

framework seeks to provide as much assistance to the user as possible, without

compromising user freedom in specification. Specifically, the following issues for the

step of global-level correspondence are addressed in the framework.

First, the user is allowed not only to specify correspondence between one

component from Ms and one from Mt, but also to specify correspondence between

groups of components in one step. Using component groups, the user can start with

vague requirements and then iteratively refine the requirements. This is especially

useful at an early stage of morphing design. To effectively encapsulate and maintain

user-specified correspondences over component groups, the framework proposes a

constraint tree, which implicitly records all possible component pairs and keeps track

of the evolution of user specifications: Section 4.1.3 introduces the method for

recording user-specified correspondences and Section 4.1.4 further organizes all

recorded correspondences to keep the history of user specifications. Thus, the user is

provided with great flexibility, from undoing any specification to modifying

component decompositions.

 Chapter 4 Component-based Correspondence Control

30

Next, when the user selects a group of components, the framework assists user

specification of component correspondences by identifying the probable counterparts.

Such counterparts are those components having similar connectivity to the components

in the selected group. We note that the method of analyzing the connectivity at every

individual component is not feasible when correspondences between groups of

components are enabled. Section 4.1.5 introduces the measure of similarity in

connectivity between groups of components and the process of identifying probable

counterparts for selected components.

Finally, the user can choose to specify any number of component

correspondences, and the framework then automatically works out the complete

component correspondence with all user-specified correspondences respected.

Achieving this, the framework allows a range of automations: from totally manual (the

user specifies detailed correspondence for every component) to semi-automated (the

user specifies only important correspondences and the framework computes the others)

to fully-automated (the framework computes all correspondences without any user

input). Details about this are provided in Section 4.1.6.

Some definitions are first introduced in Section 4.1.2.

4.1.2 Terminology

As defined in Section 3.2, the connectivity among the components of a mesh can

be represented as a connectivity graph. In such a graph, each component is represented

as a node, and each connection between two components as an edge connecting the

two nodes of the components. The connectivity graph of Ms and that of Mt are

represented as the two graphs Gs = G(Vs, Es) and Gt = G(Vt, Et) respectively, where Vs

 Chapter 4 Component-based Correspondence Control

31

and Vt are sets of nodes representing components and Es and Et are sets of edges

representing connections. An example of Gs and Gt is shown in Figure 4.1, where Vs =

{a,b,c,d,e,f}, Es = {1,2,3,4,5} and Vt = {p,q,r,s,t,u}, Et = {6,7,8,9,10}. In this figure and

subsequent figures in this chapter, connections of connectivity graphs are shown

explicitly as white nodes for ease of illustration. Note that when a user modifies the

component decomposition of a mesh, for example, by merging two connected

components, its connectivity graph is changed and updated automatically by the

framework.

Figure 4.1 The source connectivity graph Gs and the target connectivity graph Gt

A user can specify a global-level correspondence by associating a group of

components of one mesh with a group of components of the other mesh. A

correspondence between two groups of components is denoted by 〈X, Y〉 where X ⊆ Vs

and Y ⊆ Vt. A constraint is defined to be a user-specified correspondence between one

component group of Gs and one component group of Gt.

In the global-level correspondence process, we need to establish correspondences

over individual components and over individual connections. The complete component

correspondence is defined to be a set of pairs of corresponding components, in which

each component of Gs (or Gt) either is paired with one component of Gt (or Gs) or has

no counterpart. Similarly, the complete connection correspondence can be defined as a

a

b

1
c

2 3
d

e f
4

5

 Gs

q
r

p

s

t

6 7

8

9

10

Gt Ms

a

b

c

d

e f

Mt

q r
p

s
t u

 Chapter 4 Component-based Correspondence Control

32

set of pairs of corresponding connections. Two corresponding components form a

component pair and two corresponding connections form a connection pair.

The final product of the global-level correspondence step is a common

connectivity graph Gst = G(Vst, Est), which is defined as a graph encapsulating both the

complete component correspondence and the complete connection correspondence. Vst

is the set of correspondence nodes each of which represents a component pair and Est

is the set of correspondence edges each of which represents a connection pair. A null-

component ζV is defined to be an abstract component in the common connectivity

graph and is designated as the counterpart of a component having no counterpart.

Similarly, a null-connection ζE is defined to be an abstract connection in the common

connectivity graph and is designated as the counterpart of a connection having no

counterpart. Therefore, A correspondence node in Gst has one of these forms: (cs, ct),

(cs, ζV) or (ζV, ct) where cs∈Vs, ct∈Vt, and every cs or ct appears in exactly one

correspondence node of Gst. Similarly, a correspondence edge has one of these forms:

(es, f), (es, ζE) or (ζE, et) where es∈Es, et∈Et and every es or et appears in exactly one

correspondence edge of Gst. For the two connectivity graphs in Figure 4.1, a possible

Gst constructed is as shown in Figure 4.2.

Figure 4.2 Common connectivity graph Gst

Represented object

(c,ζV)

(2, ζE)
(3, 8)

(e, q)

(4, 6)
(d, p)

(b, s)
 (1, 9)

(a, t)

(ζE, 10)

(ζV, u)

(5, 7) (f, r)

Component pair
Connection pair
(source, target)

(c,ζV)

(a, t)

(ζV, u)

(e, q)

(d, p)

(b, s)

(f, r)

 Chapter 4 Component-based Correspondence Control

33

4.1.3 Correspondence between component groups

To effectively capture all constraints without imposing any system-caused

restriction, we need to keep track of all possible correspondences over components and

all possible correspondences over connections. Unfortunately, when correspondence

specification over groups of components is enabled, naïvely recording all these

possibilities is generally inefficient in terms of storage and computation. Instead, we

record and update them in an implicit and concise way as described below.

4.1.3.1 Permissibility and Completeness

A permissible component pair is defined to be a component pair that possibly

appears in Gst. The set of all permissible component pairs is denoted by RV. A

permissible connection pair is defined to be a connection pair that possibly appears in

Gst. The set of all permissible connection pairs is denoted by RE. Therefore, we can see

that to be permissible, a component/connection pair must not contradict with any

constraint. Note that {(cs, ζV) | cs∈Vs} and {(ζV, ct) | ct∈Vt} are always subsets of RV, as

it is always possible that a component in a mesh has no counterpart in the other mesh.

A correspondence over components 〈X, Y〉, where X ⊆ Vs and Y ⊆ Vt, is defined to be

complete if and only if ∀x∈X and ∀y∈Y, (x, y)∈RV. Similarly, a correspondence over

connections 〈E, F〉 is defined to be complete if and only if ∀e∈E and ∀f∈F, (e, f)∈RE.

From a constraint 〈X, Y〉, we can deduce that (,)x y is a permissible component pair

while (,)x y or (,)x y is not, where x∈X, y∈Y, sx V X∈ − and ty V Y∈ − .

A combined notation for correspondences over both components and connections

has the form 〈P, Q〉, in which P = G(X, E), where X ⊆ Vs, E ⊆ Es, and Q = G(Y, F),

where Y ⊆ Vt , F ⊆ Et. Note that in P, X may not contain all the nodes that edges in E

 Chapter 4 Component-based Correspondence Control

34

are incident to. Therefore, P may not be a usual graph and likewise for Q. They are

represented as graphs here for the convenience of description. Then, completeness of

correspondences can be defined as follow. A global-level correspondence 〈P, Q〉,

where P= G(X, E) and Q= G(Y, F), is said to be complete if and only if 〈X, Y〉 is

complete and 〈E, F〉 is complete.

Throughout the process of specifying global-level correspondences, all current

correspondences for Gs and Gt are encapsulated in a correspondence set, which is

defined as { }, 1, 2,...,i i i n= =^ P Q , where 〈Pi, Qi〉 is complete and P1, P2, …, Pn is a

partition of Gs and Q1, Q2, …, Qn is a partition of Gt.

Because all constraints are honored in the correspondence set, for Pi = G(Xi, Ei)

and Qi = G(Yi, Fi), we have RV and RE implicitly recorded as:

{ }() { }(){ } (){ },V i V i V V V
i

R X Yζ ζ ζ ζ= ∪ × ∪ −∪

{ }() { }(){ } (){ }∪
i

EEEiEiE FER ζζζζ ,−∪×∪=

Thus, a component pair is permissible if both its components can be found within

a 〈Pi, Qi〉 ∈ ^ for some i. Similarly a connection pair is permissible if both its

connections can be found within a 〈Pj, Qj〉 ∈ ^ for some j.

4.1.3.2 Constraint Processing

In the process of specifying global-level correspondence, it is more intuitive for a

user to pair components than to pair connections. Therefore, a constraint in this

framework is a correspondence over components 〈X, Y〉, where X ⊆ Vs, Y ⊆ Vt. (The

user can also specify a correspondence between connections by pairing two

boundaries. This is a kind of local-level correspondence control and will be addressed

 Chapter 4 Component-based Correspondence Control

35

in Section 4.2.) Given a constraint 〈X, Y〉, we can introduce another correspondence 〈E,

F〉, where E denotes all connections that are incident to components in X, and F

denotes all connections that are incident to components in Y. Both correspondences are

jointly represented as 〈P, Q〉 where P=G(X, E) and Q=G(Y, F). Note that for a given

constraint, its corresponding 〈P, Q〉 may not be complete.

Initially we have ^ ={ 〈Gs, Gt〉 } where every component (connection,

respectively) of Gs can be possibly paired with every component (connection,

respectively) of Gt. Given a 〈P, Q〉, we partition each 〈Pi, Qi〉 ∈ ^ into 〈Pi′, Qi′〉 and

〈Pi″, Qi″〉, where Pi′= P ∩ Pi, Qi′= Q ∩ Qi, Pi″= Pi − Pi′ ' and Qi″= Qi − Qi′. If either

〈Pi′, Qi′〉 or 〈 Pi″, Qi″〉 results in the trivial case of 〈 G(φ,φ), G(φ,φ) 〉, it can be removed

from ^ .

Claim: Using the above partitioning rule, all correspondences in the new ^ still retain

the properties of completeness.

Proof of completeness

Now that the initial ^ is always complete, to prove the above claim, we only need

to show that neither a permissible component pair nor a permissible connection pair is

lost during each partitioning. Without loss of generality, here we only prove that given

〈P, Q〉, no permissible component pair is lost after partitioning 〈Pi, Qi〉 ∈ ^ into 〈Pi′,

Qi′〉 and 〈Pi″, Qi″〉. This can be proved by contradiction as follows.

Assume a permissible component pair (x, y), where x∈Pi and y∈Qi, is lost after

partitioning 〈Pi, Qi〉 to 〈Pi′, Qi′〉 and 〈Pi″, Qi″〉. Then there must be two possibilities: 1)

x∈Pi′ while y∈Qi″ or 2) x∈Pi″ while y∈Qi′. For the first case, from x∈Pi′, we have

 Chapter 4 Component-based Correspondence Control

36

x∈P as Pi′= (P ∩ Pi) ⊆ P; from y∈Qi″, we have y∉Q as Qi″= Qi − Qi′= Qi − (Q ∩ Qi)

⊄ Q. However, the existence of 〈P, Q〉 indicates that every component in P can only be

paired with some components in Q. Hence, it is impossible that a component pair (x,

y), where x∈P and y∉Q, exists in the final Gst. Similarly, for the other case where

x∈Pi″ and y∈Qi′, we have x∉P and y∈Q. Also, it is impossible that such a component

pair (x, y) exists in the final Gst. All these contradict with the assumption that (x, y) is a

permissible component pair. Therefore, the claim that the partitioning rule preserves

the completeness of ^ is proven.◘

From the above claim, we know that RV and RE implicitly recorded in the new ^

still contain all permissible component pairs and all permissible connection pairs

respectively. Also, because ^ is updated upon every new constraint, it respects all

user-specified requirements.

(a)

s

(b)

(c)

 1st constraint

Result

From 1st constraint

2nd constraint
Result

a b c

d
e f

q r
p

s

t
u

Initial

a b c

d

e f

q r
p

s

t
u

ab c

d
e f

q r
p

s

t
u

a b c

d
e f

q r
p

s

t
u

 Gs

a

b

1
c

2 3
d

e

4 5

f

Gt

q r

p

s

u

6
7

8

9
10

t

 Chapter 4 Component-based Correspondence Control

37

(d)

Figure 4.3 Processing constraint and updating ^

For Gs and Gt in Figure 4.1, given a first constraint 〈 {b,d},{p,s} 〉, ^ is refined

and the resulting component correspondences are as shown in the rightmost picture in

Figure 4.3(a). Next, given a second constraint 〈{a,b},{s,t,u} 〉, ^ is refined again and

the resulting component correspondences are as shown in the rightmost picture in

Figure 4.3(b). The initial ^ for this example is 〈(G({a,b,c,d,e,f},{1,2,3,4,5}),

G({p,q,r,s,t,u},{6,7,8,9,10})〉. Upon the first constraint, the connection

correspondence 〈 {1,2,3,4,5}, {6,7,8,9} 〉 is deduced and upon the second constraint,

〈{1,2,3}, {8,9,10}〉 is deduced. Figure 4.3(c) shows the partitioning of Gs and Gt upon

the first constraint, which is circled by the red dashed line and upon the second

constraint, which is circled by the blue solid lines. Figure 4.3(d) shows contents of ^

after each of these two constraints is applied. Corresponding components are shown

with the same colors in this figure and subsequent figures in this thesis.

Figure 4.4 Specifying component correspondences using component groups

Figure 4.4 illustrates the efficiency of correspondences over component groups by

using a triceratops and a woman. In this figure, user-specified component

correspondences are shown in the three left pictures. The first one is to pair the front

t u
10

c e f

q r a

a b c d e f
1 2 3 4 5

p q r s t u
6 7 8 9 10

b d
1 2 3 4 5

p s
6 7 8 9

a c e f

q r t u
 10

s
 8 9

b
1 2 3

d
4 5

P
6 7 1st constraint 2nd constraint

 Chapter 4 Component-based Correspondence Control

38

part of the triceratops with the upper part of the woman; the second pairs their middles;

the third pairs their left halves. Having these specifications, the framework is then able

to calculate the complete component correspondence as shown in the rightmost

picture, in which their heads, bodies and limbs are corresponding while the tail and the

horns of the triceratops have no counterpart.

4.1.4 Constraint Tree

To record the history of user specification of constraints, we make use of a binary

tree termed constraint tree. Each 〈Pi, Qi〉 in ^ is represented as a leaf of the constraint

tree. Whenever we perform a partitioning of 〈Pi, Qi〉 upon a new constraint, we create

a left child and a right child for this leaf, which corresponds to the new correspondence

〈Pi′, Qi′〉 and 〈Pi″, Qi″〉 respectively. Obviously the current correspondence set ^ is

actually the set containing all the leaves of the constraint tree. The content of a parent

node is always equal to the union of the contents of its children; thus, it is not

necessary to explicitly record the content of all internal nodes in the constraint tree.

The constraint tree for the example in Figure 4.3 is shown in Figure 4.5. Upon

each new constraint, the framework extends the constraint tree with one more level by

partitioning each leaf into a left child and a right child. Thus in Figure 4.5, there are

three levels of the constraint tree upon the two constraints. Note that the ith constraint is

encapsulated in those nodes at the ith level of the constraint tree (we say the root of the

constraint tree is at level 0), and nodes at the same level in the constraint tree are

organized into pairs. In this figure, the contents of the internal nodes of the constraint

trees are labeled only for clarity. With the constraint tree, it is easy for the framework

to support constraint undoing, as stated next.

 Chapter 4 Component-based Correspondence Control

39

Figure 4.5 Constraint Tree

4.1.4.1 Flexible Undoing

To undo a specific ith constraint, a naïve approach is to remove constraints in the

reverse order from the most recent constraint to the ith constraint. However, in this

way, all those constraints specified after the ith constraint will be lost. Using the

constraint tree, this framework is able to remove solely the influences of the specific ith

constraint by performing subtree merging at the level i. For each pair of nodes at this

level, we merge the subtrees of the two nodes by superimposing them. The contents of

each pair of superimposed nodes in the subtrees are combined and put into a new node.

The result for the subtree merging is a new subtree whose structure is the same

structure as that of each subtree to be merged. The algorithm for undoing a constraint

is shown as below.

[Algorithm 4.1] Undo_Constraint
Input: A constraint tree with m constraints (i.e. m+1 levels) and the ith constraint to be removed

(1≤ i≤ m)
Output: Updated constraint tree after the given ith constraint is removed
Step 1: Locate nodes of the constraint tree at level i;
Step 2: Locate a pair of nodes nl and nr at level i, which the same parent np at level i-1;
Step 3: Merge(nl, nr) {
 Locate the left and the right children of nl , nll and nlr and those of nr, nrl and nrr;
 Combine contents of nll and nrl and save the result into a new node nl′;
 Combine contents of nlr and nrr and save the result into a new node nr′;
 Replace nl with nl′ and nr with nr′;
 If nl and nr are not leaves of the constraint tree {
 Merge(nll, nrl);
 Merge(nlr, nrr);
 };
 };
 Set nl′ and nr′ as the new pair of children of np.
Step 4: Repeat Step 2 and Step 3 until all pairs of nodes at level i are updated by the merging.

b
1 2 3

a b c d e f
1 2 3 4 5

p q r s t u
6 7 8 9 10

b d
1 2 3 4 5

p s
6 7 8 9

a c e f

q r t u
10

s
8 9

d
4 5

p
6 7

a

t u
10

c e f

q r

1st constraint 〈{b,d},{p,s}〉

2nd constraint 〈{a,b},{s,t,u}〉

 Chapter 4 Component-based Correspondence Control

40

This algorithm successfully removes the nodes at the tree level representing the

unwanted constraint from the constraint tree. Using the constraint tree in Figure 4.5 as

an example, if we remove the first constraint, which is represented by level one below

the root, we merge the subtrees of the two nodes at level one by merging nodes at the

second level, and then get the updated constraint tree as shown in Figure 4.6. It can be

seen that the resulting constraint tree is exactly the same as a constraint tree with only

the second constraint.

Figure 4.6 Flexible undoing

For the example in Figure 4.4, if we undo the first constraint shown in the leftmost

figure, the resulting component correspondences are as shown in Figure 4.7(a). If we

directly apply only the second and the third constraints, as shown in the two left

pictures in Figure 4.7(b), the resulting correspondences are then as shown in the

rightmost picture in Figure 4.7(b). Obviously, the resulting correspondences shown in

Figure 4.7(a) and shown in Figure 4.7(b) are exactly the same.

(a) Undoing the first constraint

a b c d e f
1 2 3 4 5

p q r s t u
6 7 8 9 10

a b
1 2 3

 s t u
 8 9 10

 c d e f
4 5

p q r
6 7

 Constraint 〈{a,b},{s,t,u}〉

b
1 2 3

s
8 9

a

t u
10

+ d
4 5

p
6 7

c e f

q r

+

 Chapter 4 Component-based Correspondence Control

41

(b)Specifying only the second and the third constraints

Figure 4.7 Undoing the first constraint in Figure 4.4

4.1.4.2 Modifying Component Decomposition

Users should be allowed to modify the component decompositions of Ms and Mt

in the process of specifying component correspondence. In such a case, we need to

update not only Gs and Gt, but also the constraint tree. In the updated constraint tree,

all the constraints that do not contradict with this modification should be retained. A

modification to component decomposition can be always simplified to, or represented

as, one of the following operations: splitting a component c into two new components

c1 and c2, and merging two connected components c1 and c2 into a new component c.

Splitting can be easily handled. This is because we only need to find the leaf

containing c, replace c with c1 and c2 in the leaf, and update component connections

accordingly. The structure of the constraint tree is unaffected here.

Merging is more complicated when the components to be merged are not within

the same leaf. In such a circumstance, the structure of the constraint tree must be

updated. The framework removes all the constraints that cause the separation of c1 and

c2 by using the following algorithm. The basic idea of this algorithm is that we search

the nearest common ancestor of these two components and recursively remove all the

constraints causing the separation of c1 and c2.

 Chapter 4 Component-based Correspondence Control

42

[Algorithm 4.2] Update_Constraint_Tree_for_Merging
Input: A constraint tree, two components c1, c2 and a new component c merged by c1 and c2
Output: Updated constraint tree
Step 1: Locate the leaves where c1 and c2 are located. If they are within the same leaf, go to Step 5;
Step 2: Search upward from the leaf level to find the nearest common ancestor of the two leaves.
Step 3: Assume the found ancestor is at the level i of the constraint tree; remove the i+1th constraint by

applying [Algorithm 4.1] for flexible undoing;
Step 4: Repeat Step 1 to Step 3;
Step 5: replace c1 and c2with c in that leaf where both of them are located;
Step 6: Update affected connections within the leaf.

(a) Pairing tails and then cutting heads

(b) Pairing heads

(c) Merging the body and the head of the cow

Figure 4.8 Correspondence maintenance after modifying component decomposition

 Chapter 4 Component-based Correspondence Control

43

Figure 4.8 provides a example for illustrating constraint maintenance upon

modification to component decomposition. In Figure 4.8(a), the user pairs the tail of a

calf with the tail of a cow (colored in green). The remaining components in both

objects are then naturally paired (colored in red). Next, the user specifies a head

component for each object by cutting its body, and as shown in the figure, the

component correspondences still contain two correspondences represented by blue and

red components respectively. In Figure 4.8(b), the user further pairs the calf’s head

with the cow’s head (colored in blue) and the framework updates the component

correspondences into three, which are shown in green, red, and blue respectively. Then

in Figure 4.8(c), the user merges the head and the body of the cow into one and the

component correspondences after the merging is as shown. We can see that the new

component correspondences are almost the same as that in Figure 4.8(a) except that the

component decompositions of the cow are different. This example indicates that when

a user modifies component decomposition at the step of specifying component

correspondence, the framework can maintain user-specified correspondences

effectively.

4.1.5 Candidate Identification

The constraint tree keeps track of all permissible component pairs and all

permissible connection pairs implicitly. Therefore, for a leaf 〈Pi, Qi〉, all the

components in Pi are naturally possible counterparts for any component in Qi, and vice

versa. However, a user generally expects a morph has no unnecessary change in

topology. It is often desired that the connectivity among components is kept as much

as possible in a morph. For example, after pairing the head and the body of a cow with

the head and the body of a triceratops respectively, the user generally does not regard

 Chapter 4 Component-based Correspondence Control

44

an ear of the cow as a good counterpart for the tail of the triceratops, although they are

in the same leaf of our constraint tree. This is because the ear connects the body

whereas the tail connects the head. In general, when pairing selected components, a

user usually expects that good counterparts of these components are similar in

connectivity to them. We call a counterpart that can meet such kind of user expectation

a candidate.

Hilaga et al. [HSK01] proposed an automatic method for matching topology of

3D shapes. In terms of similarity measurement, it analyzed both topology and

geometry of Reeb graphs to define similarity between two whole shapes. In our

framework, however, because components and connections are already available and

organized in connectivity graphs, we define similarity of components based on

connectivity graphs. To identify candidates from the set of possible counterparts, we

note that with group-to-group component correspondences, analyzing the connections

for each component is not feasible. Therefore, we perform an analysis on entire

connected groups within each leaf of the constraint tree as follows.

Within a leaf, we first organize its components into several groups of maximally

connected components. See Figure 4.9 for an example. For clarity, the contents of Gs

and Gt are shown separately and leaves of the constraint tree are colored the same as in

Figure 4.5. In this figure, leaf II contains one group of Gt that consists of components t

and u connected by 10. Similarly, leaf IV contains two groups of Gt, which contains q

and r respectively. Subsequently, we first define the neighboring leaf of a group within

a leaf to be a different leaf that contains a connection incident to any component within

the group, or one that contains a component incident to any connection within the

group. Then, a group of maximally connected components in Gs is said to be similar in

 Chapter 4 Component-based Correspondence Control

45

connectivity to another group in Gt if and only if they are from the same leaf of the

constraint tree and have the same set of neighboring leaves. See Figure 4.9. In leaf IV,

the group {e} in Gs is similar in connectivity to both groups {q} and {r} in Gt as they

have the same set of neighboring leaves, {III}. On the other hand, there is no group in

Gt is similar in connectivity to the group {c} in Gs.

Figure 4.9 Analysis of similarity in connectivity

Using this approach, when a user selects a group of components for pairing, the

framework first find those groups of maximally connected components containing

user-selected components, then locate all the groups similar in connectivity to those

found groups. By highlighting all components in the located groups, the system is able

to provide assistance to the user in specifying component correspondence. Moreover,

by identifying candidates during user specification, the framework performs a validity

check to help the user to avoid unnecessary topological changes in the morph.

(a) Only the legs and the tail of the triceratops are found to be the candidates for the cow’s leg

a

b

c 2

e f
1 3

d

4
5

 I

III II

IV

q
r

 p

s

t

u

6
7

8
9

10

Gt

 I

III II

IV

Gs

 Chapter 4 Component-based Correspondence Control

46

(b) Only the two horns of the triceratops are found to be the candidates of the cow’s horn

Figure 4.10 Identifying candidates for user-selected components

Figure 4.10 illustrates the use of candidate identification in a morphing design.

Given a cow and a triceratops, the user pairs first their bodies and then their heads.

Subsequently, when the user picks a leg of the cow, the system indicates (by blinking)

that only the legs and the tail of the triceratops are its candidates, as shown in Figure

4.10(a). When the user picks a horn of the cow, the system indicates that only the

horns of the triceratops are its candidates, as shown in Figure 4.10(b).

4.1.6 Common Connectivity Graph Construction

When users finish their specifications in this step, before going into the next step,

the framework employs heuristics to refine^ further in order to calculate Gst. Recall

that user specification of component correspondences, i.e. constraints, is assisted by

the candidate identification from the framework, and all user constraints have been

encapsulated in the constraint tree. Therefore, we only need to deduce assumed

component/connection pairs in each leaf of the constraint tree; the constructed

common connectivity graph Gst must be consistent with all constraints and

unnecessary topological changes can be avoided.

Graph matching, which measures the similarity of graphs, is generally a difficult

problem and has been studied for more than two decades [V76, M82, B99, BJK00].

Graph is such a versatile and flexible representation that graph matching has been

 Chapter 4 Component-based Correspondence Control

47

utilized in a lot of applications (see the survey paper [B00]). In our framework, instead

of attempting to establish the best matching of components between Gs and Gt through

complicated comparison methods, we seek to work out a set of feasible

component/connection pairs within each leaf in an efficient way.

Note that in each leaf of the constraint tree, the number of components of Gs and

that of components of Gt are generally different. Therefore, it is obvious that we need

to add null-components where appropriate during the computation of component pairs.

Thus, the method of simply applying again the similarity in connectivity criteria for

components to assign component pairs usually cannot produce satisfactory results. For

example, in the leaf I shown in Figure 4.9, there are one component of Gs, b, and one

component of Gt, s, in leaf I, see the circled part in Figure 4.11. The component b has

three adjacent components (a, c and d) and correspondingly, it has three neighboring

leaves II, III and IV. As for the component s, it has only two adjacent components, t

and p, and thus it has two neighboring leaves, II and III. Hence, if we perform an

equality check of similarity in connectivity for b and s, the result will be b and s are

each paired with a null-component, rather than being paired with each other. Similarly,

if each component itself is treated as a group, we note that in the leaf II, a has one

adjacent component which is in leaf I, t has two adjacent components which are in leaf

I and leaf II respectively, whereas u has only one adjacent component that is in leaf II.

Thus, the result of pairing components in the leaf II will be that a, t and u are each

paired with a null-component. To solve such problems, we relax our measurement of

similarity in connectivity and recursively make use of several heuristics in order in

establishing component pairs within each leaf.

 Chapter 4 Component-based Correspondence Control

48

Figure 4.11 Similarity measurement of components

Before applying the heuristics, we perform two tasks in the preprocessing. First,

we backup the current constraint tree. This constraint tree encapsulates all user-

specified component correspondences, together with the implied component

correspondences obtained during processing all constraints. Those component pairs

computed by the heuristics will be treated as assumed constraints and they work only

during the process of deducing Gst. Once having Gst, the framework will again make

use of the backup constraint tree. In other words, what we maintain in the step of

global-level correspondence is the constraint tree, not Gst. Second, we analyze

connections of each component as follows. For a component within a specific leaf, we

construct its set of neighboring leaves from its incident connections with components

outside the leaf, and its set of neighboring components from its incident connections

with components inside the leaf. The neighboring leaf of a component within a leaf is

defined to be a different leaf that contains a connection incident to this component. The

neighboring component of a component is defined to be a component adjacent to this

component within the same leaf. In Figure 4.11, for example, components of the leaves

I and II are analyzed as shown in Table 4.1.

q
r

 p

s

t

u

6
7

8

9

10

Gt

 I

III II

IV

a

b

c
2

e f 1 3

d

4
5

 I

III II

IV

Gs

 Chapter 4 Component-based Correspondence Control

49

Leaf I Leaf II
b s a t u

Neighboring leaves {II, III, IV} {II, III} {I} {I} N/A
Neighboring components N/A N/A N/A {u} {t}

Table 4.1 Neighboring leaves and neighboring components of components

[Heuristics 1] If there is only one component in a leaf, this component is then paired

with the null-component ζV.

[Heuristics 2] If there are some connected components and all of them are paired with

ζV, they are merged into one component corresponding to ζV.

[Heuristics 3] Within a leaf, if a component of Gs and a component of Gt have the

same set of neighboring leaves, and the same number of neighboring components, they

form a component pair.

[Heuristics 4] Within a leaf, for a component of Gs, denoted by cs, if there are some

components of Gt whose sets of neighboring leaves are all the same as that of cs, pair cs

with the one whose number of neighboring components is closest to that of cs.

[Heuristics 5] Within a leaf, for a component of Gs, denoted by cs, and a component of

Gt, denoted by ct, if they have at least one common neighboring leaf and their other

neighboring leaves each contains only one component, these two components are then

paired with each other.

The algorithm of constructing component pairs within leaves of the constraint tree

is described as below. By recursively applying the above five heuristics one by one

over all unpaired components, this algorithm refines the constraint tree with new

created component pairs treated as constraints. Among these heuristics, Heuristics 2

means that in the complete component correspondence, if a component of one mesh is

paired with ζV, its adjacent components must each have a counterpart in the other

mesh. As for Heuristics 5, because it is based on neighboring leaves and their contents,

it is used after the other heuristics are applied in every leaf. When there is more than

one pair of components meeting the condition of a heuristic, we arbitrarily select one

pair to be the new component pair. Thus, the result of this algorithm is not unique.

 Chapter 4 Component-based Correspondence Control

50

[Algorithm 4.3] Compute_Complete_Component_Correspondence
Input: Source connectivity graph Gs, target connectivity graph Gt, a constraint tree
Output: The complete component correspondence

Step 1: Apply Heuristics 1 to every leaf of the constraint tree;
Step 2: Apply Heuristics 2 to every leaf of the constraint tree;
Step 3: For each leaf {
 Apply Heuristics 3;
 If a new component pair is created, go to Step 6;
 Apply Heuristics 4;
 If a new component pair is created, go to Step 6;}
Step 4: For each leaf {
 Apply Heuristics 5;
 If a new component pair is created, go to Step 6;}
Step 5: Find a leaf that contains unpaired components, randomly select a component in the leaf and pair

it with the null-component ζV;
Step 6: According to the new created component pair, update neighboring leaves and neighboring

components wherever necessary and apply this pair as a constraint to the constraint tree;
Step 7: Repeat Step1-6 until there are at most one component from Gs and one from Gt within every leaf

of the constraint tree.
Step 8: For each leaf of the refined constraint tree {
 If it contains only one component, pair it with ζV;
 Otherwise pair the component from Gs with the one from Gt;}

For the example in Figure 4.11, possible results of component pairs obtained by

the above algorithm are shown in Table 4.2. Note that the five heuristics are applied

recursively and thus the results shown in this table do not result from a sequential visit

from Step 1 to Step 4 in the algorithm. A similar procedure can be employed on the

connections and ζE is paired with every connection that has no counterpart. In the end

result, for each 〈Pi, Qi〉 represented by a leaf of the constraint tree, there is at most one

component and at most one connection in Pi, and likewise in Qi.

 I II III IV

Step 1 (Heuristics 1) NONE (ζV, u) NONE (c, ζV)
Step 2 (Heuristics 2) NONE NONE NONE NONE

(Heuristics 3) NONE NONE (d, p) (e, q) (f, r) Step 3 (Heuristics 4) NONE (a, t) NONE NONE
Step 4 (Heuristics 5) (b, s) NONE NONE NONE

Table 4.2 Added component pair in computation of complete component correspondence

Obviously, the complete component correspondence and the complete connection

correspondence are successfully recorded in leaves of the refined constraint tree. The

framework then applies the following algorithm to calculate the common connectivity

 Chapter 4 Component-based Correspondence Control

51

graph Gst. From the results shown in Table 4.2, computed Gst is as shown in Figure

4.2.

[Algorithm 4.4] Calculate_Common_Connectivity_Graph
Input: The refined constraint tree
Output: The common connectivity graph
Step 1: For every 〈Pi, Qi〉 of the constraint tree {
 For every component pair inside, construct a correspondence node;
 For every connection pair inside, construct a correspondence edge;}
Step 2: For every constructed connection edge {
 For every connection from this correspondence edge {
 If the connection is ζE, go to next connection;
 For each component incident to this edge {
 Find the correspondence node containing the component;
 Set this correspondence edge to be incident to the found correspondence node;}
 }
 }

4.2 Local-level Correspondence

Local-level correspondence refers to correspondence over mesh vertices/edges/

triangles of components. It is a convenient way for a user to specify a requirement over

local mesh details of original meshes. For each component pair containing no null-

component, a user can specify and pair local features to control the morph (Section

4.2.1). In addition to user-specified local-level correspondences, the framework

deduces implied local-level correspondences according to user specifications (Section

4.2.2) and adds assumed ones where appropriate to improve the morph (Section 4.2.3).

An automatic patch partitioning method (Section 4.2.4) is proposed here to create

compatible patch layouts subsequently. These patches are then used to establish the

complete vertex correspondence for the component pair through parameterization

(Section 4.2.5). For any component pair containing a null-component, the framework

automatically constructs its complete vertex correspondence (Section 4.2.6).

 Chapter 4 Component-based Correspondence Control

52

4.2.1 User-specified Local-level Correspondence

For two corresponding components Cs∈Ms and Ct∈Mt, a user can specify local-

level correspondences by pairing local features on them. The framework provides three

kinds of local features and the user can even pair local features of different types when

necessary. A feature vertex is defined to be a mesh vertex and can be used to specify a

feature such as a cow’s nose tip. A feature line is defined to be a sequence of

connected mesh edges and can be used to specify a feature such as a cow’s mouth.

Two end-vertices of a feature line are treated as feature vertices. A feature loop is

defined to be a closed loop of mesh edges. It can be either the contour of a group of

connected triangles, such as an eye in a cow’s head, or a boundary of a component,

such as edges where the cow’s body connects the cow’s head.

To specify a feature line or a feature loop, the user need not pick every mesh

vertices on the local feature. When the user sequentially picks two mesh vertices, a

path over mesh edges are automatically computed to connect these two vertices.

Among methods of path finding, the shortest path computation is most

straightforward and popular. Finding the exact shortest path on a polyhedral surface

[CH90, M98] is generally difficult. Instead, there have been several methods for

approximating shortest paths [LMS97, KS00]. These methods refine original meshes

by adding vertices and edges and then apply Dijkstra’s algorithm [AHU83] to compute

approximate shortest paths. See the example in Figure 4.12. When a user specifies a

feature line connecting two vertices v0 and v1 in a component, the computed shortest

path over mesh edges between these two vertices is shown in red in (a). In contrast

with this path, the path shown in (b) is generally more desirable because it is smoother

and passes through sharp edges in the component.

v0

 Chapter 4 Component-based Correspondence Control

53

(a) The shortest path (b) A smoother path

Figure 4.12 Two kinds of paths connecting two vertices

Computing a desirable path between two vertices in user interaction is an

important issue in automatic feature detection over 3D meshes. A general approach for

such a computation is to employ energy functions to represent user expectation. Milroy

et al. [MBV97] identified curvature extrema as possible edge points on segmentation

contour. Garland and Heckbert [GH97] proposed a quadric error metric, and defined

the feature energy at a vertex as the negation of the maximum of the edge collapse

errors for the edges adjacent to this vertex. Y. Lee and S. Lee [LL02] extended 2D

image snakes to 3D geometrical snakes, and computed both derivatives at vertices and

normal changes at faces in their energy function.

The above methods are helpful in locating protuberant shapes or peaked corners in

meshes. We note that such regions are generally observed as local features in

morphing. For simplicity, we locate mesh edges surrounding such regions by

modifying the cost function of mesh edges in Dijkstra’s algorithm [AHU83] as:

()() () dihedral eCost e len e
π

= ×

where len(e) is the length of a mesh edge e, dihedral(e) is the dihedral angle between

v1

v0

v1

 Chapter 4 Component-based Correspondence Control

54

the two triangles incident to e and this angle is within [0,]π by definition.

Utilizing the new cost function, the adapted Dijkstra’s algorithm will more likely

find paths passing sharp edges, as dihedral angles of such edges are much smaller than

π. Besides, by using the new cost function, we also extend this algorithm in finding the

approximated shortest path between two sets of vertices, for example, between two

feature loops. Such a computation is more efficient than the naïve method of

computing and comparing the shortest paths from every vertex of one set to every

vertex of the other set.

4.2.2 Implied Local-level Correspondence

Well-defined local feature pairs definitely prevent amorphous transformation.

However, a user usually has to invest a lot of effort to identify proper and sufficient

local feature pairs in a morphing design, especially when dealing with dissimilar

objects of complex structures. This causes difficulties in morphing control and thus

previous morphing systems used to be only for expert users. This framework solves

this problem by deducing implied user requirements from user specifications. By

capitalizing on the connectivity among components, the framework works out many

implied (thus not explicitly stated) local feature pairs.

Recall that a boundary between two connected components is shared by both of

them and can be easily achieved from component decomposition. In addition, we

realize that boundaries of components are important local features in many morphing

cases. Therefore, if a user-specified correspondence involves component boundaries,

our component-based framework can deduce implied local-level correspondences at

boundaries accordingly.

 Chapter 4 Component-based Correspondence Control

55

First, from given global-level correspondences, the framework is able to deduce

correspondences over component boundaries. Recall that the common connectivity

graph Gst encapsulates the complete connection correspondence. Thus, from

connection pairs in Gst, we can easily deduce a set of corresponding boundaries (each

boundary is then a feature loop). For the example of Gst in Figure 4.2, the boundary of

component d connecting component f and the boundary of component p connecting

component r form an implied local feature pair, as deduced from the correspondence

edge (5,7). At the same time, this correspondence edge implies another local feature

pair at boundaries in the component pair (f, r). Successful assignment for such kind of

features can definitely help to reduce user workload and improve the visual quality of

the morph.

See the example in Figure 4.13, a user may be ignorant about how to start with

local-feature specification when being asked to directly specify vertex correspondences

for a cow and a triceratops shown in (a). With the help of components, however, the

framework can automatically deduce a set of local-level correspondences at

component boundaries. See Figure 4.13(b); if the head and the body of a cow are

paired with the head and the body of a triceratops respectively, the two boundaries ls

and lt, each of which represents a connection between a head and a body, must be

corresponding. Similarly, all the boundaries of the cow’s body, except for the four

connecting the teats, can be automatically paired with their respective corresponding

boundaries of the triceratops’ body.

 Chapter 4 Component-based Correspondence Control

56

(a) User difficulty in directly locating local features for two meshes

 (b) Corresponding local features at boundaries

Figure 4.13 Deduced correspondences over boundaries

Second, the framework can deduce correspondences at component boundaries

from user-specified local-level correspondences. Within a pair of components, if two

corresponding local features are both specified at boundaries and the adjacent

components at these two boundaries are also corresponding, the framework

automatically records these two local features as a local-level correspondence for the

two adjacent components. Thus, once the user specifies a pair of local features at

component boundaries for two corresponding components, he need not specify them

again at the adjacent components of the two components.

Third, for the case where one component having more than one adjacent

component is paired with a null-component, its connections with those adjacent

components are paired with null-connections in the computation of Gst. However,

when we examine the local-level correspondences for two corresponding components,

ls lt

 Chapter 4 Component-based Correspondence Control

57

we realize that counterparts of boundaries of such a component can be deduced in

some cases. See the example in Figure 4.14. left-T and right-T each have one boundary

connecting central-T, while left-U and right-U each have one boundary connecting

each other. In this example, when the user specifies the component pairs (left-T, left-

U) and (right-T, right-U), he actually expects the two component boundaries in T be

paired with the boundaries shared by the two components of U.

Figure 4.14 Deduced correspondences for the null-component case

The general idea about solving such a problem is as follows. If a component is

paired with a null-component and it lies between several adjacent components, the

boundaries between this component and its adjacent components must correspond to

the boundaries between the counterparts of those adjacent components. First, after

deducing local-level correspondences at boundaries from Gst, the framework locates

every unpaired boundary l for every component pair (Cs, Ct), where Cs∈Ms and Ct∈Mt.

Assume the adjacent component of Cs at l is Cs′. Then, different deductions are applied

according to the counterpart of Cs′. If Cs′ is paired with ζV, the framework analyzes the

adjacent components of Cs′ to find Cs″, whose counterpart Ct″ is an adjacent

component of Ct. Then the framework assigns the boundary between Ct and Ct″ to be

the counterpart of l. For the other case, we have Cs′ is paired with Ct′, where Ct′≠ζV,

and Ct′ is not an adjacent component of Ct. Similarly, the framework analyzes the

adjacent components of Ct′ to find whether there is one whose counterpart is incident

Left-T

Central-T

Right-T

Left-U Right-U

 Chapter 4 Component-based Correspondence Control

58

to Cs. If such an adjacent component is found, assume this component and its

counterpart are denoted by Ct″ and Cs″ respectively. Then the framework assigns l and

the boundary between Ct and Ct″ to be a pair of local features.

Implied local feature pairs are actually also what users desire in their

specifications. Being able to find such local features, the framework saves a lot of user

effort in correspondence control. In addition, through the above deductions, the

framework aligns two corresponding components better and thus the final morph will

be with higher visual quality. More importantly, if we examine the way of these

deductions, we can realize that these advantages result from the utilization of

components in the framework.

In addition, we note that when null-components exist in the complete component

correspondences, not all component boundaries can be included in implied local-level

correspondences. This is because in some cases, there are no unique correspondences

over boundaries from user specifications. As such, the framework records those

unpaired boundaries as potential local features and prompt the user to specify

correspondences for them. The user can then choose to assign their counterparts, or

just leave them as unpaired. For the latter case, the framework will then establish the

vertex correspondences automatically before performing interpolation, see details in

Section 4.2.6.

4.2.3 Assumed Local-level Correspondence

A user can choose to specify only those local feature pairs of interest. Besides

being able to deduce implied local-level correspondences during user specification, the

framework is also able to add assumed local feature pairs when the user has finished

 Chapter 4 Component-based Correspondence Control

59

his specification so far. Assumed local feature pairs supplement but never restrict user

specification in local-level correspondence. They are only added when user-specified

local feature pairs are not sufficient for aligning two corresponding components.

Deduction of assumed local feature pairs is based on user specifications and

component shapes, and carried out only in some specific conditions. In the event that

the user subsequently specifies new feature pairs after the addition of assumed feature

pairs, the existing assumed features are removed and new ones are calculated where

appropriate. In the following, we define the distance between two mesh vertices to be

the length of the shortest path between them along mesh edges. The distance between

two feature loops is defined to be the minimum distance between their feature vertices,

and in case there is no feature vertex in a feature loop, all its vertices are used in the

distance comparison. The framework deduces assumed local feature pairs in the

following circumstances.

First, for two corresponding feature loops, there should be at least two feature

vertex pairs on them so that the system knows how to align them. Otherwise, unnatural

twisting will occur in the final morph. The user does not have to specify feature vertex

pairs for every corresponding feature loops. When the user does not provide this, the

framework adds assumed feature vertex pairs on the feature loops as follows.

If there is only one pair of feature vertices for two corresponding feature loops,

the framework simply find the two feature vertices opposite to the two vertices and

assign them as the second pair of feature vertices.

For the case that in a component pair (Cs, Ct), no feature vertex pair exists in two

corresponding feature loops ls and lt, the general idea of our treatment is to first

examine the relative orientation between ls and other local features in Cs, and then

 Chapter 4 Component-based Correspondence Control

60

establish feature vertex pairs at ls and lt based on given local-level correspondences. In

Cs, we locate the local feature ls′ that is nearest to ls by comparing the distances from ls

and other local features. Assume the shortest path from ls to ls′ starts from ls at vs and

ends at ls′ at vs′, lt′ is the corresponding local feature of ls′ in Ct, and the shortest path

from lt to lt′ starts from lt at vt and ends at lt′ at vt′. We then assign (vs, vt) and (vs′, vt′) as

two assumed feature vertex pairs.

Figure 4.15 Assumed feature vertex pairs at feature loops

 Note that the treatment for ls and lt is asymmetric in this approach. To make best

use of such deduction, we sort all component pairs according to the number of adjacent

components of the two components in the pair. The component pair with maximum

connections is processed first. For example, in the morph between a cow and a

triceratops, deduction of implied feature vertex pairs is performed first in the two

corresponding bodies. Our experiment has shown reasonably good outcomes in most

cases, especially when components with multiple adjacent components exist in a

morph. See the example for the body of a cow and that of a triceratops in Figure 4.15.

There are several pairs of feature loops (shown in orange), which are implied local

a ↔ a′

b ↔ b′
c ↔ c′
d ↔ d′
e ↔ e′
f ↔ f′
g ↔ g′
h ↔ h′
i ↔ i′
j ↔ j′

a

b

c

d

i

f

h
g

e

j

a′

b′
c′
d′

i′
h′

g′

j′

f′ e′

 Chapter 4 Component-based Correspondence Control

61

feature pairs at component boundaries. The assumed feature vertex pairs (shown in

blue) at these feature loops are listed in the right. It should be noted that these assumed

local feature pairs may not be reasonable choices in case that the shapes of two

corresponding components are drastically different (because the relative orientation

among the local features in one component and that in the other component differs

greatly). In our framework, if users find in a component pair, assumed feature vertex

pairs are not satisfactory, they can add new local feature pairs to improve the morph of

the component pair.

Figure 4.16 Assumed feature vertex pair at tips

Second, consider two corresponding components each of which has only one local

feature. Such kind of components often exists in morphing design. For example, the

tail of the cow and that of the triceratops each have only one boundary, as shown in

orange in Figure 4.16. To better align the two components, the framework adds a pair

of feature vertex at their tips, as shown in blue. In a component, the vertex farthest

away from its boundary is computed here and treated as its tip vertex. Such assumed

correspondence between tip vertices can be helpful to avoid the “tip-shrinkage”

problem mentioned in [GSL98].

Third, in high-genus morphing, we often have such a case where two components

in a mesh have more than one connection in between and the same for their

corresponding components in the other mesh. The correspondences between their

boundaries are initially assigned in the computation of Gst. When the user specifies one

 Chapter 4 Component-based Correspondence Control

62

correspondence between some boundaries, the framework assumes the

correspondences for the remaining boundaries by re-computing Gst. Figure 4.17

illustrates this using a mug and a donut. The user pairs a boundary in the mug with a

boundary in the donut (shown in green); the framework then pairs the remaining

boundaries (shown in blue).

Figure 4.17Assumed local feature pair at boundaries

With all these kinds of local-level correspondences, an automatic patch

partitioning method is next applied to generate compatible patch layouts for

component pairs.

4.2.4 Automatic Patch Partitioning

Given two corresponding components with their local feature pairs, there are

various ways to establish the complete vertex correspondence with all the local feature

pairs aligned. A common approach is to first partition them into pairs of compatible

patches and then perform a topological merging for each pair of patches. Most

morphing methods using the patch partitioning approach establish the patch layout

based on a user-specified feature net, or a control mesh [DG96, GSL98, KSK00]. That

is, a user is responsible to specify connectivity for all local features. Such specification

requires that the user be very clear about the formation of patch layouts, and thus

demands proficient skills from the user. Praun et al. [PSS01] presented an excellent

algorithm for establishing compatible partitions for meshes that share a common

 Chapter 4 Component-based Correspondence Control

63

coarse model. In this work, a user first picked a proper coarse model, and then in each

mesh, specified corresponding vertices for every vertex of the coarse model. We note

that a picked coarse model actually implies the connectivity among feature vertices

and it may not always be available in a morphing system. Moreover, using such a

coarse model, the user had to finish the assignment of a certain amount of feature

vertex pairs. In contrast, user specification of local feature pairs is easier and more

flexible in our framework. A proposed automatic patch-partitioning method adapted

from [PSS01] is applied here to produce compatible patch layouts for component pairs.

Each patch in a patch layout is a group of triangles within a closed loop of mesh

edges and such a loop is called the boundary of the patch. For two corresponding

components, their patch layouts are said to be compatible if: 1) both patch layouts have

the same number of patches, that is, they can be represented as {pi | i = 1, 2, .., k} and

{qj | j = 1, 2, .., k} respectively; and 2) the connectivity among patches in one

component is topologically equivalent to that in the other component. Thus, we know

that compatible layouts for a component pair result in a set of corresponding patches.

The general idea of the automatic patch-partitioning method is first constructing

two spanning trees for one component and then treating the net formed by the two

spanning trees as a coarse model to guide the partitioning of the other component. A

local feature together with those feature vertices located at this local feature are put

into a feature group. A link is defined as a path over mesh edges. There are two kinds

of links to be constructed. An inter-link between two feature groups is defined to be a

link that starts at a feature vertex of one feature group and ends at a feature vertex of

the other. An intra-link within a feature group is defined to be a link that connects two

feature vertices of the feature group through mesh edges of the feature group. Let (u, u ')

 Chapter 4 Component-based Correspondence Control

64

and (v, v ') be pairs of feature vertices. For a link that connects u and v in one

component, its corresponding link is a link that connects u ' and v ' in the other

component. Note that edges in a link are not necessarily all from the original meshes.

When a link cannot be computed by using the existing mesh edges, we cut triangles

where appropriate and insert new edges.

After organizing all local features in one component into a set of feature groups,

the framework needs to connect all feature groups through the computation of links. It

is noted that we should not miss any local features in this computation; otherwise patch

layouts for a component pair cannot be guaranteed to be compatible as the numbers of

linked feature groups in two components are not identical. In addition, it is desirable

that patches are as planar as possible and with as few as possible “swirling” in their

shapes. To achieve this, all features are linked up sequentially in a minimum spanning

tree (MST) fashion similar to the usage in [PSS01]. During the computation of links,

the framework again makes use of the cost function in Section 4.2.1.

After constructing a MST to connect all the feature groups in one component, we

constructs another MST to connect those feature groups each of which has only one

connected feature group in the first MST. Obviously, such feature groups are at the

root and leaves of the first MST. During the construction of the two MSTs, a link

connecting two feature groups is computed in a way that it does not intersect other

links except at its their end vertices. At each feature vertex, all the links connecting it

are sorted as follows. Suppose at a feature vertex v, there are n links L1, L2, …, Ln

whose mesh edges connecting v are e1, e2, …, en respectively. In a counter-clockwise

order, e1, e2, …, en are sorted and L1, L2, …, Ln are then sorted accordingly.

Using the two spanning trees, the framework then partitions one component into a

 Chapter 4 Component-based Correspondence Control

65

number of patches. Then, for each link in the component, its corresponding link is

computed in its corresponding component. Subsequently, a compatible patch layout

can be constructed in the other component. The automatic patch partitioning

algorithm) is described as follows.

[Algorithm 4.5] Automatic_Patch_Partitioning
Input: Local feature pairs in two corresponding components Cs and Ct,
Output: Compatible patch layouts of Cs and Ct,
Step 1: For each local feature l in Cs and Ct {
 If (it is not a feature vertex) {
 Collect feature vertices on it and put l and these feature vertices into a feature group;
 Sort its feature vertices into a counter-clockwise list;
 Construct intra-links between every two consecutive feature vertices in the feature group;
 }
 else if (it does not belong to any other local feature)
 Set l as a feature group;
 }
 }
Step 2: Construct_First_MST for Cs;
Step 3: Construct another spanning tree to connect the feature groups at the root and the leaves of the

first MST of Cs;
Step 4: For every link in the two spanning trees, construct its corresponding link in Ct;
Step 5: In Cs, according to its two spanning trees, connect links to form several loops of links;
Step 6: For each loop of links p in Cs {
 Construct a corresponding loop of links q in Ct using the corresponding links of all links in p;
 Collect triangles at the left side of p to form a patch;
 Construct its corresponding patch by collecting triangles at the left side of q;}

[Algorithm 4.6] Construct_First_MST
Input: A given component Cs and all its feature groups
Output: A MST connecting all the feature groups
Step 1:Take an arbitrary feature group in Cs and mark it as connected;
Step 2:While (there exists an un-connected feature group in Cs){
 Compute the shortest path from a feature vertex in the connected group(s) to a feature vertex in the

un-connected group(s);
 Locate the un-connected feature group N′ and a connected feature group N at the two ends of the

found path and set the path as an inter-link of the spanning tree;
 Mark N′ as connected and add it to be a child of N in the spanning tree;
}

 Chapter 4 Component-based Correspondence Control

66

(a) Two corresponding components with feature groups

N0

N1

N2

N3

N4

N5

N6

N7

N8 N9

(b) Two spanning trees

(c) Compatible patch layouts

Figure 4.18 Automatic patch partitioning

Figure 4.18 shows an example of automatic partitioning a cow’s body and a

triceratops’s body. In Figure 4.18(a), local features in these two components are

highlighted in red (feature vertices) and yellow (feature lines and feature loops);

feature groups in the cow’s body are labeled. In Figure 4.18(b), the links of the first

and the second spanning trees for the cow’s body are represented by solid lines and

dashed lines respectively. According to loops of links in the two spanning trees, each

N1

N0

N8

N3

N2 N7

N6

N5

N9

N4

 Chapter 4 Component-based Correspondence Control

67

component is partitioned into four patches. For example, in the cow’s body, the four

patches correspond to the loops N0N8N9N0, N9N8N7N6N5N4N9, N4N5N6N7N1N2N3N4 and

N4N3N2N1N7N8N0N9N4 respectively. The resulting partitions are shown in Figure

4.18(c).

The automatic patch partitioning method produces pairs of corresponding patches,

and thus compatible patch layouts, for two corresponding components. Each patch

produced is homeomorphic to a disk. In addition, the framework also provides various

tools for users to adjust the patch layouts, such as to modify the position of a non-

feature vertex along a patch boundary or to specify a link between two feature groups.

4.2.5 Patch Parameterization

Because the source component Cs and the target component Ct are usually

different in mesh connectivity, we need to construct the common mesh connectivity by

parameterizing them. In other words, we need to convert Cs and Ct into Cs′ and Ct′

respectively, where Cs′ and Ct′ are with the same mesh connectivity. Using the

common mesh connectivity, the framework then establishes the complete vertex

correspondence for Cs and Ct and constructs their meta-component Cst, which

represents Cs′ at the first frame and Ct′ at the last frame. Mesh parameterization is a

technique that constructs a mapping between a mesh surface and an isomorphic

simpler form. This technique has been extensively studied in the literature. Some

important methods are listed as follows. Note that a morphing algorithm usually needs

to perform a topological merging after constructing the mapping for original meshes

— the mapped meshes are overlaid and the common mesh connectivity is obtained

through calculating the intersections between the maps.

 Chapter 4 Component-based Correspondence Control

68

1) Spherical parameterization

For a mesh homeomorphic to a sphere, this method maps its vertices to a sphere

surface. Kent et al. [KPC91, KCP92] discussed mapping from star-shaped to a wide

class of genus-0 polyhedra. Carmel and Cohen-Or [CC98] presented a curve evolution

algorithm for this task. Alexa [MA00] studied on how to extend this method to

arbitrary genus-0 polyhedra through relaxation of mesh vertices.

2) Planar disk parameterization

There have been many different methods for mapping a mesh with boundary into

a planar disk. The barycentric mapping method used in [ZSH00] guarantees the

validity of topology of the parameterized mesh. Harmonic mapping used in [KSK98,

KSK00] has the property of minimize metric dispersion during the embedding of a

topological disk to a planar graph. An area-preserving mapping was introduced in

[GSL98] to avoid area compression. Recently, Desbrun et al. [DMA02] proposed an

intrinsic parameterization method to minimize the distortion of some different intrinsic

measures of original meshes.

3) Cylindrical parameterization

Lazarus and Verroust [LV97] developed a re-sampling algorithm to establish

vertex correspondences for original meshes. They re-sampled and rebuilt a star-shaped

mesh into two hemispherical parts and one cylindrical sheet. An underlying axis was

utilized in this algorithm to assist the shape parameterization.

4) Polyhedron realization

Shaprio and Tal [ST98] merged the vertex-neighborhood graphs of two original

meshes to a common one by removing and re-attaching vertices on the process of

polyhedron realization.

 Chapter 4 Component-based Correspondence Control

69

5) Multi-resolution parameterization

This method maps original meshes onto their coarse models. Lee. et al. [LSS98]

presented a MAPS (multi-resolution adaptive parameterization of surfaces) method.

User-specified local feature pairs were retained in the process of mesh simplification.

They later employed this method in morphing [LDS99]. Praun et al. [PSS01] presented

an algorithm for building compatible parameterization for meshes sharing a coarse

model. This algorithm avoided the tremendous size of the common mesh in

topological merging.

Figure 4.19 Mapping and Merging of corresponding patches

For the two corresponding patches shown in green in Figure 4.18, Figure 4.19

shows the result of barycentric mapping and topological merging. According to the

five pairs of feature vertices at the boundaries of the two patches, two mapped patches

are aligned in a planar disk. Vertices and lines shown in red are from the source patch,

i.e., from the cow’s body, and those shown in green are from the target patch, i.e., from

the triceratops’s body. Blue vertices in this figure are intersection points of the two

maps. For clarity, the re-triangulation results with blue vertices are not shown in this

figure.

 Chapter 4 Component-based Correspondence Control

70

The obtained common mesh topology is then mapped back to both patch surfaces.

Thus, vertices in the source patch are bijectively associated with vertices in the target

patch. Putting all patches in each component together, we then have the merged

version of Cs, say Cs′ and that of Ct, say Ct′. The complete vertex correspondence for

the two components, which can be represented as a set of vertex pairs {(vs, vt) | vs∈ Cs′,

vt∈ Ct′}, is naturally formed.

Figure 4.20 Topological Merging for meshes T and U

Figure 4.20 shows another example of topological merging by using the meshes T

and U. Initially, the mesh connectivity of T is much simpler than that of U. Component

correspondences between these two meshes are (left-T, left-U), (right-T, right-U) and

(central-T, ζV). After the mapping and topological merging, two resulting meshes are

with the same mesh connectivity, as shown in Figure 4.20. Obviously, after the

merging, new vertices and triangles are added to the components left-T, left-U, right-T

and right-U. For example, see the area where the left-T component joins the central-T

component. How to handle the component pair (central-T, ζV) is discussed in the next

sub-section.

Note that different parameterization methods can be plugged into this framework

for patch parameterization. Obtaining the common mesh connectivity through merging

the mapped patches is known to be costly in computation. By working on components

 Chapter 4 Component-based Correspondence Control

71

instead of the whole meshes, such computation in our framework is speeded up. On the

other hand, the framework can also use other efficient methods such as multi-

resolution remeshing in the place of topological merging.

4.2.6 Handling Null-components

Two original meshes in a morph are usually different in structure. For example, a

cow has the salient features of two ears and four teats while a triceratops does not

have. For such kind of exclusive high-level features in one mesh, some morphing

works [GSL98, KSK00, ZSH00] relied on users to manually indicate their

corresponding local entities in the other mesh. In such a circumstance, a user had to

partition an exclusive feature in one mesh into patches and then assign corresponding

patches in the other mesh. In [LDS99], a user was required to perform additional

control by altering coarse models to make two original objects structurally similar. In

contrast, our component-based framework conveniently represents the problem of an

exclusive high-level feature as a component pair containing a null-component. For

such a component pair, the framework automatically constructs the complete vertex

correspondence in the following way.

For a component pair (Cs, Ct) where Cs∈Ms and Ct=ζV (or Cs=ζV and Ct∈Mt),

there will be a component disappearing (or growing) in the morphing sequence.

Without loss of generality, only the case of component disappearing (Ct=ζV) is

discussed here. From Heuristics 2 in the computation of Gst, we know that if a

component from Ms is paired with ζV, its adjacent component must be corresponding

to a component from Mt. Thus assume C1 is an adjacent component of Cs at boundary

ls and the corresponding component of C1 is C2, we have C1∈Ms and C2∈Mt. After

deducing local feature pairs from Gst for all component pairs containing no null-

 Chapter 4 Component-based Correspondence Control

72

component, the framework checks the boundaries of C1 and C2. If ls is still unpaired,

i.e. it is not involved in any local-level correspondence, the framework then prompts

the user to assign its correspondence when the user specifies local-level

correspondences for (C1, C2). Then the user can choose to assign a local feature lt in C2

to be the counterpart of ls or to leave it unpaired. The framework then handles the

component pair (Cs, Ct) in two different ways according to user input.

In the case that the correspondences of all boundaries of Cs are all known, the

framework handles the component pair after the step of patch parameterization for all

component pairs containing no null-component. Specifically, the following two steps

are applied to automatically construct a new component Ct′ at counterparts of the

boundaries of Cs. Ct′ is then used to be the counterpart of Cs.

In the first step, the framework converts Cs into a new component Cs′ by updating

its triangles near its boundaries. After the step of patch parameterization, C1 is

converted into C1′ and C2 into C2′, where C1′ and C2′ both have the same mesh

connectivity as that of the meta-component for (C1, C2). Note that after that step, local

features of C1 and C2 (including ls and lt) are usually also changed, that is, they often

have some newly inserted vertices. Assume ls is changed into ls′. In Cs, we need to

update those triangles incident to the edges of ls accordingly so that the resulting new

component Cs′ can connect C1′ seamlessly. Such a modification is illustrated in Figure

4.21. For every triangle ∆abc on ls, where ab is an edge of ls, assume there are a

sequence of new vertices {v1, v2, …, vn-1, vn} from a to b. We then replace ∆abc with a

sequence of new triangles ∆av1c, ∆v1v2c, …, ∆vn-1vnc, ∆vnbc. Vertex order in triangles

is considered here to make sure that new triangles face outside of the mesh surface.

Subsequently, we use Cs′ instead of Cs for the construction of the new component Ct′.

 Chapter 4 Component-based Correspondence Control

73

…

…a b

c

v1 v2 vn-1 vn

Figure 4.21 Updating boundary triangles

Then in the second step, the framework constructs Ct′ by establishing its mesh

connectivity and assigning positions for all its vertices. Its mesh connectivity can be

easily obtained by copying that of Cs′. In this way, the complete vertex correspondence

for Cs′ and Ct′ is naturally established. The framework next locates all vertices of Ct′ at

its boundaries. For a vertex pair (vs, vt) where vs∈Cs′and vt∈Ct′, if vs belongs to a

boundary, the position of vt was already determined by the complete vertex

correspondence for the adjacent components of Cs′ and Ct′; otherwise, among all

vertices at boundaries of Cs′, the one which is nearest to vs is identified by comparing

the distances from vs and all the vertices at boundaries. Let the identified vertex be u.

Then vt is located at the position of v, where (u, v) is a vertex pair.

For the other case that counterparts of some boundaries of Cs are still unknown,

the framework handles such cases before the step of patch parameterization. Because

the user indicated that a component was paired with a null-component but did not

specify how this component to be morphed (implicitly or explicitly), the framework

simply merges Cs back to an adjacent component and leaves the step of patch

parameterization to determine the counterparts for vertices of Cs.

 Chapter 4 Component-based Correspondence Control

74

(a) A user-specified feature line to be paired with the boundary

between the body and the tail of the triceratops

(b) Disappearing tails in the morph

Figure 4.22 Automatic handling the disappearing of the tail

The above method is illustrated in Figure 4.22. The triceratops has a tail while the

chimpanzee does not. The user specifies a feature line in the chimpanzee’s body to be

the counterpart of the boundary between the body and the tail of the triceratops. The

framework then automatically generates a component at the feature line in the

chimpanzee and produced a morph where the tail gradually disappears.

Figure 4.23 shows another example where a component corresponding to the null-

component has more than one adjacent component. In this morph from T to U again,

the component correspondences are (left-T, left-U), (right-T, right-U) and (central-T,

ζV). See Figure 4.23(a), v1v2v3v4 forms the boundary between left-T and central-T

while v5v6v7v8 forms the boundary between right-T and central-T. Both of these

boundaries are paired with the boundary between left-U and right-U, as deduced by the

framework. For the other vertices, v9, v10, v11 and v12 are nearest to boundary vertices v2,

 Chapter 4 Component-based Correspondence Control

75

v3, v7 and v6 respectively. To produce a morph with the effect of disappearing central

part, the framework automatically constructs a new component, denoted by central-U

and adds it between left-U and right-U. According to our method described above, in

the constructed central-U, the vertices corresponding to v9, v10, v11 and v12 are located

at the vertices corresponding to v2, v3, v7 and v6 respectively. The morphing result with

the linear interpolation can be seen in Figure 4.23(b).

(a) Analysis of vertices in central-T

(b) Disappearing central part in the morph

Figure 4.23 Handling null-component in T-U morph

For Ms and Mt, after establishing the meta-component for every component pair

(with or without a null-component) from the complete vertex correspondence, we

obtain a meta-mesh that has the common mesh connectivity of Ms and Mt. This meta-

mesh, denoted by Mst, represents Ms at the first frame and Mt at the last frame. In each

meta-component Cst of the meta-mesh, a vertex moves from its corresponding vertex in

Cs′ to its corresponding vertex in Ct′.

v1

v2

v4

v3

v5

v6

v8

v7

v9

v10

v12

v11

 Chapter 4 Component-based Correspondence Control

76

In this chapter, establishing correspondences between two original meshes is

discussed. A user can choose to work either at the global level or at the local level,

whichever is intuitive and convenient, to specify a requirement about correspondence.

The framework does not require the user to complete certain workload. Effective

assistance and deduction from the framework enables the user to specify any number

of requirements. The end result for the correspondence process is a meta-mesh.

Subsequently, the framework performs vertex interpolation for the meta-mesh to

produce meshes at intermediate frames, as discussed in the next chapter.

 Chapter 5 Component-based Interpolation Control

77

Chapter 5 Component-based Interpolation Control

Given the complete vertex correspondence for every component pair, various

vertex interpolation methods can be applied for vertex interpolation, for example,

linear interpolation or as-rigid-as-possible interpolation [ACL00]. In this framework,

morphing of mesh is decomposed into morphing of components. This approach eases

and simplifies the mesh-morphing problem and makes it possible for users to

manipulate individual components to control the interpolation process. In this chapter,

we make use of the abstract form of meshes – skeletons and propose a skeleton-guided

interpolation method. This enables users of our framework to either specify trajectories

for components as a whole at the global level or specify trajectories for individual

vertices at the local level.

Techniques in the field of skeleton-based animation/deformation are first

discussed in Section 5.1. Then we introduce the representation of skeletons in our

framework in Section 5.2. Section 5.3 describes our methods for calculating skeleton

morphing from the computed common connectivity graph. Section 5.4 introduces the

skeleton-guided interpolation method, which associates mesh vertices with underlying

bones. Thus, mesh vertices are interpolated according to both the complete vertex

correspondence and the guidance of the skeleton morphing. Section 5.5 discusses the

way of controlling the interpolation process at the global level as well as the local

level.

 Chapter 5 Component-based Interpolation Control

78

5.1 Skeleton-based Animation/Deformation

A skeleton of a 3D object is an effective tool for shape manipulation because it

abstracts the essence of the object’s structure with a low computation cost.

Consequently, a change in shape can be well interpreted as a change in structure. In the

field of computer graphics, skeleton-based methods have been employed in many

applications such as modeling of implicit surfaces [BW90, B95, GKS98, AJC02] and

motion capture for animated models [HFP00, MG01]. Only those skeleton-based

techniques for animators are discussed here.

Skeletons can be used to deform meshes. To deform a 3D object, a user attaches a

skeletal curve on a part of the object. By editing the curve, the user deforms its

associated part. This technique is called axial deformation. For example, Lazarus et al.

[LCJ94] focused on how to use an axis to naturally deform a part of a mesh. For a

complex 3D polygonal mesh, its underlying skeleton usually consists of a collection of

bones and the structure of the skeleton is thus complex in structure. Skeleton-driven

animation/deformation techniques are widely used in the animation community. In

these techniques, skeletons play an important role in creating natural, rigid and high-

level controllable transformations. These techniques generally can be classified into

two categories: geometrical approaches and physically based approaches. Techniques

in the second category first examine appropriate physical models and then realize

particular animation effects by using the physical models. Though generally producing

animation with good visual quality, they involve high computation expenses. For

example, Teichmann and Teller [TT98] generated a spring network to bind the

movement of mesh vertices with their underlying skeletons. This method needs the

complicated computation of stabilizing the network. On the contrary, the first category

 Chapter 5 Component-based Interpolation Control

79

is predominately used in the industry because it is more general and provides better

user control. The following discussions mainly focus on the first category for this

reason.

In geometrical approaches, each mesh vertex is bound with several bones of an

underlying skeleton. The transformation of a vertex is obtained by blending the

transformations resulting from the associations between the vertex and those bones.

Such a problem is usually called skinning. Among all skinning methods, the weighted-

vertex method is the simplest and most popular one in many commercial systems

[Maya]. In this method, each vertex is assigned several weights for transformation

blending. Interactive skeleton techniques [BW76] enhanced user control in motion

dynamics. In addition, there are several methods [SK00, CGC02] that made use of

FFD (Free form deformation) techniques and bound FFD lattices with skeletons. In

these methods, transformation of skeletons affects mesh vertices indirectly through

FFD lattices.

The skinning technique using transformation blending has some characteristic

defects such as the “elbow shrinkage” and is notoriously difficult to control. Therefore,

Lewis et al. [LCF00] presented a pose space deformation method to unify this

technique and the shape interpolation technique. Sloan et al. [SRC01] proposed a

similar method that combined these two techniques by “unbending” given hand-

sculpted objects. In both of the two methods, vertex correspondences among given

objects were assumed. Recently, Allen and his co-workers [ACP02] improved this

technique by constructing displacement maps for objects with no obvious vertex

correspondences.

Skeletons can assist an animator in tracking one recognizable shape to another

 Chapter 5 Component-based Interpolation Control

80

recognizable shape throughout a transition. However, it should be noted that the use of

skeletons in mesh morphing is different from that in animation. Although the use of

skeletons is not novel, there are several challenges in using skeletons in our

framework. For example, the structure of a skeleton usually changes in a morph and

user-specified correspondence makes the binding of mesh vertices to underlying bones

much more complicated. Research difficulties of using skeletons in mesh morphing

and our respective solutions will be discussed in the following sections.

5.2 Skeleton Representation

As we know, 3D meshes can be very complicated, involving thousands or even

millions of polygons. The use of skeletons makes it possible for users to conveniently

and efficiently manage such meshes. For a given mesh, its skeleton is an intuitive and

simple tool to abstract its geometrical form and manifest its structural function.

There have been several different skeleton representation methods in the field of

computer graphics. Typical ones include (1) medial axis, which is defined as the locus

of points that are minimally equidistant from at lest two surface points, (2) geometric

primitives, which can be of any dimensions from a point, a line segment, a polygon to

a polyhedron and usually used for modeling soft objects (implicit surfaces built around

skeletons) and (3) stick figure, in which a bone can be represented as a curve or a

sequence of line segments.

Skeletons of the first two representations have complicated structures and thus

may not be always intuitive for users, especially for non-experts. For example, some

complicated forms such as parabolic curves are generally involved in a medial axis. As

for geometrical primitives in skeletons of soft objects, due to different dimensions of

 Chapter 5 Component-based Interpolation Control

81

elements in skeletons, some special operations such as Minkowski sums are needed.

To understand the function of skeletons of these two representations, users are

expected to have sufficient technical knowledge.

In comparison with them, stick-figure skeletons are simpler and more indicative

of object structures. Consequently, they are commonly used in building polygonal

meshes in animation. One example is a generalized cylinder having a curve as its

skeleton together with a set of cross sections [CLK98]. In addition, IK (Inverse

Kinematics) skeletons, which are popular in animation systems, can also be treated as

stick figures among their joints. Besides, there have been several methods [CH01,

AJC02] for modeling implicit surfaces from skeletons containing interconnected

curve-segments. Incurring low computation cost, stick-figure skeletons are natural

abstractions for shapes [N82] and suitable for interactive modeling or animation

systems. For this reason, we utilize stick-figure skeletons in this framework. For a

woman model with its components shown in Figure 5.1(a), its skeleton in our

framework and a corresponding IK skeleton in an animation system are shown in

Figure 5.1(b) and Figure 5.1(c) respectively. Each set of colored arrows in Figure

5.1(c) indicates the position of a joint and the local coordinate system at that joint

(with the colors R, G, B representing the axes X, Y, Z respectively).

(a) Components (b) Skeleton in the framework (c) Skeleton in animation

Figure 5.1 Skeleton representation of a woman model

 Chapter 5 Component-based Interpolation Control

82

To make the use of skeletons be consistent with our use of components, we define

the skeleton of a mesh as follows: each component of the mesh can be abstracted into a

bone, and all bones of a mesh form its skeleton. A user can choose to either assign the

bone of a component manually, or obtain it through some automatic methods [VL99,

LWT01, WP02]. See the example in Figure 5.1 again. In this figure, the components of

the woman are shown with different colors in Figure 5.1(a) and the bones are colored

the same as their respective components in Figure 5.1(b). The following discussion

details our representation of skeletons.

Bone Organization

Each component in a mesh has one underlying bone in the skeleton. With such

one-to-one relationship, we organize bones of all components into a skeleton based on

the connectivity among the components. That is, if two components connect each other

in a mesh, their corresponding bones are said to be adjacent. For the example of the

woman model, as its body component has five adjacent components of four limbs and

a head, the bone of the body must have five adjacent bones representing those adjacent

components respectively. We can see that the organization of bones in a skeleton here

is different from that in animation techniques, in which bones in a skeleton is

dependent on joints in the object.

Bone shape

A user can design the bone of a component according to his requirements in

interpolation control, and the bone is not required to represent the shape of the

component. To meet different user needs in controlling components via their bones, a

bone in the framework can comprise several consecutive line segments, each of which

 Chapter 5 Component-based Interpolation Control

83

is called a bone segment. See the example in Figure 5.2, the bones for a tail and a horn

of a cow model are shown in Figure 5.2(a) and Figure 5.2(b) respectively. Each bone

segment has two endpoints and all such endpoints in a bone form a sequence of

skeletal vertices of the bone. A point on a bone segment is then called a skeletal point.

A bone has its direction along its skeletal vertices, starting from the first skeletal vertex

and ending at the last one, and every bone segment has a direction from its starting

skeletal vertex to its ending skeletal vertex. Along the direction of a bone, the ith bone

segment is called the preceding bone segment of the i+1th bone segment. Two

consecutive bone segments are said to be adjacent. We can see that the shape of a bone

in our framework is different from that in animation techniques, which usually

represents a connection between two joints.

(a) a cow’s tail (b) a cow’s horn

Figure 5.2 Bone shape

Bone Connection

The use of skeletons in our framework should be able to support transformation of

meshes. During the transformation form one mesh to the other, a boundary where two

components connect each other often has its location changing with respect to these

components, while this is almost fixed in an animation. For the example in Figure

5.3(a), when a triceratops is morphed into a woman, its upper legs need to be slid over

its body from its initial position A to reach its final position B, being an arm connecting

to the body of the woman. To support this, bones of two connected components are not

 Chapter 5 Component-based Interpolation Control

84

necessarily connected to each other. Figure 5.3(b) shows the skeletons of the

triceratops and the woman models.

(a) Component sliding (b) Unconnected bones

Figure 5.3 Bone connection

Bone Parameterization

To represent the skeleton of a mesh, we make use of a moving local frame here to

traverse among its bones and bone segments according to the connectivity among the

bones. Take a bone as the anchor bone b1 and its first skeletal vertex as the anchor

point. Then from the anchor point in the anchor bone, the local frame moves from one

bone to its adjacent bones, and within each bone, from one bone segment to another.

During the traversal, all bones and their skeletal vertices are ordered and thus

directions of the bones are determined. We can choose either the depth-first or the

breadth-first traversal order and along the traversal path, each bone bi (i=2, 3, …, n) in

the skeleton has a reference bone. The position of the anchor point is measured in the

world coordinate system while other skeletal vertices are measured in the moving local

frame. In Figure 5.4, each set of red, green and blue arrows represents a local frame

with the axes X, Y, Z. Figure 5.4(a) shows the local frames at bones of the skeleton of

a cow model. For ease of illustration, we illustrate adjacency and the traversal order

among bones by using gray lines between adjacent bones. Figure 5.4(b) shows the

local frames at bone segments within the bone of the tail component of the cow model.

A

B

 Chapter 5 Component-based Interpolation Control

85

(a) Local frames of bones (b) Local frames of bone segments in a bone

Figure 5.4 A moving local frame

The transformation parameters of a bone are measured according to the movement

of the local frame from the last skeletal vertex of its reference bone to its first skeletal

vertex. These parameters include translation vectors [Tx, Ty, Tz]
 T and Euler angles (α,

β, γ). Along the direction of a bone, the movement from a bone segment with respect

to its preceding bone segment in the bone is recorded in a similar way. The directions

of three axes in the moving local frame are determined as follows. As shown in Figure

5.4, the X-axis of the local frame at the bone segment is along the direction from its

starting skeletal vertex to its ending skeletal vertex. To align the X-axis during the

traversal, we make use of quaternions to calculate the minimum rotation for an

alignment. This specific rotation naturally determines the direction of the Y-axis and

Z-axis for the local frame. Therefore, during the traversal among a skeleton, rotation

and translation are applied to the moving local frame and these parameters are used to

represent the skeleton.

5.3 Skeleton Morphing

As stated in [BL99], the use of skeletons in morphing is potential because the

interpolation between two skeletons permits the interpolation of two different objects

 Chapter 5 Component-based Interpolation Control

86

and makes the final morph more convincingly than in classical morphing methods. In

volume-based morphing, Galin et al. [GA96a, GA96b, GL99] studied on morphing of

soft objects. They tackled the problem of structural difference between two original

soft objects by decomposing a component into a set of sub-components sharing the

same skeletal primitives. Thus, these methods avoid the problem of different skeletal

structures — even when the numbers of skeletal primitives in two soft objects are

different, the two objects always have the same number of components after the

decomposition. In boundary-based morphing, there have been several algorithms

making use of skeletons. Shapira and Rappoport [SR95] morphed 2D polygons by

using their star-skeletons. In this work, it was required that two skeletons in a morph

must be compatible in structure. Lazarus and Verroust [LV97] morphed cylinder-like

objects each of which had an underlying skeletal curve. Surazhsky and Gotsman

[SG01] morphed stick figures with the same topological structure by improving 2D

compatible triangulation methods.

In our framework, however, because a user can specify incompatible component

decompositions for two original meshes, skeletons of the two meshes are generally

different in structure. Therefore, given the skeletons for two original meshes Ms and

Mt, say the source skeleton Ks and the target skeleton Kt respectively, we need to

construct a skeleton of the common structure, which is called meta-skeleton in the

framework. Section 5.3.1 discusses establishing the meta-skeleton for Ks and Kt based

on the correspondences between their bones. Section 5.3.2 discusses the

transformation of the meta-skeleton.

5.3.1 Common Skeleton Construction

Due to the one-to-one relationship between components and bones, a component

 Chapter 5 Component-based Interpolation Control

87

pair in each correspondence node of the common connectivity graph Gst corresponds to

a bone pair (bs, bt), where bs ∈ Ks ∪ {ζk}, bt ∈ Kt ∪ {ζk}, and ζk is a null-bone that

corresponds to a null-component ζV. Thus, all user-specified component

correspondences are respected in the set of bone pairs deduced from Gst. To create a

morph between Ks and Kt, the key task is to establish the common structure for them.

The meta-skeleton Kst of Ks and Kt, is defined to be a super-skeleton comprising a set

of meta-bones, each of which represent a bone pair from Gst. The meta-skeleton of Ks

and Kt represents Ks at the first frame and Kt at the last frame in a morph. Note that

each bone in Ks or in Kt is mapped to one and only one meta-bone in Kst. All meta-

bones in Kst are organized as follows. For each correspondence edge in Gst, we say the

two meta-bones, which are obtained from its two incident correspondence nodes in Gst

respectively, are adjacent.

 a

 t

 s

 b

 c

 d

 e f

 q r

 p

 u

(a) Ks and Kt

 a

 t

 s

 b

 c

 d

 e f

 q r

 p

 u

(b) Kst

Figure 5.5 Meta-skeleton

The meta-skeleton Kst can be regarded as the union of Ks and Kt. Figure 5.5 and

 Chapter 5 Component-based Interpolation Control

88

Figure 5.6 provide two examples to illustrate meta-skeleton. For the ease of

comparison between both figures, the meta-bones containing null-bones are colored in

red and the shape of a null-bone inserted to original skeletons is shown to be the same

as that of its counterpart (in fact, the length of a null-bone inserted into an original

skeleton is zero.) For the example of Gs and Gt in Figure 4.1, their corresponding

skeletons Ks and Kt are assumed to be as shown in Figure 5.5(a). For consistency, their

bones are labeled the same as their corresponding components in Figure 4.1. Assume

the complete component correspondence between Gs and Gt is as shown in the

example of Gst in Figure 4.2. In Figure 5.5(a), those bones having no counterpart in the

other skeleton are colored in red whereas corresponding bones among the other bones

are shown with the same colors. The first and the last frames of the meta-skeleton

deduced from Gst are shown in Figure 5.5(b). Gray lines in this figure are used to

represent relationship among adjacent bones in both skeletons. In Figure 5.6,a skeleton

of an animal and a skeleton of a plant are shown in the first row. For the ease of

illustrating skeleton structure, bones in the two skeletons are shown connected without

added gray lines in this figure. Corresponding bones are labeled with the same

numbers and those bones having no counterparts in the other skeleton are highlighted

by red. The first and the last frames of the meta-skeleton are shown in the second row.

From these two examples, it can be clearly seen that the common structure of two

original skeletons is established in the meta-skeleton, by properly adding null-bones

into them. Note that the geometrical position of Kst is only meaningful at a certain

frame in the morph. Due to null-bones in Kst, transformation parameters of Kst at the

first and the last frames are not the same as those of Ks or Kt.

 Chapter 5 Component-based Interpolation Control

89

6

1 2
2

3

4

4
5

5

8

3

1

9
9 8

7

6
7

6

1 2
2

3

4
4

5 5

8

3

1

9

9 8

7

6
7

Figure 5.6 Another example of meta-skeleton

To morph Ks to Kt, it is also necessary to align their bone segments. The result of

such alignments is represented as bone segments of the meta-bones of Kst. Consider a

meta-bone bst representing a bone pair (bs, bt). If bs∈Ks and bt∈Kt, we align their bone

segments by inserting new vertices to them as follows. We define the relative length of

a bone segment si in a bone b as:

1
1

1

()
()

() ()
()()

i

j
j j

i in

k
k

length s
length s

ratio s ratio s
length blength s

=
−

=

= = +
∑

∑
.

For a bone segment of one bone, we insert a new skeletal vertex in the

corresponding bone such that the new bone segment formed will have the same

relative length, if such a skeletal vertex does not exist.

In the case that one bone in a bone pair is ζk, we count the skeletal vertices for the

other bone in the bone pair, create a new bone containing the same number of skeletal

 Chapter 5 Component-based Interpolation Control

90

vertices, and use it to replace ζk in the bone pair. Thus, the two corresponding bones

have the same number of bone segments. The lengths of bone segments of the new

created bone segment are all set to zero.

Having the same number of bone segments in every two corresponding bones, we

align Ks and Kt and compute the parameter of Kst at the first and the last frames. Then

by transforming the meta-skeleton between the two frames, we get the morph between

Ks and Kt.

5.3.2 Skeleton Transformation

To compute the morph from Ks to Kt, the framework needs to interpolate Kst from

the first frame to the last frame. The simplest way is to record the Cartesian

coordinates of all skeletal vertices in each meta-bone, and then to compute the morph

of skeletons by interpolating coordinates of skeletal vertices. However, direct

interpolation of vertex positions may result in unnatural transformation. An obvious

example is that for a human skeleton, if we interpolate between two poses in the

movement of a circling arm, intermediate arms will turn to be shorter than its original

length. For more examples and discussions about the linear transformation method, see

[SWC97].

To produce natural movement of skeletons, we again make use of a moving local

frame here to traverse among all meta-bones and their bone segments of the meta-

skeleton, according to connectivity of the meta-skeleton. The Cartesian coordinates of

skeletal vertices of Kst at the first and the last frames are known from Ks and Kt

respectively. Thus, we can compute parameters of Kst, including translation vectors

[Tx, Ty, Tz]
 T and Euler angles (α, β, γ), for all meta-bones and their bone segments at

 Chapter 5 Component-based Interpolation Control

91

these two frames. By interpolating the transformation parameters of meta-bones and

their bone segments between the first frame and the last frame, the framework

transforms Kst to produce the morph of skeletons.

Different interpolation methods can be used for interpolation parameters of

skeletons. In addition to the linear interpolation of these transformation parameters,

Spline interpolation [PTV92, U99] can be also employed to compute a smooth

trajectory passing through all control points at intermediate frames. This method first

calculates the control points of a spline curve from a given parameter set, and then

obtains interpolation coefficients accordingly. As for the interpolation of orientation, it

is known that direct interpolation of Euler angles might result in non-orthogonal matrix

in general and it has the well-known problem of “Gimbal lock”. In addition, Euler

angles are dependent on coordinate axes and thus not unique. For example, one well-

known setting for them is yaw, pitch and roll [HFK94]. To solve the above problems,

Quaternions [S85] can be used to represent rotations in computer graphics.

Interpolation of quaternions creates smoother transformation of orientations than

interpolation of Euler angles. Given two quaternions q1 and q2, we use the spherical

linear interpolation (SLERP) [B98] and when within a small region, apply the simple

linear interpolation (LERP) for the interpolation at [0,1]t∈ :

SLERP: 1 2
sin[(1)] sin()()

sin sin
t tq t q qθ θ
θ θ
−

= +

LERP: 1 2() (1)q t tq t q= + −

After specifying requirements about component decomposition and component

correspondence, the user need not wait till the last step of computing morphing

sequences to see how those global-level specifications affect the final morph. Instead,

the user can obtain the morph of skeletons, which can be regarded as a global-level

 Chapter 5 Component-based Interpolation Control

92

morph, at this early stage of a morphing design. Thus, the user can make decisions

accordingly about whether to modify those global-level specifications. It is already

known that morphing of skeletons incurs low computational cost. After the user

revisits the step of global-level correspondences and modifies his specifications, the

framework updates skeleton morphing swiftly. This results in short turn-around time in

the global-level morphing process, and thus the user can perform the morphing design

at the global level conveniently through a trial-and-error process.

A user can modify the trajectory of skeleton morphing by manipulate the meta-

skeleton at an intermediate frame. Such a modification is saved as a keyframe of the

meta-skeleton. Detailed discussions about updating the morphing sequence according

to such keyframe editing will be provided in Section 5.5.

5.4 Skeleton-guided Interpolation

Morphing between two original meshes is abstracted into morphing between their

underlying skeletons. In this section, we bind vertices of the meta-mesh to its

underlying meta-skeleton so that skeleton morphing can be used to guide morphing of

components. Specifically, a skeleton-guided interpolation method is presented here to

make transformation of components follow the movement of their underlying meta-

bone in the meta-skeleton.

5.4.1 Vertex Binding Technique

Although both the meta-skeleton and the meta-mesh are already available till now,

the conventional skeleton-driven vertex interpolation technique in animation works

cannot be applied to produce the final morph directly. This is due to the shape

difference between two original meshes and the existence of user-specified local-

 Chapter 5 Component-based Interpolation Control

93

feature correspondences. First, in skeleton-driven animation, each mesh vertex

generally has fixed relationship with bones in a skeleton. In morphing, however, the

relationship between a bone and a vertex is varying in terms of both influence of the

bone to the vertex and the relative position of the vertex with respect to the bone. Next,

it usually happens in morphing that the vertex is required to move from one end of the

bone to the other end of the bone, crossing several bone segments. Thus, to produce a

smooth movement in such a case, solely making use of local frames at skeletal vertices

is definitely insufficient. Moreover, local feature pairs in meta-components make the

binding of vertices to bones more complicated. In general, there is a conflict between

vertex positions determined by bones and those determined by the complete vertex

correspondence.

To solve the above difficulties, the framework adapts the weighted-vertex method

for our purpose. Given an initial state, this method calculates the current position of a

vertex according to a weighted transformation blending function as shown below.

0 1
0

1

1

()
n

i i i
i

n

i
i

T T v
v

ω

ω

−

=

=

=
∑

∑

where v0 is the initial vertex position of the vertex v and iω is the weight for the

influence of ith bone to the vertex. The transformations from the world coordinate

system to the local frame at the ith bone in the initial and the current state are

represented as Ti
0 and Ti respectively. Note that in this function, 0 1

0()iT v− represents the

local coordinates of the vertex in the local frame at the ith bone in the initial state; with

the assumption that the local coordinates are always unchanged, 0 1
0()i iT T v− represents

the world coordinates of the vertex when the bone is transformed with its current

 Chapter 5 Component-based Interpolation Control

94

transformation matrix.

Analyzing this function, we can see that there are several new problems when we

try to employ the weighted-vertex method in morphing: the local coordinates are

varying; the influence of a bone to a vertex, represented by iω , is not fixed and local

frames solely located at bones (and bone segments) are insufficient. Next, we

introduce our method for binding each mesh vertex with a meta-bone.

5.4.2 Single Binding

A meta-mesh contains a collection of meta-components and each meta-component

has an underlying meta-bone. To transform vertices of meta-components around their

underlying meta-bones, we parameterize these vertices as follows.

p(v ,f)

v

vi+1

vi bst

dist (v i
, p(v,f))

Figure 5.7 Parameters for binding a vertex to a bone

See the illustration in Figure 5.7. For the binding of a vertex v to a meta-bone bst

at a certain frame f∈[0,1], the shortest distance between v and bst is computed by

comparing the distance between v and each bone segment of bst. Use p(v, f) to denote

the skeletal point that is nearest to v on bst. Assume p(v, f) is from the ith bone segment

connecting two skeletal vertices vi and vi+1, and the distance between vi and p(v, f) is d

= dist(vi, p(v, f)). By translating the local frame at this bone segment with T[,0,0]d ,

this method locates a local frame at p(v, f). Then, similar to the definition of relative

 Chapter 5 Component-based Interpolation Control

95

lengths of bone segments in Section 5.3.1, the relative length of the skeletal point

(,)p v f along bst is defined as

1

1

(, (,)) ()
(,)

(())

 ()
()

i

i j
j

n

k
k

i
st

dist v p v f length s
ratio v f

length s

d ratio s
length b

=

=

+
=

= +

∑

∑

Consequently, let the transformation matrix for the local frame at p(v, f) be

((,))MAT p v f and the world coordinates of v be x, y and z; its local coordinates with

respect to the local frame at p(v, f) can then be calculated by

T T[(), (), ()] ((,)) [(), (), ()]l l lx f y f z f MAT p v f x f y f z f= ⋅ .

The framework first computes the relative lengths and local coordinates of each

vertex of meta-components at both the first and the last frames. These parameters are

saved in the vertex keyframe list of the vertex. Then, given an intermediate frame, the

framework computes the location of each vertex at that frame by interpolating the

relative length and local coordinates between the first frame and the last frame. With

such an interpolation method, a vertex of a meta-component can be successfully

transformed around its underlying meta-bone at the same time of respecting given

vertex correspondences. Consequently, this method is called single binding.

See the example in Figure 5.8. For the two components colored by brown, there is

a pair of corresponding vertices (vs, vt), and both vertices are located at component

boundaries. Obviously, during the interpolation between vs and vt, the vertex should

move from one end of the meta-bone to the other end. Therefore, the bone segment

closest to the vertex varies during the interpolation. Using the single binding method,

the framework can produce a smooth transformation from vs to vt. The algorithms of

 Chapter 5 Component-based Interpolation Control

96

recording vertex keyframe list and calculating the vertex interpolation are described as

follows.

Figure 5.8 Binding a vertex to a meta-bone

 [Algorithm 5.1] Vertex_Keyframes_for_Single_Binding
Input: A vertex v in a meta-component Cst with a meta-bone bst
Output: Vertex keyframes at the first and the last frames
Step 1: At the first frame f = 0, find the skeletal point nearest to v, i.e. p(v,0);
Step 2: Calculate ratio(v,0) and the transformation matrix for the local frame at p(v,0);
Step 3: Calculate local coordinates of v, i.e. xl(0), yl(0) and zl(0);
Step 4: Save ratio(v,0), xl(0), yl(0) and zl(0) to the vertex keyframe at the first frame;
Step 5: At the last frame f = 1, find the skeletal point nearest to v, i.e. p(v,1);
Step 6: Calculate ratio(v,1) and the transformation matrix for the local frame at p(v,1);
Step 7: Calculate local coordinates of v, i.e. xl(1), yl(1) and zl(1);
Step 4: Save ratio(v,1), xl(1), yl(1) and zl(1) to the vertex keyframe at the last frame.

[Algorithm 5.2] Interpolate_By_Single_Binding
Input: A vertex v with its two keyframes in a meta-component Cst with a meta-bone bst, an intermediate

frame f ∈(0,1)
Output: The world coordinates of v at f
Step 1: Read ratio(v,0), xl(0), yl(0), zl(0), ratio(v,1), xl(1), yl(1) and zl(1) from the vertex keyframes;
Step 2: At frame f, calculate relative length and local coordinates using linear interpolation.

(,) (1) (,0) (,1)ratio v f f ratio v f ratio v= − ⋅ + ⋅

() (0) (1)
() (1) (0) (1)
() (0) (1)

l l l

l l l

l l l

x f x x
y f f y f y
z f z z

⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥= − ⋅ + ⋅⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦

;

Step 3: According to ratio(v,f) and xl(f), yl(f) and zl(f), find the skeletal point p(v,f) on bst;
Step 4: Calculate the transformation matrix MAT(p(v,f));
Step 5: Calculate the world coordinate of v at f by

T T[(), (), ()] ((,)) [(), (), ()]l l lx f y f z f MAT p v f x f y f z f= ⋅

Bone segment Surface vertex

vs

vt

 Chapter 5 Component-based Interpolation Control

97

5.4.3 Double Binding

(a) Single binding (b) Double binding

Figure 5.9 Fold-over in the interpolation

In the single binding method, each vertex of a meta-component is bound to a

corresponding skeletal point along the meta-bone of this meta-component. When it is

applied to the T-U morph, the meta-component for the component pair (right-T, right-

U) at frame f = 0.5 is shown in Figure 5.9(a). It can be seen that fold-over exists at the

circled area where two bone segments connect each other, see also the picture with

enlarged details at the corner of Figure 5.9(a). Because the three bone segments of the

meta-bone at this frame are not co-linear, the orientation of the local frame needs to be

changed twice when it traverses along these bone segments. Thus, the position of a

vertex is suddenly changed when its corresponding skeletal point moves from one

bone segment to another. The visual quality of morphs in such cases can be improved

by binding a vertex to two adjacent bone segments — the one nearest to the vertex is

called the primary bone segment of the vertex and the other is called its secondary

bone segment. To distinguish this method from the previous single binding method, we

call it double binding. For the same example in Figure 5.9(a), the meta-component at f

= 0.5 computed by the double binding method is as shown in Figure 5.9(b).

 Chapter 5 Component-based Interpolation Control

98

When we parameterize vertices of a meta-component with the double binding

method at a certain frame f∈[0,1], the secondary bone segment s′(f) of a vertex v is

determined as follows. Generally, along the direction of its primary bone segment s(f)

starting from one skeletal vertex vi and ending at another skeletal vertex vi+1, if its

corresponding skeletal point p(v, f) is on the first half of s(f), that is,

1

(, (,))((,)) 0.5
(,)
i

i i

dist v p v ffraction p v f
dist v v +

= ≤ , s′(f) is the bone segment preceding to s(f);

otherwise, s′(f) is the bone segment next to s(f). In addition, a weight w is assigned to v

and used to balance the influences from the primary bone segment and from the

secondary bone segment. Because the former is always more important than the latter,

w increases from 0.5, when p is at the common skeletal vertex of two adjacent bone

segments, to 1, when p is at the middle of the primary bone segment. With the double

binding method, the algorithms of recording vertex keyframe list at the first and the

last frames and calculating the vertex interpolation at intermediate frames are

described as below. The double binding method generally produces smooth vertex

transformation for meta-components.

[Algorithm 5.3] Vertex_Keyframes_for _Double_Binding
Input: A vertex v in a meta-component Cst with a meta-bone bst

Output: Vertex keyframes at the first and the last frames
Step 1: Apply [Algorithm 5.1] to compute ratio(v,0), xl(0), yl(0), zl(0) at f = 0 and ratio(v,0), xl(0), yl(0),

zl(0) at f = 1;
Step 2: For the corresponding skeletal point of v at f = 0, say p(v,0), assume it is from the bone segment

s(0) which is the ith bone segment of bst (i = 1, 2, .., m), calculate ((,))fraction p v f ;

Step 3: Determine the secondary bone segment s′(0) as follows. If s(0) is the first bone segment (i=1) or
the last bone segment (i=m), s′(0) is always the second or the last second bone segment;
otherwise, s′(0) is the i-1th if ((,))fraction p v f < 0.5 and the i+1th if ((,))fraction p v f ≥0.5;

Step 4: Find the skeletal point p′(v,0) on s′(0) that is nearest to v and compute its relative length
ratio′(v,0);

Step 5: Compute the local coordinates of v with respect to the local frame at p′(v,0), i.e. xl′(0), yl′(0) and
zl′(0);

Step 6: Save ratio(v,0), xl(0), yl(0), zl(0), ratio′(v,0), xl′(0), yl′(0) and zl′(0) to the vertex keyframe at the
first frame;

Step 7: Similarly at f = 1, compute ratio′(v,1), xl′(1), yl′(1), zl′(1);
Step 8: Save ratio(v,1), xl(1), yl(1), zl(1), ratio′(v,1), xl′(1), yl′(1) and zl′(1) to the vertex keyframe at the

last frame.

 Chapter 5 Component-based Interpolation Control

99

[Algorithm 5.4] Interpolate_By_Double_Binding
Input: A vertex v with its two keyframes in a meta-component Cst with a meta-bone bst, an intermediate

frame f∈(0,1)
Output: The world coordinates of v at f
Step 1: Read ratio(v,0), xl(0), yl(0), zl(0), ratio(v,1), xl(1), yl(1) and zl(1) from the vertex keyframes;
Step 2: At frame f, apply [Algorithm 5.2] to compute the skeletal point p(v, f), locate the primary bone

segment s(f) on bst by calculating ratio(v,f), and then compute the world coordinates
(), (), ()x f y f z f by calculating xl(f), yl(f), zl(f);

Step 3: Read ratio′(v,0), xl′(0), yl′(0), zl′(0), ratio′(v,1), xl′(1), yl′(1) and zl′(1) from the vertex keyframes;
Step 4: Linearly interpolate between ratio′(v,0) and ratio′(v,1) to get ratio′(v,f) and between [xl′(0),

yl′(0), zl′(0)]
T
 and [xl′(1), yl′(1), zl′(1)]

T
 to get [xl′(f), yl′(f), zl′(f)]

T
;

Step 5: Calculate ((,))fraction p v f and determine the secondary bone segment s′(f) accordingly;

Step 6: The corresponding skeletal point p′(v, f) determined by ratio′(v,f) is not necessarily on s′(f).
Construct a local frame at p′(v, f) by translating the local frame from the starting vertex of s′(f);

Step 7: Calculate the world coordinates (), (), ()x f y f z f′ ′ ′ by using xl′(f), yl′(f), zl′(f) and the local frame
at p′(v, f);

Step 8: Calculate the weight of v at f as follow:
0.5 ((,)) if ((,)) 0.5 and () is not the first bone segment

(,) 1.5 ((,)) if ((,)) 0.5 and () is not the last bone segment
1 otherwise

fraction p v f fraction p v f s f
w v f fraction p v f fraction p v f s f

+ ≤⎧
⎪= − >⎨
⎪
⎩

Step 9: Calculate the final world coordinates of v at frame f as:
() ()

(,) () (1 (,)) ()
() ()

x f x f
w v f y f w v f y f

z f z f

′⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥′⋅ + − ⋅⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥′⎣ ⎦ ⎣ ⎦

5.4.4 Boundary Blending

After applying the single/double binding method, each meta-component moves

around its underlying meta-bone in a morph. As such, if we put all meta-components

together, the resulting meta-mesh may not be seamless throughout the morphing

sequence. To connect meta-components at intermediate frames, it is apparently

insufficient if only vertices of component boundaries are glued. There have been

several methods for establish smooth connections for disconnected components in a

polygon mesh. For example, Kanai et al. [KSM99] attached a part of one mesh to a

part of the other by using morphing techniques. Given several user-specified vertex

pairs, they first established vertex correspondences for two original meshes. Then they

made use of three kinds of geometrical operations, including rigid transformation,

 Chapter 5 Component-based Interpolation Control

100

scaling and deformations, to smoothly align two parts at their boundaries. Alexa

[A01b] allowed users to specify a region of interest by drawing boundaries at a mesh.

Linear interpolation of Laplacian coordinates was then applied to produce morphs with

local deformation. The component disconnection in this framework results from our

use of skeleton-guided interpolation. Consequently, we propose a skeleton-based

method to blend adjacent components at their common boundaries. Specifically, we

adapt the weighted-vertex method further to automatically generate smooth

connections among all meta-components computed by the single/double binding

method at intermediate frames.

For two adjacent meta-components i
stC and j

stC sharing a boundary, their vertices

near the boundary are influenced by both of their respective meta-bones, i
stb and j

stb . A

vertex of a meta-component is always ultimately bound to the meta-bone of the meta-

component. Hence, each vertex of a meta-component is assigned a blending weight wb

in the following way. In a meta-component i
stC , its vertices that are sufficiently far

away from the boundary have wb = 1, those on the boundary have wb = 0.5, and others

in between have their weights between 0.5 and 1. Correspondingly, the weight for

binding a vertex of i
stC with j

stb is 1 bw− . Thus, for a vertex v of i
stC at an intermediate

frame f, assume its position driven by the meta-bone i
stb is ()iv f and that driven by j

stb

is ()jv f , its final position is then calculated by () () (1) ()i j
b bv f w v f w v f= ⋅ + − ⋅ . In

the case that a vertex is near to multiple component boundaries, its weight is assigned

to be the largest one among all its weights resulting from those boundaries nearby, and

the adjacent meta-component for the boundary blending is determined accordingly.

The distance from a vertex to a boundary in a meta-component can be calculated

 Chapter 5 Component-based Interpolation Control

101

using several methods. A common way is to define the distance as the length of the

approximate shortest path over mesh edges, as stated in Section 4.2.1. Alternatively,

one simple yet effective method is to measure the distance based on the topology of the

meta-component. That is, the distance is increasing during the propagation from the

component boundary to inside, according to the mesh connectivity. If a vertex has an

adjacent vertex on the boundary, it has a large weight; if a vertex has to across several

vertices to be on the boundary, its weight is small. It is known that a meta-component

has a fixed topology, i.e. the common mesh connectivity, during a morph. Therefore,

this method has an advantage that vertex weights only need to be computed once for a

meta-component. Among the above two methods, we can choose to use the second in

the process of morphing design and the first when the final morphing sequence is

produced.

Figure 5.10 illustrates these two methods for weight calculation. In the morph

from a cow to a triceratops, two corresponding components: the cow’s body and the

triceratops’ body result in a body meta-component. At the first frame, the weight

distribution of this meta-component using the first method is as shown in Figure

5.10(a) and that using the second method in Figure 5.10(b). Those vertices not affected

by any boundary (and also any other meta-component) are un-weighted and they are

not highlighted here. It can be seen that with the first method, the weight distribution is

tighter around the boundaries whereas with the second method, the distribution is

highly dependent on the mesh connectivity.

 Chapter 5 Component-based Interpolation Control

102

wb

(a) Weights based on shortest paths (b) Weights based on mesh topology

Figure 5.10 Distribution of blending weights

A polygon mesh only has its surface information and simply transforming

individual vertices ignores the existence of its interiors. Employing skeletons, the

presented skeleton-guided interpolation method enables the blending of interiors and

successfully preserves shape rigidity in final morphs. In addition, the problem of shape

distortion that arises in the linear interpolation method can be generally avoided. A

user also does not have to align original meshes in a morphing design. See the example

in Figure 5.11 for morphing between a calf and a cow with different orientations. The

morphing sequence produced by the linear interpolation method is shown in Figure

5.11(a). This morph involves serious distortion, especially at the third frame shown. In

contrast, the morphing sequence produced by our skeleton-guided interpolation

method is shown in Figure 5.11(b). It can be seen the morphed object gradually turns

from its initial orientation of the calf to its final orientation of the cow, just as what a

user usually expects.

0.5 1

 Chapter 5 Component-based Interpolation Control

103

(a) Linear interpolation

(b) Skeleton-guided interpolation

Figure 5.11 Morphing two objects with different orientations

5.5 Trajectory Editing

To support user control over intermediate objects, the most common way for

interpolation control in previous morphing works is to set trajectories for individual

mesh vertices. However, explicit handling of vertex trajectories is very tedious and

thus inconvenient for interactive control [LV98, A02]. Although some alternative

methods have been proposed by using physical simulation [DWS93], intrinsic

parameters [SWC97] or weights [GSL98], it is difficult for users to express their

requirements about adjusting the transformation at the high level. For example, to set a

particular pose for a human-like object at an intermediate frame, a user must possess

good design skills to set appropriate weights or intrinsic parameters and such user

interaction is very labor-intensive.

In our framework, however, a user can easily control the interpolation process at

the global level by inserting/editing keyframes of the meta-skeleton. With the proposed

skeleton-guided interpolation method, the user can modify meta-components

 Chapter 5 Component-based Interpolation Control

104

intuitively by moving their underlying meta-bones. Keyframe editing technique is

ubiquitous in animation works. In the framework, a meta-skeleton has two default

keyframes at the first and the last frames and these two keyframes represent the source

and the target skeletons respectively. The user can insert/edit keyframes by modifying

the positions of meta-bones at intermediate frames. The final morph is then

automatically updated through the skeleton-guided interpolation. Note that all

correspondences at both the global and the local levels are retained when a keyframe

of the meta-skeleton is inserted. Therefore, additional computations only include the

interpolations of the meta-skeleton and mesh vertices. By inserting a few keyframes,

the user can conveniently incorporate additional motions in a morph, for example, to

make a morphed object walk.

Besides, the user can also control the interpolation process at the local level by

modifying vertex positions at an intermediate frame. A modified position of a vertex is

saved into the vertex keyframe list. Within the list, the new position is converted into

vertex parameters for single/double binding. Subsequently, the skeleton-guided

interpolation of this vertex is performed between relevant keyframes of the vertex

during the vertex interpolation.

The speed of morphing along the trajectory can also be determined by user

specification. Different kinds of mapping between the frame number f and time t can

be defined. Suppose the trajectory of a vertex (or a meta-bone) can be represented as a

function of time p(t), where t∈[0,1]. We can modify it to q(t) =p(f(t)) where f(t) is a

function from [0,1] to [0,1]. By defining f(t) properly, we can obtain the effects of

speeding up or speeding down.

 Chapter 5 Component-based Interpolation Control

105

In this chapter, calculating the interpolation between two original meshes is

discussed. Besides supporting the conventional linear interpolation method, the

framework employs skeletons to enable multi-level interpolations control. A meta-

skeleton of two original skeletons is introduced and used to compute the morph

between them. The use of skeleton morphing results in short turnaround time when a

user experiments with global-level morphing design. To transform mesh vertices

around skeletons, an effective skeleton-guided interpolation method is proposed. This

method not only preserves shape rigidity in morphing sequences, but also facilitates

user control in the interpolation process at both the global and the local levels. In the

next chapter, our experimental results are reported.

 Chapter 6 Experimental Results

106

Chapter 6 Experimental Results

A prototype for the component-based morphing framework has been implemented

on a Pentium IV 2GHz PC in C/C++ windows environment. As the framework aims to

address issues about interactive morphing control, the main focus of our experiments is

to test the efficiency and effectiveness of user interaction in the framework. Our

graphics user interface (GUI) is first introduced in Section 6.1. Section 6.2 then

describes several demos of the whole morphing process. Section 6.3 provides

morphing sequences and statistics for several morphs. The results reported in this

chapter can be also found at our morphing webpage (see [ZOT03]).

6.1 Graphical User Interface

The implemented system provides a friendly and easy-to-use GUI to assist user

interaction. There are three kinds of views for users to conveniently specify their

requirements. In all views, the GUI provides tools for object selection, viewing options

setting, object properties (such as component names and materials) configuration and

object transformation (translation, rotation and zooming).

 Chapter 6 Experimental Results

107

Figure 6.1 Object view

The first one is an object view for user control over global-level correspondence.

In this view two original meshes are displayed in a side-by-side window. A user can

operate on the meshes by performing many kinds of tasks in this view, for example,

decomposing meshes into components, specifying/modifying component

correspondences, specifying/adjusting skeletons and automatically cutting meshes into

compatible patches. Figure 6.1 shows a screenshot of the object view. The window

displays patch layouts of two meshes and the dialog bar docked at the right shows the

history of user-specified component correspondences.

 Chapter 6 Experimental Results

108

Figure 6.2 Component view

 The second view is a component view for user control over local-level

correspondence. In this view, two corresponding components are displayed in a side-

by-side window. Users can either specify/modify local feature correspondences or

patch layouts in this view. Figure 6.2 shows a screenshot of the component view. The

window displays local feature pairs of two components. The pop-up dialog is for user

specification over unpaired component boundaries and the dialog bar docked at the

right shows the history of user-specified local feature pairs.

 Chapter 6 Experimental Results

109

Figure 6.3 Frame view

The third view is an interpolation view for multi-level user control over

interpolation. In this view the result of skeleton morphing and final morphing

sequences are displayed, together with a control panel for playing. A user can switch

into an intermediate frame to see morphed objects/skeletons, adjust morphing speed

and specify keyframes for components or vertices in this view. Figure 6.3 shows a

screenshot of the frame view. The window displays an object at an intermediate frame

and the pop-up dialog bar is for a user to switch to a specific frame.

 Chapter 6 Experimental Results

110

6.2 Demo of Whole Morphing Process

Figure 6.4 A demo of duck-dinosaur morph

(a) Component pairing
The user only paired components of interest.

 (b) Complete component correspondence
The system deduced the complete component
correspondence.

(c) Deduced local feature pairs
The user specified no local feature pair; the
system deduced implied (orange) and assumed
(blue) local features.

 (d) Compatible patch layouts
Through automatic patch partitioning, the
system computed the complete vertex
correspondence for two meshes.

(e) An intermediate object
The system produced the morphing sequence
through vertex interpolation.

 (f) Component keyframe editing
The user manipulated the head component as a
whole to edit morphing trajectories.

 Chapter 6 Experimental Results

111

For the morph from a duck to a dinosaur, Figure 6.4 demonstrates a complete

morphing process with a series of screenshots from the GUI. The user began by

decomposing the meshes into components and specifying correspondences over those

components of his interest (see (a)). When he finished the specifications of component

correspondences, he invoked a system tool and the system deduced the complete

component correspondence (see (b)). Then, the user did not specify any local feature

pairs and the system deduced implied and assumed local feature pairs (see (c)),

generated compatible patch layouts (see (d)), and produced the morphing sequence

(see (e)). Then the user adjusted the position of the head at an intermediate frame and

the system then updated the morphing sequence accordingly (see (f)).

Figure 6.5 demonstrates that a user can easily design a high-genus morph in our

framework. Given a mug and a donut, the user decomposed the mug into a body and a

handle, and the donut into its left and right (see (a)). At the step of global-level

correspondence, the user paired the mug’s body with the donut’s left (see (b)) and the

system automatically paired the other two components (see (c)). At the step of local-

level correspondence, the user paired one boundary of the body with one boundary of

the left ((see (d)), and the system deduced a set of local feature pairs, as shown in blue

in (e). Then, the system automated all other computations and produced the morph

successfully (see (f) for an intermediate object).

 Chapter 6 Experimental Results

112

(a) The user cut meshes into components (b) The user paired two components

(c) The system paired all components (d) The user paired two boundaries

(e) The system deduced local feature pairs (f) The system produced the morphing
sequence

Figure 6.5 A demo of mug-donut morph

To test the ability of the system to support trial-and-error procedure in interactive

morphing design, the user experimented with two morphs after obtaining initial

morphs, as shown in the following two figures. In the first example, the user modified

global-level correspondence, and in the second, the user added local feature pairs.

 Chapter 6 Experimental Results

113

(a) An intermediate object

having six legs
(b) Added leg components (c) A new intermediate

object at the same frame

Figure 6.6 Global-level trial and error morphing design

Given the duck and the dinosaur, after cutting each object into its tail, body and

head, the user paired the two heads. The system produced a morph accordingly.

Realizing that there were six legs in the intermediate objects, as shown in Figure

6.6(a), the user then went back to specify two legs for each objects and pair their right

legs, as shown in Figure 6.6(b). Maintaining all previous user specifications, the

system updated the morph correspondingly and a better morph was produced. See

Figure 6.6(c) for an intermediate object in the updated morph. The whole process took

just a few minutes. This example indicates that in the framework, a user can design a

morph at the global level without considering any mesh detail.

(a) A distorted object in the initial morph (b) Specified local feature pairs in their bottoms

(c) Specified local feature pairs in their tops (d) An object in the improved morph

Figure 6.7 Local-level trial and error morphing design

 Chapter 6 Experimental Results

114

Figure 6.7 illustrates trial-and-error morphing design at the local level by using

the example of morphing a rocket to a glass. After cutting each object into three

components, the user specified one pair of components and then the system produced a

morph accordingly. Realizing that intermediate shapes were distorted, as shown in

Figure 6.7(a), the user then revisited the local-level correspondence step to add two

pairs of feature lines and one pair of feature vertices, as shown in green in Figure

6.7(b) and Figure 6.7(c). Subsequently, the system respected all user specifications and

produced a better morph. See Figure 6.7(d) for an intermediate object.

From the above two examples, we can see that in our framework, a user can start

to design a morph by specifying a small number of requirements, and then

interactively improve those unsatisfactory parts of the morphing result through more

specifications. Therefore, the user does not have to complete a large number of

specifications to obtain a satisfactory morph.

6.3 Morphing Sequences and Statistics

In each morph reported in this section, two original meshes are different in

structure. For example, a cow has two horns while a calf does not have and a

triceratops has a tail while a chimpanzee does not have. In this section, we show

several morphs and introduce the way of designing them in our framework. In Figure

6.8 to Figure 6.10, corresponding morphs of skeletons are also provided. Components

and their corresponding bones are shown in the same colors.

 Chapter 6 Experimental Results

115

Figure 6.8 T-U morph

For the morph from T to U, the user specified two pairs of components as shown

in Figure 6.8(a) and the central-T has no counterpart in U. Then the user specified a

pair of feature lines for each specified component pair, as shown in Figure 6.8(b). This

example has the special problem of the meta-component for the component pair

(central-T, ζV) has two adjacent meta-components in the meta-mesh. From the final

morph shown in Figure 6.8(d), we can see that the framework can successfully handle

such a case to produce a morph where the central component gradually shrinks

between the other two components till it completely disappears.

(a)

(b)

(c)

(d)

 Chapter 6 Experimental Results

116

 (a)

 (d)

Figure 6.9 Triceratops-woman morph

For the morph between a triceratops and a woman shown in Figure 6.9, user-

specified component correspondences were as shown in Figure 4.4. As two horns and

a tail of the triceratops have no counterpart in the woman, the user specified three

feature lines in the head and the body of the woman. These feature lines are then the

corresponding locations of these components. Besides, the user added three local

feature pairs to align their eyes and noses. All these user-specified local feature pairs

are shown in Figure 6.9(a). In Figure 6.9(c), we can see that the tail and the horns

gradually disappear in this morph. Moreover, see how semantic features on the heads

(b)

(c)

 Chapter 6 Experimental Results

117

are well aligned at intermediate frames in Figure 6.9(d). It can be seen that our system

is able to produce morphs of good visual quality at the same time of providing flexible

user control. In other words, the user of our framework can design a satisfactory morph

by investing little effort on correspondence specification.

(a)

 (b)

(c)

(d)

Figure 6.10 Calf-cow morph

In the calf-cow morph shown in Figure 6.10, user-specified component

correspondences are shown in Figure 6.10(a). The first is to pair their front parts; the

second pairs their rear parts; the third pairs left parts; and the last one pairs their tails.

Given these four component correspondences, the framework deduced the complete

component correspondence for the nine components of the calf and the fifteen

 Chapter 6 Experimental Results

118

components of the cow. There are six components in the cow that have no counterpart

in the calf — four teats and two horns. Accordingly, the user specified six local feature

pairs for the calf to indicate the corresponding locations in the cow for the six

components. To align semantic local features on the two heads, the user specified three

pairs of local features — two pairs of feature vertices for their eyes and one pair of

feature lines for their mouths. Given all these user-specified local feature pairs shown

in Figure 6.10(b), the system then deduces eight implied feature loop pairs at

component boundaries, seven assumed feature vertex pairs at tails, legs and ears, and

twenty-eight assumed feature vertex pairs at component boundaries. The final morph is

shown in Figure 6.10(d).

In addition, comparing the morphs of skeletons shown in Figure 6.8(c), Figure

6.9(b) and Figure 6.10(c) with their corresponding final morphs, we can see that the

former are good indications of the latter. In cases that two original objects, and thus

their underlying skeletons, are different in structure, the morph of skeletons also has

the effect of bone disappearing/growing. For the example of T-U morph in Figure 6.8,

the bone of the central component gradually shrinks, as shown in Figure 6.8(c). In the

calf-cow morph shown in Figure 6.10, the bones of two horns and four teats gradually

grow up in the morph of skeletons shown in Figure 6.10(c). All these examples of

skeleton morphing indicates that morphs of skeletons serve as good indication of final

morphs, and they can be used to effectively guide the final morphs.

Figure 6.11 to Figure 6.13 show more morphs for genus-0 meshes. In the morph

from a triceratops to a chimpanzee as shown in Figure 6.11(c), user-specified global-

level correspondences are shown in the Figure 6.11(a). In addition, the user specified

three local feature pairs to pair their eyes and mouths, as shown in Figure 6.11(b). Note

 Chapter 6 Experimental Results

119

how the eyes and the mouth of the triceratops are morphed to those of the chimpanzee.

Because the tail of the triceratops has no counterpart in the chimpanzee, the user also

added another local feature pair to handle such a case, as shown in Figure 4.22.

(a)

(b)

(c)

Figure 6.11 Triceratops-chimpanzee morph

For the duck-dinosaur morph shown in Figure 6.12, user-specified global-level

correspondences are as reported in Section 6.2. The user did not specify any local

feature pairs in this morph. Besides, the user made use of another way to handle the

growing effect of two forelegs. Instead of assigning two forelegs of the dinosaur as

individual components and pairing each of them with a null-component, the user

assigned the body and the two forelegs as one component. Thus, the vertex

correspondences for the two forelegs are determined by the step of patch

parameterization.

 Chapter 6 Experimental Results

120

Figure 6.12 Duck-dinosaur morph

In the rocket-glass morph shown in Figure 6.13, user-specified correspondences at

the global and the local levels are as reported in Section 6.2. Note how the top and the

bottom parts of the rocket are transformed into the body and the base of the glass

respectively.

Figure 6.13 Rocket-glass morph

Figure 6.14 shows a morph between two high-genus meshes: a mug and a donut.

A demo of the whole morphing process for this morph is as reported in Section 6.2.

Note how the mug’s body has its inner surface turned out to be a part of the donut, and

how the hole in the mug gradually changes into that in the donut.

Figure 6.14 Mug-donut morph

All the above experimental results indicate that our component-based morphing

framework can produce smooth transformations with feature preservation, for both

genus-0 and high-genus cases. Moreover, due to the effective deduction in the

framework, users can perform their morphing design flexibly and conveniently.

 Chapter 6 Experimental Results

121

(a)

(b)

Figure 6.15 T-U morph with a keyframe at f = 0.5

Figure 6.16 A morph with walking effects

Figure 6.15 and Figure 6.16 demonstrate convenient interpolation control in the

framework. For the T-U morph shown in Figure 6.15, the user simply specified one

keyframe of the meta-skeleton at f = 0.5, as shown in Figure 6.15(a), and the final

morph turned to be different, as shown in Figure 6.15(b). Instead of always facing

front, the object turned backward to the assigned keyframe in the first half of morphing

sequence and then went back toward the frontal position in the second half. The

technique of keyframe editing of meta-skeletons can also be used to effectively

incorporate additional motions in a morph. See Figure 6.16 for a morph with walking

effects, where we combine the morph from a calf to a cow with the morph from the

cow to a triceratops. In each morph, the user added two component keyframes for the

legs to achieve the walking effects from the calf to the cow then to the triceratops.

These two results show that a user can conveniently and easily achieve sophisticated

morphing trajectories by specifying a small number of keyframes in skeleton

morphing.

 Chapter 6 Experimental Results

122

(a)

(b)

(c)

Figure 6.17 Two different morphs using different component correspondences

Figure 6.17 demonstrates the ease of experiencing different morphs by using a

rocket and a duckling. Given the same meshes, the user conveniently achieved two

interesting morphs shown in Figure 6.17(a) and (b). The component decompositions in

these two morphs are the same, and the user assigned different component

correspondences for these components, as shown in Figure 6.17(c).

Table 6.1 summarizes statistics of those morphs reported in this section. Besides

the model complexity, it reports numbers of user-specified and system-deduced

correspondences at both the global level and the local level in these morphs. The user

only specified a small number of component correspondences and local feature pairs.

The system successfully produced morphs through deduction at both the global level

and the local level. In addition, the system’s assistance, such as providing candidate

components, automatically construction of compatible patch layouts, also makes it

Morph in (a) Morph in (b)

a ↔ f′ a ↔ a′
b ↔ c′ b ↔ c′
c ↔ e′ c ↔ b′
d ↔ g′ d ↔ d′
e ↔ b′ e ↔ e′
f ↔ a′ f ↔ f′
g ↔ d′ g ↔ g′

a

g
c

b

e

f d

a′

b′

c′

d′e′

f′

g′

 Chapter 6 Experimental Results

123

possible for a user to obtain a satisfactory morph with ease. Because the user made no

adjustment of morphing trajectories in these morphs, user time on interpolation control

is not reported in this table. All these morphs were obtained within a few minutes

Morphs T-
U

Triceratops-
Woman

Calf-
Cow

Triceratops-
Chimpanzee

Duck-
Dinosaur

Rocket-
Glass

Mug-
Donut

Rocket-
Duckling

Triangles in source /
target

36 /
328

5660 /
1266

1023/
 5806

5660 /
4912

550 /
5076

330 /
2642

1640 /
576

330 /
3836

Components in
source / target

3 / 2 9 / 6 9 / 15 9 / 8 5 / 5 3 / 3 2 / 2 7 / 7

Figure number 6.8 6.9 6.10 6.11 6.12 6.13 6.14 6.17(a) 6.17(b)
USER-SPECIFIED
component
correspondences

2 3 4 3 2 1 1 3 3

USER-SPECIFIED
local feature pairs

2 6 9 4

0 3 1 2 3

SYSTEM-DECUCED
local feature pairs

6 29 43 27 16 5 5 24 24

Estimated user time
on specifying
component
correspondences

7sec 15sec 20sec 15sec 10sec 5sec 5sec 10sec 10sec

Estimated user time
on specifying local
feature pairs

10sec 30sec 50sec 20sec 0sec 20sec 5sec 15sec 20sec

Table 6.1: Statistics of examples

We can see from this table that user interaction in our framework is efficient and

effective. We invited several non-expert students in our university for testing, and they

all reported that it is easy and convenient for them to design morphs in our system.

In this chapter, we introduce our experimental results in the implemented system.

From these results, it can be clearly seen that a user can obtain a satisfactory morph by

making little effort. In the next chapter, the component-based framework is

summarized and our conclusion is given.

 Chapter 7 Conclusion

124

Chapter 7 Conclusion

In this chapter, advantages of the component-based morphing framework are first

summarized in Section 7.1. Then Section 7.2 discusses key methods in this framework.

Several directions for future research are given at the end.

7.1 Summary of Framework

Plenty of methods have been proposed to solve the correspondence and the

interpolation problems in mesh morphing. However, user interaction reported in these

methods is still cumbersome and far from flexibility. This thesis formulates an

interactive framework for component-based morphing to empower users to experiment

with morphing design with ease.

In our experiments in the implemented prototype, the user carried out morphing

design by specifying only those requirements of his interest and interacting with the

morphing design through a trial-and-error process. Besides having practical potential

in supporting amateurs in flexible morphing control, the proposed framework has

several technical novelties. Specifically, it can be concluded that this component-based

morphing framework has the following advantages regarding to the morphing criteria

of the ease of user control and the visual quality of morphing sequence.

• Enable multi-level user control

In this framework, a user can control the whole morphing process at either the

global or the local level, whichever is convenient. At the global level, the user can

 Chapter 7 Conclusion

125

specify component decomposition according to his requirements and the

decompositions of two original meshes need not be compatible. In addition, the user

can pair component groups and modify components in the process of specifying

component correspondences. At the local level, the user can specify several kinds of

local features to fine-tune a morph and the correspondences over component

boundaries can be automatically located by the framework.

• Facilitate user control through assistance and deduction

The use of components makes it possible for the framework to easily deduce

correspondences from one level to the other. Moreover, several methods are proposed

to make user interaction easy. At the global level, the framework makes use of the

constraint tree to process user-specified correspondences, deduce probable

counterparts for user-selected components, support user modification to decomposition

and correspondences, and work out the complete component correspondence. At the

local level, the framework deduces implied and assumed local feature pairs based on

user specifications, and constructs the complete vertex correspondences through

automatic creation of compatible patch layouts for component pairs. It is clear that in

this framework, user control is not simply separated into two levels. Instead, this

framework frees users from the tedious tasks of specifying detailed vertex pairs in a

morphing design. Hence, user control is greatly facilitated and even an amateur can

design a morph with ease.

• Provide effective interpolation control

Through the use of skeletons, the framework supports effective user control over

the interpolation process. Skeleton morphing is achieved soon after the step of global-

level correspondence and provides a good indication of the final morph. Thus, user can

design the morph at the global level in short turn-around time. Furthermore, by using

 Chapter 7 Conclusion

126

the skeleton-guided interpolation method, this framework enables users to control

intermediate shapes at both the global level by operation on skeleton morphing and the

local level by adjusting vertex trajectories. The above skeleton-based methods also

make it possible for the framework to be incorporated into animation systems.

• Produce natural and rigid morphs

By performing effective deduction of correspondences, this framework produces

morphing results where semantic features are well aligned even when the user only

specifies a small number of local feature pairs. By employing skeletons in

interpolation, the framework considers both the boundaries and the interiors of objects

so that intermediate shapes are rigidly transformed around underlying skeletons.

Furthermore, by making use of keyframes, the framework can easily incorporate

additional motions to a morphing sequence.

7.2 Discussion of Methods

It is known that user control is essential to achieve good morphing results.

Typically, desirable properties for user interaction in a morphing system are as

follows.

• Intuitive

When users want to specify their morphing requirements, the system should

provide them with intuitive ways of specifications. Specifically, requirements of

different levels should be directly specified.

• System-assisted

A morphing system should not be solely for expert users. It should assist users in

their morphing design instead of requiring sufficient working experience. During their

specifications, the users should also be informed of potential input mistakes

 Chapter 7 Conclusion

127

immediately to avoid painful backtracking at later stages.

• Intelligent

Users only need to specify those requirements of interest. The system should be

able to derive from user inputs and find implied user requirements. In addition, the

system should be able to add reasonable assumed choices where appropriate in order to

produce satisfactory morphs.

• User-preferred

A morphing system should respect all user specifications, instead of imposing

extra restrictions on users due to the limitation of its own. In other words, the

assistance and deduction of the system should not contradict with user specifications.

Also, assumed choices should be updated when users add/modify their specifications.

• Flexible

Users should be allowed to design morphs through a trial-and-error process. When

they feel current morphs are unsatisfactory, they should be able to improve the results

by simply adding specifications to those unsatisfactory parts, without having to restart

from sketch. In addition, after such a modification, the system should let them see the

influence of this modification as soon as possible. Thus, users are able to experience

different morphing designs conveniently and effectively.

A morphing system having the above properties frees users from the tedious tasks

of specifying detailed requirements. Hence, users can focus on important requirements

and achieve morphs swiftly. Previous algorithms for mesh morphing only allowed

users to operate on vertices for morphing control, and the maintenance and assistance

of user specifications was generally ignored. This resulted in heavy user workload in a

 Chapter 7 Conclusion

128

morphing design. The component-based morphing framework makes use of the

following mechanisms to empower users to conveniently and effectively control the

whole morphing process.

First, with the decomposition of a mesh into components, its vertices can be

perceived and manipulated in groups. The utilization of components in the framework

supports the top-down design approach, which is known as one of the most popular

design approaches. Users can carry out a morphing design from high-level conceptual

design spaces to low-level technical design spaces. Based on correspondences over

components, correspondences over mesh vertices are effectively organized. Moreover,

connectivity among components, which is much simpler than that among vertices, is

capitalized on in our framework to facilitate user interaction. For example, the system

can conveniently deduce local feature pairs at component boundaries from user-

specified component correspondences. This makes user interaction in both the

correspondence and interpolation steps intuitive and efficient, especially when dealing

with meshes of complex structures. In addition, users can still fine-tune morphs by

working directly on individual vertices within components.

Second, the framework is designed with the same philosophy of helping users as

much as possible and not imposing on users any system-caused restriction.

Specifically, in every step of the whole morphing process, the system first gets user

specifications, then deduces implied user requirements based on these specifications,

and finally adds assumed but reasonable choices. Besides, if a user revisits this step to

modify his specifications, the system replaces assumed choices with updated ones,

respecting all user specifications. The constraint tree and the deduction of implied and

assumed local-level correspondences are examples of realizing this philosophy.

 Chapter 7 Conclusion

129

Moreover, there are still some important questions to be answered. The first one is

“now that a component and a patch are both a collection of polygons, what is exactly

the difference between them?” There are two fundamental differences. First, generally

speaking, a patch is homeomorphic to a disk and thus has only one boundary that

encloses triangles inside, while a component has a set of boundaries each of which is

for an adjacent component. Thus, unlike a patch, a component is not homeomorphic to

a disk and its shape is relatively complex. Second, the connectivity among patches is

much more complex than that among components. This is because in most cases, a

patch connects several patches at its boundary while a component connects only one

adjacent component at each boundary.

From the above differences between patches and components, we can find the

answer of the second question, “What is exactly the difference between our

component-based morphing framework and previous patch-based morphing

approach?” Because a patch must be homeomorphic to a disk while a component need

not, it is usually difficult and tedious for a user to manually specify the patch layout of

a mesh while it is easy and intuitive for the user to specify the component

decomposition. More importantly, connectivity among components can be utilized to

facilitate user control, whereas patch layouts are too detailed to be a tool of assisting

user interaction. Instead, patches usually are results of user control in morphing.

Hence, in previous patch-based morphing approach, users must specify enough vertex

pairs in order to assist the system to produce morphs through construction of

compatible patch layouts. In our framework, however, users first construct the

component decompositions of two original meshes, which are not necessarily

 Chapter 7 Conclusion

130

compatible; the framework then capitalizes on connectivity among components to

deduce the complete correspondence at both the global and the local levels.

Then there is the third question, “For what kind of objects can our framework

work well, and for what kind of objects cannot?” There is no special requirement for

original meshes in the framework. Just like other works in mesh morphing, original

meshes must be orientable and manifold. As this thesis does not discuss the case of

genus change, two meshes in a morph should be topologically equivalent. However,

because the ease of user control in our framework mainly results form our use of

components, advantages of the framework are more obvious when original meshes are

with complex structures. For example, for a morph between two heads, the efficiency

of user control is not so greatly improved than for a morph between a triceratops and a

chimpanzee.

7.3 Future Work

There are several potential extensions in the framework.

• Support of Complex Component Connectivity

Currently, we only deal with the simple case where each component only connects

one adjacent component at a boundary. To solve the general case of multiple

components sharing mesh vertices or edges, the fundamental mechanism for

encapsulating user specifications in partitioning constraint tree is still working.

However, the representation of a connectivity graph needs to be updated accordingly

and how to use them to facilitate user interaction is to be investigated.

• Handling Topological Change

Topological change, which includes change of genus, is a challenging issue in

morphing research, and the efficiency of user control in such cases is significantly

 Chapter 7 Conclusion

131

important. Extension to this problem requires modification to framework mechanisms.

For example, a morph with topological changes involves the appearing/disappearing of

a connection between two components, while currently a null-connection only appears

together with null-components. Consequently, we should develop techniques to handle

such changes in connection, and to deduce implied and assumed correspondences over

such connections.

• Integration of Animation Data

Skeletons in this framework are different from those in animation systems and

explicit components do not exist in the latter. The concept of components is usually

represented by weights of vertices or other similar attributes in animation systems.

Thus, if the framework can be integrated with an animation system, users will be able

to morph objects more conveniently.

• Improvement of Complex Sequence Design

There are some possible improvements on interpolation issues. First, as

components are morphed around their underlying skeletons, it is possible to develop an

interpolation method that allows users to define spatial constraints in a transition so

that a spatially non-uniform morph can be obtained. Secondly, different morphing rates

in interpolation can be explored by using methods such as wavelet transformation.

Interpolation of texture coordinates is also very important to create an aesthetic morph.

Simply applying the cross-dissolving technique does not always produce pleasing

morphs.

• Combination of IK engine

Inverse kinematics (IK) is a simple but effective tool in animation systems for

motion control. In IK, motion is inherited bottom up in the hierarchy so that a bone at

the leaf level can be precisely aligned with a specified target position. The system is

 Chapter 7 Conclusion

132

able to automatically adjust other bones in the hierarchy accordingly. Currently, this

framework has been able to animate morphed objects by using the keyframe-editing

technique. If equipped with an IK engine, this framework will be able to allow users to

modify skeletons at intermediate frames more effectively.

References

133

References

[A00] M. Alexa, “Merging Polyhedral Shapes with Scattered Features”, The Visual Computer, v16(1),

26-37, 2000.

[A01a] M. Alexa, “Mesh Morphing”, Proceedings of Eurographics, State of the Art Report, 2001.

[A01b] M. Alexa, “Local Control for Mesh Morphing”, Proceedings of Shape Modeling International,

209-215, 2001.

[A02] M. Alexa, “Recent Advances in Mesh Morphing”, Computer Graphics Forum, v21(2), 173-196,

2002.

[ACL00] M. Alexa, D. Cohen-Or and D. Levin, “As-rigid-as-possible Shape Interpolation”, Proceedings

of ACM SIGGRAPH, 157-164, 2000.

[ACP02] B. Allen, B. Curless and Z. Popovic, “Articulated Body Deformation from Range Scan Data”,

Proceedings of ACM SIGGRAPH, 612-619, 2002.

[AHU83] A.V. Aho, J.E. Hopcroft and J.D. Ullman, “Data Structures and Algorithms”, Addison-

Wesley, 1983.

[AJC02] A. Angelidis, P. Jepp and M. Cani, “Implicit Modeling with Skeleton Curves: Controlled

Blending in Contact Situations”, Proceedings of Shape Modeling International, 137-144, 2002.

[AM99] M. Alexa and W. Müller, “The Morphing Space”, Proceedings of International Conference in

Central Europe on Computer Graphics, Visualization and Computer Vision, 329-336, 1999.

[B95] J. Bloomenthal, “Skeletal Design of Natural Forms”, Ph.D. Dissertation, University of Calgary,

1995.

[B98] N. Bobick, “Rotating Objects Using Quaternions”, Game Developer Magazine, July 3, 38-39,

1998.

[B99] B. Messmer and H. Bunke, “A Decision Tree Approach to Graph and Subgraph Isomorphism

Detection”, Pattern Recognition, v32, 1979-1998, 1999.

[B00] H. Bunke, “Recent Developments in Graph Matching”, Pattern Recognition, v2, 117-124, 2000.

References

134

[BJK00] H. Bunke, X. Jiang and A. Kandel, “On the Minimum Common Supergraph of Two Graphs”,

Computing, v65(1), 13-25, 2000.

[BL99] J. Bloomenthal and C. Lim, “Skeletal Methods of Shape Manipulation”, Proceedings of Shape

Modeling International, 44-47, 1999.

[BN92] T. Beier and S. Neely, “Feature-based Image Metamorphosis”, Proceedings of ACM

SIGGRAPH, 35-42, 1992.

[BP98] H. Bao and Q. Peng, “Interactive 3D Morphing”, Proceedings of Eurographics, 23-30, 1998.

[BT97] D. Bordwell and K. Thompson, “The Power of Mise-en-scene”, Film Art, an Introduction,

McGraw Hill, 1997.

[BTS00] R.L. Blanding, G.M. Turkiyyah, D.W. Storti and M.A. Ganter, “Skeleton-based Three-

dimensional Geometric Morphing”, Computational Geometry Theory and Applications, v15, 129-148,

2000.

[BW76] N. Burtnyk and M. Wein, “Interactive Skeleton Technique for Enhancing Motion Dynamics in

Keyframe Animation”, Communications of the ACM, v19, 564-569, 1976.

[BW90] J. Bloomenthal and B. Wyvill, “Interactive Techniques for Implicit Modeling”, Proceedings of

ACM Symposium on Interactive 3D Graphics, 109-116, 1990.

[BW01] D.E. Breen and R.T. Whitaker, “A Level-set Approach for the Metamorphosis of Solid

Models”, IEEE Transactions on Visualization and Computer Graphics, v7(2), 173-192, 2001.

[CC98] E. Carmel and D. Cohen-Or, “Warp-guided Object-space Morphing”, The Visual Computer,

v13(9/10), 465-478, 1998.

[CEF01] H.L. Cheng, H. Edelsbrunner and P. Fu, “Shape Space from Deformation”, Computational

Geometry Theory and Applications, v19, 191-204, 2001.

[CGC02] S. Capell, S. Green, B. Curless, T. Duchamp and Z. Popovic, “Interactive Skeleton-driven

Dynamic Deformation”, Proceedings of ACM SIGGRAPH, 586-593, 2002.

[CH90] J. Chen and Y. Han, “Shortest Paths on a Polyhedron”, Proceedings of ACM Symposium on

Computational Geometry, 360-369, 1990.

[CH01] M.P. Cani and S. Hornus, “Subdivision Curve Primitives: A New Solution for Interactive

Implicit Modeling”, Proceedings of Shape Modeling International, 82-88, 2001.

References

135

[CLK98] T. Chang, J. Lee, M. Kim and S.J. Hong, “Directed Manipulation of Generalized Cylinders

Based on B-spline Motion”, The Visual Computer, v14(5/6), 228-239, 1998.

[CP89] S.E. Chen and R.E. Parent, “Shape Averaging and Its Application to Industrial Design”, IEEE

Computer Graphics and Application, v9(11), 47-54, 1989.

[CSB95] D.T. Chen, A. State and D. Banks, “Interactive Shape Metamorphosis”, Proceedings of ACM

Symposium on Interactive 3D Graphics, 43-44, 1995.

[DG96] D. DeCarlo and J. Gallier, “Topological Evolution of Surfaces”, Proceedings of Graphics

Interface, 194-203, 1996.

[DWS93] H. Delingette, Y. Watanabe and Y. Suenaga, “Simplex Based Animation”, Proceedings of

Computer Animation (Models and Techniques in Computer Animation), 13-28, 1993.

[E99] H. Edelsbrunner, “Deformable Smooth Surface Design”, Discrete Computational Geometry, v13,

87-115, 1999.

[FS92] B. Falcidieno and M. Spagnuolo, “Polyhedral Surface Decomposition Based on Curvature

Analysis”, Proceedings of Workshop on Modern Geometric Computing for Visualization, 57-72, 1992.

[GA96a] E. Galin and S. Akkouche, “Blob Metamorphosis Based on Minkowski Sums”, Proceedings of

Eurographics, 143-153, 1996.

[GA96b] E. Galin and S. Akkouche, “Shape Constrained Blob Metamorphosis”, Proceedings of Implicit

Surfaces, 9-23, 1996.

[GDC99] J. Gomes, L. Darse, B. Costa and L. Velho, “Warping and Morphing of Graphical Objects”,

Morgan Kaufmann, 1999.

[GG95] E. Goldstein and C. Gotsman, “Polygon Morphing Using a Multiresolution Representation”,

Proceedings of Graphics Interface, 247-54, 1995.

[GH97] M. Garland and P.S. Heckbert, “Surface Simplification Using Quadric Error Metrics”,

Proceedings of ACM SIGGRAPH, 209-216, 1997.

[GKS98] N.Gagvani, D.R. Kenchammana-Hosekote and D. Silver, “Volume Animation Using the

Skeleton Tree”, IEEE Symposium on Volume Visualization, 47-53, 1998.

[GL99] E. Galin, A. Leclercq and S. Akkouche, “Blob-Tree Metamorphosis”, Proceedings of Implicit

Surfaces, 9-16, 1999.

References

136

[GSL98] A. Gregory, A. State, M.C. Lin, D. Manocha and M.A. Livingston, “Feature-based Surface

Decomposition for Correspondence and Morphing between Polyhedra”, Proceedings of Computer

Animation, 64-71, 1998.

[H92] J.F. Hughes, “Scheduled Fourier Volume Morphing”, Proceedings of ACM SIGGRAPH, 43-46,

1992.

[KFK94] J.C. Hart, G.K. Francis and L.H. Kauffman, “Visualizing Quaternion Rotation”, ACM

Transaction On Graphics, v13(3), 256-276, 1994.

[HSK01] M. Hilaga, Y. Shinagawa, T. Kohmura and T.L. Kunii, “Topology Matching for Fully

Automatic Similarity Estimation of 3D shape”, Proceedings of ACM SIGGRAPH, 203-212, 2001.

[HWK94] T. He, S. Wang, and A. Kaufman, “Wavelet-based Volume Morphing”, Proceedings of IEEE

Visualization, 85-91, 1994.

[KCP92] J.R. Kent, W.E, Carlson and R.E. Parent, “Shape Transformation for Polyhedral Objects”,

Proceedings of ACM SIGGRAPH, 47-54, 1992.

[KP97] I. Korfiatis and Y. Paker, “A Simple Approach to 3D Object Metamorphosis”, Proceedings of

IEEE Conference on Information Visualisation, 32-39, 1997.

[KPC91] J.R. Kent, R.E. Parent and W.E. Arlson, “Establishing Correspondences by Topological

Merging: A New Approach to 3-D Shape Transformation”, Proceedings of Graphics Interface, 271-278,

1991.

[KR91] A. Kaul and J. Rossignac, “Solid-interpolating Deformations: Construction and Animation of

PIPS”, Proceedings of Eurographics, 493-505, 1991.

[KSK98] T. Kanai, H. Suzuki, and F. Kimura, “Three-Dimensional Geometric Metamorphosis Based on

Harmonic Maps”, The Visual Computer, v14(4), 166-176, 1998.

[KSK00] T. Kanai, H. Suzuki, and F. Kimura, “Metamorphosis of Arbitrary Triangular Meshes”, IEEE

Computer Graphics and Applications, v20(2), 62-75, 2000.

[KSM99] T. Kanai, H. Suzuki, J. Mitani and F. Kimura, “Interactive Mesh Fusion Based on Local 3D

Metamorphosis”, Proceedings of Graphics Interface, 148-156, 1999.

[LCF00] J. P. Lewis, M. Cordner and N. Fong, “Pose Space Deformation: A Unified Approach to Shape

Interpolation and Skeleton-Driven Deformation”, Proceedings of ACM SIGGRAPH, 65-172, 2000.

References

137

[LCS95] S.Y. Lee, K.Y. Chwa, S.Y. Shin, and G. Wolberg, “Image Metamorphosis Using Snakes and

Free-Form Deformations”, Proceedings of ACM SIGGRAPH, 439-448, 1995.

[LCJ94] F. Lazarus, S. Coquillart and P. Jancène, “Axial Deformations: an Intuitive Deformation

Technique”, Computer-Aided Design, v26(8), 607-613, 1994.

[LDS99] A.W.F. Lee, D. Dobkin, W. Sweldens, and P. Schroder, “Multiresolution Mesh Morphing”,

Proceedings of ACM SIGGRAPH, 343-350, 1999.

[LGL95] A. Lerios, C.D. Garfinkle and M. Levoy, “Feature-based Volume Metamorphosis”,

Proceedings of ACM SIGGRAPH, 449-456, 1998.

[LL02] Y. Lee and S. Lee, “Geometric Snakes for Triangular Meshes”, Proceedings of Eurographics,

229-238, 2002.

[LSS98] A.W.F. Lee, W. Sweldens, P. Schroder, L. Cowsar and D. Dobkin, “MAPS: Multiresolution

Adaptive Parameterization of Surfaces”, Proceedings of ACM SIGGRAPH, 95-104, 1998.

 [LV97] F. Lazarus and A. Verroust, “Metamorphosis of Cylinder-like Objects”, Journal of

Visualization and Computer Animation, v8(3), 131-146, 1997.

[LV98] F. Lazarus and A. Verroust, “Three Dimensional Metamorphosis: A Survey”, The Visual

Computer, v14(8/9), 373-389, 1998.

[LWT01] X.T. Li, T.W. Woon, T.S. Tan and Z.Y. Huang, “Decomposing Polygon Meshes for

Interactive Applications”, Proceedings of ACM Symposium on Interactive 3D Graphics, 35-42, 2001.

[M82] J. McGregor, “Backtrack Search Algorithms and the Maximal Common Subgraph Problem”,

Software Practice and Experience, v12, 23–34, 1982.

[M98] J.S.B. Mitchell, “Geometric Shortest Paths and Network Optimization”, The Handbook of

Computational Geometry, Elsevier Science, 1998.

[Maya] “Maya Alias|Wavefront”, http://www.aliaswavefront.com/en/products/maya/index.shtml.

[MBV97] M.J. Milroy, C. Bradley, and G.W. Vickers, “Segmentation of a Wrap-around Model Using

an Active Contour”, Computer-Aided Design, v29(4), 299–320, 1997.

[MG01] T.B. Moeslund and E. Granum, “A Survey of Computer Vision-Based Human Motion

Capture”, Computer Vision and Image Understanding, v81(3), 231-268, 2001.

[MKF01] T. Michikawa, T. Kanai, M. Fujita and H. Chiyokura, “Multiresolution Interpolation Meshes”,

Proceedings of Pacific Graphics, 60-69, 2001.

References

138

[MLP01] K.H. Min, I.K. Lee and C.M. Park, “Component-based Polygonal Approximation of Soft

Objects”, Computers and Graphics, v25, 245-257, 2001.

[MW99] A.P. Mangan and R.T. Whitaker, “Partitioning 3D Surface Meshes Using Watershed

Segmentation”, IEEE Transactions on Visualization and Computer Graphics, v5(4), 308-321, 1999.

[N82] R. Nevatia, “Machine Perception”, Prentice Hall, 1982.

[PSS01] E. Praun, W. Sweldens and P. Schröder, “Consistent Mesh Parameterizations”, Proceedings of

ACM SIGGRAPH, 179-184, 2001

[PTV92] W.H. Press, S.A. Teukolsky, W.T. Vetterling and B.P. Flannery, “Numerical Recipes in C”,

Cambridge University Press, 1992.

[RM99] M. Ramasubramanian and A. Mittal, “Three-Dimensional Metamorphosis Using Multiplanar

Representation”, IEEE Multimedia Computing and Systems, v1, 270-275, 1999.

[S85] K. Shoemake, “Animating Rotation with Quaternion Curves”, Proceedings of ACM SIGGRAPH,

245-254, 1985.

[SG01] V. Surazhsky, and C. Gotsman, “Morphing Stick Figures Using Optimized Compatible

Triangulations”, Proceedings of Pacific Graphics, 40-49, 2001.

[SGW93] T. Sederberg, P. Gao, G. Wang and H. Mu, “2-D Shape Blending: An Intrinsic Solution to the

Vertex Path Problem”, Proceedings of ACM SIGGRAPH, 15-18, 1993.

[SK00] K. Singh and E. Kokkevis, “Skinning Characters Using Surface-oriented Free-form

Deformations”, Proceedings of Graphics Interface, 35-42, 2000.

[SR95] M. Shapira and A. Rappoport, “Shape Blending Using the Star-skeleton Representation”, IEEE

Computer Graphics and Application, v15(2), 44-50, 1995.

[SRC01] P. J. Sloan, C. F. Rose and M. F. Cohen, “Shape by Example”, Proceedings of ACM

Symposium on Interactive 3D Graphics, 135-144, 2001.

[SSB01] T. Surazhsky, V. Surazhsky, G. Barequet, and A. Tal, “Metamorphosis of Polygonal Shapes

with Different Topologies”, Computers and Graphics, v25(1), 29-39, 2001.

[ST98] A. Shapiro and A. Tal, “Polyhedron Realization for Shape Transformation”, The Visual

Computer, v14(8/9), 429-444, 1998.

[STK02] S. Shlafman, A. Tal and S. Katz, “Metamorphosis of Polyhedral Surfaces Using

Decomposition”, Proceedings of Eurographics, 219-228, 2002.

References

139

[SWC97] Y.M. Sun, W. Wang and F.Y.L. Chin, “Interpolating Polyhedral Models Using Intrinsic

Shape Parameters”, Visualization and Computer Animation, v8(2), 81-96, 1997.

[TT98] M. Teichmann and S. Teller, “Assisted Articulation of Closed Polygonal Models”, Proceedings

of Eurographics Workshop on Animation and Simulation, 87-101, 1998.

[U99] M. Unser, “Splines: A Perfect Fit for Signal and Image Processing”, IEEE Signal Processing

Magazine, v16(6), 22-38, 1999.

[VL99] A. Verroust and F. Lazarus, “Extracting Skeletal Curves from 3D Scattered Data”, Proceedings

of Shape Modeling International, 194-201, 1999.

[W98] G. Wolberg, “Image Morphing: A Survey”, The Visual Computer, v14(8/9), 360-372, 1998.

[WGG98] B. Wyvill, A. Guy and E. Galin, “Extending the CSG Tree (Warping, Blending and Boolean

Operations in an Implicit Surface Modeling System)”, Proceedings of Implicit Surfaces, 113-121, 1998.

[WP02] L. Wade and R.E. Parent, “Automated Generation of Control Skeletons for Use in Animation”,

The Visual Computer, v18(2), 97-110, 2002.

[ZOT03] Y.H. Zhao, H.Y. Ong, T.S. Tan and Y.G. Xiao, “Interactive Control of Component-based

Morphing”, Proceedings of Symposium on Computer Animation, 2003.

http://www.comp.nus.edu.sg/~tants/morphing.html

[ZSH00] M. Zöckler, D. Stalling and H. Hege, “Fast and Intuitive Generation of Geometric Shape

Transitions”, The Visual Computer, v16(5), 241-253, 2000.

[ZWG02] Z. Zhang, L. Wang, B. Guo and H. Shum, “Feature-based Light Field Morphing”,

Proceedings of ACM SIGGRAPH, 457-464, 2002.

Appendix

140

Appendix

Interactive Decomposition

Automatic decomposition methods cannot always meet user requirements. To

assist users in specifying desired component decomposition, several interactive tools

are provided in our user interface. With these tools, users can modify components in

several ways.

• Cutting a component using a cutting plane

A user can draw a 2D line segment on the screen and use it to cut a selected

component. A line segment defined by the clicking and dragging of a mouse represents

a 3D cutting plane that is perpendicular to the xy plane in current orientation. A user

can adjust the orientation of a 3D model using a mouse, with the help of a trackball-

simulation program provided in the user interface. Therefore, the user can cut a

selected component by using a specific 3D cutting plane. Note that the 2D line

segment drawn by the user also determines the normal of the 3D cutting plane.

Consequently, the cutting plane partitions triangles of C into three groups: triangles

intersected with the plane, triangles above the plane and triangles below the plane. For

the ease of user control, our cutting method puts both intersected triangles and

triangles above the plane into one new component C1 and puts the rest of its triangles

into the other, C2.

Appendix

141

(a) Grouping Triangles (b) Collecting Triangles

Figure A.1 Cutting a component

 [Algorithm A.1] Cut_Component_By_Collecting_Triangles
Input: A 2D line segment L which a user draws on the screen, its endpoints a and b and their respective

screen coordinates T
0 0[, ,0]x y and T

1 1[, ,0]x y , current transformation matrix for a specific
orientation, a user-selected component C to be cut

Output: New components C1 and C2
Step 1: y0= WinHeight – y0; y1= WinHeight – y1; (WinHeight is the height of the screen window①)
 Construct two empty triangle lists intList and abvList;
Step 2: Calculate the 3D cutting plane P determined by p0p1p2, where p0, p1 and p2 are the 3D points that

can be projected to a, b and (0 1 0 1,
2 2

x x y y+ +
, 1) respectively②. The normal of P is

1 0 2 0

1 0 2 0

() ()
| () () |

p p p p
p p p p
− × −
− × −

;

Step 3: Among all the triangles of C, find the triangle T whose projection intersects L and is nearest to a;
Step 4: Mark T and add it into intList;
Step 5: For each of the triangles incident to T and lying above P, add it into abvList;
Step 6: For each of the triangles incident to T and intersecting P, denote it T′ and repeat Step 4 to 5 with

T = T′ till no more triangles are added to intList;
Step 7: From each triangle in abvList, collect a set of triangles in C by flooding over all unmarked

triangles and add all collected triangles into abvList;
Step 8: Put the triangles in intList and abvList into C1 and put the remaining triangles of C into C2.

A simple way for this component cutting is to group triangles of C by computing

the distance from every vertex of C to P. That is, if all the three vertices of a triangle

are below P, this triangle belongs to C2. Otherwise it belongs to C1. However, this

usually produces unexpected results where C is cut into more than one component. See

the example in Figure A.1(a). The cow model is cut into four disconnected

components by a cutting plane: a left foreleg, a right foreleg, a part of its tail and one

comprising four teats, two hind legs and a part of its belly. In such cases, users cannot

① Because screen coordinates of mouse positions originate from the upper-left corner of the screen, these
coordinates need to be changed so that the new origin is the lower-left corner.
② p0, p1 and p2 can be calculated by using OpenGL function: gluUnProject().

Appendix

142

control which triangles are needed to form new components. Instead, we apply

[Algorithm A.1] to solve such a problem. In this algorithm, we mark a list of

intersected triangles near the cutting plane and collect triangles based on mesh

connectivity. For comparison, Figure A.1(b) shows the result of this algorithm. It can

be seen that the component cutting only happens at those triangles near the cutting

plane and results in exactly two components.

• Assigning a new component by drawing its boundary

A user can also create new components by sequentially picking mesh vertices

over the surface of a selected component. Based on all picked vertices, we form a loop

of mesh edges and triangles at different sides of the loop are put into two different

components. Obviously, such a loop is then the boundary between the two new

components.

To facilitate user interaction, the framework computes the shortest path over mesh

edges between every two consecutive user-selected mesh vertices. All calculated paths

connecting user-selected vertices form the boundary B between two new components.

Triangles of the new components are collected recursively as follows.

 [Algorithm A.2] Assign_Component_By_Collecting_Triangles
Input: A list of mesh vertices vList picked by a user and a selected component C
Output: New components C1 and C2
Step 1: Compute the boundary B by calculating the shortest path between every two consecutive vertices

in vList;
Step 2: Take an arbitrary edge E from B;
Step 3: Suppose E connects two vertices v0 and v1, where v0 is the predecessor of v1 along B. Find T

which is the incident triangle of E and in whose vertex list v0 is the predecessor of v1;
Step 4: Add T into C1;
Step 5: For each edge of T that is different from E, set it as E and repeat Step 3 to 4 till no new triangle

is added to C1;
Step 6: Put the remaining triangles of C into C2.

• Merging two connected components

Using this tool, a user can pick two connected components C1 and C2, and merge

Appendix

143

them into a new component C. In such a case, all the triangles of C1 and C2 are put into

C and the boundary between C1 and C2 is removed.

• Passing triangles to an adjacent component

Using this tool, a user can move a set of triangles at a component boundary from

one component to another. Within a selected component C, a user clicks a set of mesh

vertices one by one in a counterclockwise order and all these vertices form a closed

loop L. It is required that the first and the last user-selected vertices must be on the

same boundary of C. The adjacent component C′ of the component C can be found as

follows. If an edge of L has one of its incident triangles belonging to a component

different from C, this component is then be the component C′ for this operation.

Subsequently, by using an algorithm similar to [Algorithm A.2], we can identify all

triangles at the left side of L as triangles to be moved and put them into C′. Note that

unlike other tools in this section, passing triangles between components in a mesh does

not affect the connectivity graph of the mesh.

