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ABSTRACT approaches include level-of-detail (LOD) control in rendering; see
for example [1, 13]. In a recent work, [12] employs a multi-level
This paper studies pre-fetching mechanisms that support walk- pyramid representation, called geometry clipmaps, for the walk-
throughs of virtual environments with overall data sizes exceeding through of a large terrain with all its data compressed and loaded
current core memory capacities of PCs. Specifically, it formulates entirely in-core.

the pre-fetch problem using motion characteristics of the viewer,  The query sub-problem involves the layout of data and the index-
the data density of the virtual environment, and the data transfer ing of objects so that region queries can efficiently identify objects
capability of the disk. It further analyzes two fundamental classes in the view frustum. Current approaches use spatial data structures
of pre-fetching schemes, which are classified by their uses of cer- such as quadtrees, octrees and R-trees that perform spatial partition-
tain pre-assigned spatial or temporal thresholds. The analysis ising and clustering of objects in the scene (see for example, [2, 3, 5]).
supported and verified by experiments on terrain walkthroughs per- These structures provides fast scene queries through their hierarchi-

formed on different configurations of PCs. An interesting finding

cal properties to localize data currently in view (see [14]).

is the understanding of how the terrain data density supportableisa The pre-fetch sub-problem is the main focus of our paper. It con-

function of the duration of time allocated to disk-level pre-fetching.
On the whole, this paper provides a methodology for analyzing pre-

cerns the retrieval of data from disk into core memory to fulfill fu-
ture processing requirements. The objective is to ensure that at any

fetch performance as well as presents insights instrumental in theone time, data required is already loaded in memory. Some existing

design and optimization of out-of-core walkthrough systems.

CR Categories: 1.3.5 [Computer Graphics]: Methodologies
and Techniques; 1.3.6 [Computer Graphics]: Three-Dimensional
Graphics and Realism—YVirtual reality

Keywords: virtual environment, terrain, walkthrough, out-of-core
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1 INTRODUCTION

The visual simulation of virtual environments plays an important

role in a variety of applications such as training and simulation in

large scale military war games, verification and visualization of

complex computer-aided-design models, and the walkthrough or
flythrough of an architectural building or an urban environment.

Large-scale virtual environments typically have overall data sizes

that exceed current core memory capacities. Due to the enormous,

amount of data involved, traditional rendering algorithms need to be

extended to deal with the fact that the entire dataset is too large to fit
in core memory. In addition, these algorithms are designed to work f
on PCs as they are attractive alternatives to high-end specialized
graphics machines due to the PC's rapidly increasing performance

in handling graphics at low cost.

The problem of out-of-core visualization is addressed on several
fronts, which we broadly classify into three closely interlinked sub-
problems that require algorithmic innovation. These sub-problems
arerender, queryandpre-fetch which correspond, respectively, to
processing (retrieved) data to be displayed, identifying and orga-
nizing data to be retrieved, and retrieving data into core memory in
anticipation of their needs for processing in the near future.

The render sub-problem arises from the complexity of out-of-
core data which makes it infeasible to render the geometry of the

out-of-core applications leave it to the operating system to do the
actual fetching (paging) of data during runtime [10, 11, 15]. There
are also approaches that use speculative pre-fetching depending
on the viewer's current location and velocity to fetch data needed
for future frames [4, 5, 7]. These approaches are sometimes cou-
pled with sophisticated occlusion culling techniques; see [3, 5, 16].
However, it is not clear how they can provide specific quality-of-
service guarantees with respect to the problem of page faults. Page
faults, which happen when required data is not in the core mem-
ory, can adversely affect the frame rate required for a smooth walk-
through or flythrough.

The general lack of quantitative work addressing the pre-fetch
sub-problem underlies our motivation to study it in detail. Our
objective is to obtain good insights into pre-fetching mechanisms
so as to build and optimize pre-fetching schemes. To this end,
the paper first proposes formalism for the qualitative and quanti-
tative analysis of the pre-fetch sub-problem, which takes into con-
sideration the motion characteristics of the viewer, the data density
of the virtual environment, and the data transfer capability of the
disk. It then contributes in the analysis of two fundamental pre-
etching schemes, which are characterized by their uses of certain
pre-assigned spatial or temporal thresholds. An interesting find-
ing, as verified in our experiments with terrain walkthroughs, is the
relationship between the data density supportable by pre-fetching
scheme and the duration of time allocated to disk level pre-fetching.

The rest of the paper is organized as follows: Section 2 presents a
survey of related previous work. Section 3 formulates the pre-fetch
sub-problem. Section 4 discusses two basic pre-fetching schemes:
spatial and temporal. Section 5 presents analysis for spatial and
temporal threshold schemes, and Section 6 details experiments to
verify the analysis. Section 7 concludes the paper.

entire scene. State-of-the-art approaches focus on reducing scen@ RELATED WORK

complexity by reducing the amount of geometry to be processed by
the graphics pipeline, while maintaining good visual fidelity. Such
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Out-of-core visualization has received much research interest for
over a decade. Early work on managing large amounts of data in-
cludes the work of Funkhouset al. [9] on the walkthrough of
large architectural models and Faletal.[8] on a real-time 3D vi-
sual simulator. We shall focus on outlining approaches dealing with
the pre-fetch sub-problem.

Recent works on handling large-scale datasets feature a gen-
eral trend towards deploying advanced data layouts and index-



ing schemes. Some of these methods rely on the data manage- The execution flow of a pre-fetching scheme can be viewed as a
ment capabilities of the operating systems to do demand pagingchain of pre-fetches. Le&§ be the data in some region of the envi-
(see [10, 15]). For example, the work of Lindstrom and Pascucci ronment, called there-fetch regionto be fetched into core mem-
[11] has a new LOD scheme along with a data layout and index- ory. Itis determined at timg by the pre-fetching scheme while the
ing scheme using interleaved quadtrees. There is no explicit pre-viewer is atQ;, to support a certain amount of look-ahead in time.
fetching but the operating system handles the necessary paging of0; is associated t& as itsreference pointand B; its boundary
data. In the area of scientific visualization, Cox and Ellsworth [6] Figure 1 shows two successive pre-fetch regi§nsolid oval) and
discuss the use of application specific knowledge to control the Sj (dashed oval) with reference poir@ andOj, respectively, and
loading and unloading of data for better performance. boundariess; andBj, respectively.

Works on pre-fetching schemes generally rely on multiple pro- In a usual pre-fetching scheme, all pre-fetching requests are
cesses/threads, with one dedicated for pre-fetching. Varadhan andstrictly sequential where no new request can be initiated until an
Manocha [16] present a system that uses a scene graph containingngoing one has been completed. That is, the scheme has only 1
static LODs in a hierarchical LOD scheme. The system implements outstanding pre-fetch request at any time. Presenting this on a time
a priority-based pre-fetching algorithm which prioritizes objects in  line for any two successive pre-fetching regicéhandS;, we have
the scene based on some screen space error metric as well as thefr < i <tj <fj where§ andS; are pre-fetched starting ftandt;,
relative deviations from the viewer's line of sight. The pre-fetching and completely pre-fetched into core memoryjaandt; respec-
routine then fetches multiple LODs for each object according to tively.
their priority in order to ensure that there is a high hit rate even  Such an approach is obviously beneficial when multiple pre-
when the object switches from one LOD to the next. The approach fetching threads decrease the disk throughput. On the other hand, if
employs an expanded view frustum to reduce the page fault ratethe disk throughput can be improved due to the support of concur-
and the objects in the expanded view frustum are also prioritized rent disk operations, we can execute our single pre-fetch operation
according to their distance away from the actual view frustum. It over multiple threads to achieve better performance while treating
pre-fetches data one frame in advance, and is implemented on arit as one thread with higher data transfer capability in our following
SGI workstation and an Onyx. analysis.

Unlike the above-mentioned pre-fetching methods that employ ~ With tj <t <t; <Tj, there are three time intervals of interest.
occlusion culling based on from-region visibility algorithms run-  Duringtj to fj, only a part of the data i is in the memory and
ning on multiprocessor machines, Coredal.[5] present a specu-  the remaining is being fetched. Duritigto tj, § is completely
lative pre-fetching system that works with from-point visibility al-  in the memory. Front; to tj more and more data i6; — § is
gorithms and runs as a separate thread on a uniprocessor machindgrogressively being fetched into the memory. However, in general,
The from-point pre-fetching method has several advantages, suchthere may not be guarantee of these (partial) data being immediately
as a shorter preprocessing time and better prediction on the set ofavailable and useful to the application, hence a pre-fetching scheme
objects to be pre-fetched. The system predicts the viewer's loca- should not depend on them and should regard defits;, which
tions based on its current location as well as its translational and are in memory atj, as the only available data froipto t;.
angular speeds.

Zach [17] describes a pre-fetching model using a conservative 3.1 Pre-fetch Mechanism
view frustum which is the union of all possible future view frus- ) ) )
tums within some time interval, based on the viewer's motion pa- With the above notation, we proceed to analyze, in general, the
rameters. All data in the conservative view frustum, taking LOD se- Working of a (deterministic) pre-fetch mechanism with the aim of
lection and geomorphing into consideration, should be pre-fetched Minimizing the occurrences of page faults. Note that for a given
within a time interval oft. Sucht should be as small as possible ~Pre-fetching scheme, variables suchSagindt; are dependent on
to improve path prediction, yet large enough to compensate for the the given walkthrough or flythrough. In this section, we explicitly
high complexity of the selection process. tag ¢ onto the variables such &({), tj({) to denote this depen-

Our work aims to improve the understanding of pre-fetching dency. _ _
mechanisms qualitatively and quantitatively, so as to design good ~1he objective of pre-fetching can be stated as follows: during
pre-fetching schemes. This differs from all the above-mentioned any walkthrough, data in the view frustum at timie denoted as
works that focus on building pre-fetching systems for walkthrough R({), is resident in memory, i.e,
and visualization; we analyze pre-fetching issues and design ex- .
periments to explore them. Unlike plain speculative pre-fetching, ¢, ¥t,R({) is in core memory @
such as in the work of Chirst al. [4], our analysis also adapts the  Thjs js equivalent to the following statement which can be used to
conservative view frustum apprpach in .[17]. It.dlffe.rs from [17] in design pre-fetching mechanisms:
the analytical approach to derive a suitable time interval for pre-
fetching to support high data densities. VI V() <t <T(0) —R({) CS@Q) )

3 PRE-FETCHING ISSUES

The main objective of any pre-fetching scheme is to ensure that
any required data at any time in the visual simulation is already
resident in core memory. Failure of a pre-fetching scheme to meet
the above objective results in the occurrenc@ade faults Page
faults cause either the visual simulation to be stalled waiting for
data retrieval or computation involving those data to be skipped,
resulting in degraded system performance. Therefore, the aim of
pre-fetching schemes is to minimize the number of page faults with Figure 1: At time tj, the pre-fetching scheme decides to fetch Sj. As
respect to a given operating environment (of viewer's motion) in some part of §j is already in memory, pre-fetching is only needed for
a given system configuration (of available core memory and data Sj —S. Note that the two triangles represent the view frustums at
transfer capability). Oi and Oj, respectively.




See Appendix A for the proof of the above equivalence. The im- needed to be pre-fetched. For a pre-determined shape of the re-
portant implication of statement (2) is that it allows a pre-fetching gion covered byS (which is the most recent pre-fetching before
scheme to work with discrete time intervals in practice. That is, timet;), both decisions depend mainly on the distance of the cur-
from the viewers motion, a pre-fetching scheme can calculate, for rent view frustum to the boundal of §. The reason is as fol-
any particular time;, the various possible positions of the viewing lows: the nearer the distance, the less amount of time available for
frustums within a period of timét into the future, and thus deter-  pre-fetching before the view frustum moves ouBpfto result in a
mine§ (and thus the particular shape®f with a guarantee thatno  scheme failure, and the larger the amount of dat§jin S to be

page fault will occur frontj to tj 4+ ot. Clearly, the size 0§ must fetched.

not exceed the portion of core memory designated to pre-fetch. As such, one can employ a closed boundary at some constant
distance away fronB; to be a thresholdy; for a general spatial

3.2 Disk Constraint threshold schemethe system does not perform data fetches until

the current view frustum touches the threshbid When it does
It is easy to realize that the performance of pre-fetching is depen- so at timet;, it defines a new reference poif; at the viewer’s
dent on the characteristics of the viewer's motion, the data distri- location to calculat;, set a new threshold;, and start fetching
bution of the virtual environment, as well as the disk transfer rate. Sj —S. Our choice of constant distance away from the boundary
Formally, the relationship among the above factors can be statedfor the threshold is explained next. In the worst-case scenario, the

with the following simple equation: viewer always moves towards the point of shortest distance from
the threshold to the boundary. Thus, an arbitrary threshold is not
o(Sj—S) <H(1) 3) better than a threshold of constant distance (equals to the shortest

distance) from the boundary. Refer to Figure 2(a) for a possible
where thedata transfer capabilityd (1) is defined to be the amount ~ sequence of events in a general spatial threshold scheme.
of data that can be transferred into core memory in timend Let 1, be the shortest possible amount of time the view frustum
0(Sj — §) is the largest possible amount of datadn—S. This at O; takes to touch the threshalg, and lett be the shortest possi-
data is derived from the motion characteristics of user. To ensure ble amount of time from the instance the view frustum toudhé¢s
a smooth walkthrough, equation (3) must be observed at all time. the instance when it touch&, i.e. the duration of time allowed to
We note here that our analysis is independent of data layout sincecomplete fetchings; — S. By statement (2)§ (and, similarly,S;)
any choice of a particular layout scheme essentially translates tomust contain sufficient data to support at legst- 7 time starting

modifying the data transfer capability. atQ; (and, similarly,O; as defined when the view frustum touches
When a new pre-fetch is issued before an outstanding pre-fetchsome point orp;). For a givenr, by varyingty,, we can obtain vari-
completes loading all requested data, we say therstheme fail- ous sizes of pre-fetch regions. But, we must haye 7; otherwise,

ure. A scheme failure may not result in a subsequent page fault asin the worst case, when the scheme usesyime to fetch a part
those pages that have not been fetched may not be needed at all. Albut yet the whole of;, the view frustum can already toublh and
though scheme failures are tolerable in practice, any guarantee onthus trigger the scheme to request for a new pre-fetching while one
system performance will be lost if they occur. On the other hand, is still on-going. This is not allowed as all such requests are strictly
a page fault is a result of a scheme failure. Hence, we restate thesequential. For a given, we define the spatial threshold schefne
aim of a pre-fetching scheme as avoiding scheme failures, given anas the general spatial threshold scheme whgee 7.

operating environment and system configuration.

4.2 Temporal Threshold Schemes
4 PRE-FETCHING SCHEMES . ) o
For the above spatial threshold schefethe “busiest” situation

In this section, we discuss two main classes of pre-fetching is When it finishes a pre-fetch while the view frustum just touches
schemes: spatial threshold in Section 4.1 and temporal thresholdthe threshold of the pre-fetch region, thus initiating a new pre-fetch
in Section 4.2. A qualitative comparison between them is given in requestimmediately after the previous request finishes. In this case,
Section 4.3. The following are two reasonable assumptions which S pre-fetches in every interval. Similar in spirit to the “busiest”
enable us to do a qualitative discussion here and a quantitative anal-situation ofS, atemporal threshold scheniedoes the pre-fetching
ysis in Section 5. at some regular interval af. To initiate a pre-fetching at timg,

First, a virtual environment generally has varying densities over it also sets the new reference pod at the current location of the
different regions. For a pre-fetching mechanism to avoid failures, viewer to calculatdd; so as to fetct§; — § while § has sufficient
it has to be capable of handling the region with highest density. data to last tilltj +- 7 (and Sj will contain enough data to last till .
Thus, in our analysis we assume that the virtual environment has atj + 27). The scheme does not set any physical threshold, but is
uniform data density, defined to be the amount of data per unit implemented with system interrupt at regular intervetb trigger
area. In practicep is set to be the highest density over the entire Pre-fetching. See Figure 2(b) for a possible sequence of events of
virtual environment. We say that a pre-fetching schemescgort such a scheme.
a data density if no scheme failure occurs when the scheme runs
on a dataset of density. In this casep is supportableby the
scheme.

Second, we consider schemes that maintain an invariant shaperor a givent, the spatial threshold scheri€onverges in its worst
of pre-fetch region. That is to say that, for instance, the region case (busiest situation) to the temporal threshold schEnbeit S

4.3 Between Spatial and Temporal

covered by§ overlaps exactly with the region covered 8yunder andT in general are different in tha& needs to always fetch the

some translation and rotation. largest region whilél' does not necessarily do so. On the other
hand, T performs pre-fetching more frequently th&n In some

4.1 Spatial Threshold Schemes sense, (diligent]I' does pre-fetching more frequently but fetches

less each time, while (lazy§ only pre-fetches when needed but
Following the discussion in Section 3, one way to categorize pre- fetches more at one go. In practice, due to unforeseen circum-
fetching schemes is based on their decisions on (a) whether to trig-stances, such as when the disk under-perfof@nis, more prone
ger pre-fetching at current tintg and (b) if so, the amount of data  to causing scheme failures thdn



Frustum Frustum
Finished touches Viewer gets  touches
fetching S; threshold b; out of §; threshold b;
(a) —i : ——1 : . {- > Time
- Si S.
Oj S Supported
_Pk _  [Interval
‘T = allowed time 1;: allowed time
to fetch S - S; to fetch S - S;
Finished Fetch at regular intervals
fetcliing S; ‘/l\‘
(b) —1 - & L 4 {1 » Time
S; ,
- 5j § Supported
_*S_k _ Interval
1 = allowed time a 1 = allowed time !
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Figure 2: Possible sequences of events in (a) a general spatial and (b) a temporal threshold scheme.

5 THE PRE-FETCH DURATION T

This section derives a relationship betwgerhe data density sup-
portable, and, the duration of pre-fetching time available in a gen-

atA's corner (and similar a@8's) is not reachable withidt time but
is included in the pre-fetch region for simplicity in our calculation.

Circle Shape We extend the fan shape to a circle so as to cache

eral spatial threshold scheme. This derivation is done on a virtual all data needed in all possible rotational motions for any duration
environment that can be represented as a 2D map such as a terraigf time into the future while the position of the viewer remains un-

model, with the viewer's motion governed by a maximum trans-
lational speedsr and a maximum angular speed We note that
the analysis is also applicable to the spatial threshold sci&me
by choosing the appropriatg = 7, and to the temporal threshold
schemeT asS converges td in its “busiest” situation.

5.1 Shapes of Pre-fetch Region

At time tj, a pre-fetching scheme calculatgs We would likeS;

to support a smooth walkthrough for some duration of time, say
ot, into the future. By statement (2), it must at least contain the
region that the view frustum can possibly cover withih time
starting from timet;. With the constraints on the viewer’s motion,

changed; see Figure 3(b) where the circle shape is extended (as
shown shaded) from the fan shap8CD. (It is not possible to
cache the same way for the translational motion unless the core
memory is big enough to store the complete dataset.) As a result, it
can reduce the amount of data to be pre-fetched per unit time (at the
expense of using more core memory, as shown in Figure 5). When
ot is large enough, the circle itself is the most conservative region
to avoid scheme failures.

Our analysis does not consider the case wh&k®B > rin the
fan shape (in Figure 3(a)). This is because such a shape is com-
plicated to analyze and it does not have the advantages of a circle
shape even though it caches more data than the fan shape. Thus, it
is unlikely to result in better support of a high

interesting shapes of such region for our analysis are the fan shape
(as shown in Figure 3(a), which is the most conservative region)

and the circle shape (as shown in Figure 3(b), which extend the
most conservative region of the fan shape to further cache all data
needed in all possible rotational motions).

Fan Shape Let O be the reference point of a pre-fetch region of
the viewer. The current view frustum with field of viewis shown
shaded as an isosceles triangle with two equal sides of |&rgtth

the third side representing the far plane. For simplicity, we ignore
the small difference in the view frustum due to the truncation
effect of the near plane. The whole region as shown is a fan shape,
bounded by the aoC of radiusr = v dt with centerO, CB, BA of
radiusR = r 41 with centerO, andAD. It defines the region needed
by the viewer for adt time interval wheredt is the time needed
for its view frustum to reach the boundary of the pre-fetch region.
Specifically, the region is obtained by rotating the view frustum
by the maximum amounfs = w Jt to cover the space due to the
rotational motion, and then translating this space in any direction
away fromO with the maximum amount. We note thalOM is
parallel toDA, so; = 8 +sin 1(r/R). The small shaded region

(a) Fan Shape (b) Circle Shape

Figure 3: Shapes of pre-fetch regions.



5.2 §j—S§ of Fan Shape

At time tj, the viewer is aD; = O and the system, which has a part
of § in its core memory, does pre-fetching fraptill tj + 1 to obtain
the complete§. At timet; =t + 1, the viewer is assumed to have
moved toOj = O/, with its view frustum touchingp; in the worse
case. At this point, the system has a fll(ast, > 1) but only a
part of S in memory. Thus it needs to start pre-fetching from this
time till time tj 4+ 1, 4 7 to obtain the complet&; while the view
frustum is still guaranteed to be insid& In the following, we
want to calculate the maximum region covereddpy- S, denoted
by Tmax for some giverr, andt, then derive ay, that minimizes
Tmax for each fixedr.

Refer to Figure 4(a). The transformation frdnto S; can be
separated into 2 parts: the rotation by angle w1, aboutO and

e
the translation along vectqs = OO (with magnitudep = || <

VT,). The rotation transformB to By, Ato A; andD to Dy. Then Figure 4: Regions (shaded) covered by §j —§.

the translation transform&; to A’, By to B/, D; to D, andE; to

E’. Letl be the intersection point o D; with the line segment

extended fromAD beyondD, and letA be the anglezO’'Ox. The

amount of data to pre-fetch & — S, as shown in five regions. To a r

calculate the areas of the regions, we use the simple lemma as stated Ty +To+ Tz = pr+ pRsin(E +B+ sinfl(ﬁ) —y+A)
in Appendix B to get:

(a) Fan Shape (b) Circle Shape

B

< pr+pRLVIp(r+R)

~ A~
T, = area bounded by/B’,B'B1, B1A; andA A’ and Ta+Ts = 3y(RC %) < 0tp(R2—r?).

S0, Tmax = VIp(r + R) + S wtp(R% — r?) wheny = wtp,, p = vy

andA = 3m— (3a + B +sin (k) — wp). If Tis fixed, Tmax is

1 an increasing function afy for 1, > 1 and is thus minimized when

=2pRsin(B1+ sa)cogy—A). Tp = T. This is the case of the spatial threshold sché&mnén this
2 case, we havénaxas a function ofr :

— p[BiA|sin(£(p, BiAL))

Tmax(T) = (4v2+2wvl)rz+(vl+%|2)r. 4)

T, = area of the parallelograri; D'A'Aq

= p|D1Ay|sin(Z/(B,D1A1))
5.3 §j—§ of Circle Shape

Refer to Figure 4(b). The new region (shad&l)- S swept out
as the reference point changes fr@nto O’ is via a translation

along the vectop = oo (with magnitudep = |p| < v1p). Note
that rotation has no contribution & —S.

= pVRZ—r2sin(A — (%a+ﬁ+ ).

N N _
T3 = area bounded bi’'D’,D’Dq,D1E; andE{E/

= p|D1E1|sin(£(p,D1E1)) = pr(1—cog ZE;ODy)) Then, the region covered I§f — § is:
1 -1, P p?
=rp(l-cog;a+B+y—A)). T=(m—2cos(==))RP+p|/RR— =
2 2R 4
T, = area bounded bW,A;AandN It is easy to see thak achieves its maximum value whé»O' is
i maximized; i.e.p = vt,. So,
1 1 .
= SITA|[AgA|sin(£(1A1, L) + SRE(y —siny) - i
1 Tmax= (n—Zcosfl(ﬁ))Rervrb,/R?— (7)2.

= ész—rztar‘(%y).

— o As in the case of the fan shap&yax for the circle shape is an
Ts = area bounded bypD1,D;1 andID increasing function off, for 1, > 7 and thus is minimized when
T, = T. S0, we hav8naxas a function ofr:

S
— ID|BO| - ;12
1 2l Tmax(T):(7‘[—200571(%))(@1_”)2
:r2(tan(§y)—§y). (2T +1) o

vty [ (v +1)2 - (%)2 .
To address the worst case, we calculate the maximum region cov-
ered byS; — §. Notice thafTy, T, andTs are functions of, y, and From the above discussion, we conclude that among all the general
A, while T4 andTsg are those of. So, to obtairiliyay, We maximize spatial threshold schemes using fan shape or circle shape with fixed
Ti+To+ Tz andTy+ Ts: 7, the spatial threshold scher8esupports the highest density.



v ="T0m/s 5.5 Possible Extensions

0.5 ©=6%s / T1500
- I=1155km 4 3 . PSR
1 a=60° / ] The above calculation is a showcase of a methodology to analyze
] 4 1200 _ & pre-fetching schemes. It can be extended with appropriate modifi-
/ 2 ] £=s cations to cater to specialized classes of viewer’'s motion such as in
"E ] §~E 3D maps or flythrough applications. In case of 3D maps, it is un-
g 1 - 900 §§ doubtedly complex but remains possible to obtain a cubic function
= ] %9 of T for Tmaxand thus a relationship between data densigndr.
g - Je00o § & Also, it is possible to analyze maps with a simple type of LOD
a Fan-Density | é g support where progressively lower LOD is used with increasing dis-
Circle-Density | 7 = tance from the viewer. In such a case, the calculatio®, ef § for
| (Fj?r"clzq;d":::r 730 the highest LOD remains the same while the subsequent LODs are
- Y13 done in a simple way.Tmax is the union of all data at all LODs.
""" For example, in a 2D map, data within 200m is to be supported at
1 2 3 4 5 maximum detail; data between 200m to 600m, at half detail; and

d . .
¥ [seconds] data from 600m to 1km, at quarter detail. Then with the same set of

motion parameters as in Figure 5, the analysis shows that the high-
est density supportable for the highest LOD is twice that of the case
without LOD support.

Figure 5: Data density supportable and the amount of core memory
required by different pre-fetch duration T.

5.4 Data Density Supportable 6 EXPERIMENTS ON TERRAIN

We first examine equation (4) to understand the highest data den-Our experiments are conducted on two different dual-processor
sity supportable by a scheme with the fan shape. Suppose the diskPC systems, an Intel Xeon 2.8GHz with 2GB (PC2100 266MHz
data transfer capabilityl is the ideal case dfl (1) = K1 for some SDRAM) of core memory on an lwill DP533 motherboard run-
constantk. In practice, there are additional delays due to various ning Windows XP with data stored in a 36GB Maxtor Atlas 10K
overheads, such as disk seek latencies, which is temporarily over-IV U320 SCSI disk (10000 RPM, 4.3ms average seek time), and

looked. Then from equations (3) and (4), we have: an Intel Xeon 2.1GHz with 2GB (PC800 400MHz RDRAM) of
core memory on a Supermicro SUPER P4DC6 motherboard run-
Kt 2K K ning Windows 2000 with a 80GB Seagate ST380021A IDE disk
p= Tmax (8V2 + 4wV T+ (vl + wl?) < vl @ (7200 RPM, 9.5ms average seek time). We refer to the two systems
2

in the experiment as IDE-2.1 and SCSI-2.8. The OS disk caching
o ) ) ) mechanisms for each system is set to on or off to get four different
It is interesting to notice thatl is the area covered by the trans-  configurations in total.

lational motion ano‘%2 by the rotational motion per unit time, and Following our analysis in Section 5, our experiments are con-
p is no larger than the data transfer réteover the sum of these  ducted in the context of a 2D terrain walkthrough. We generated
areas. terrain datasets of different data densities of up to a total of 20 GB
Now supposeH is a more realistic functiotd (1) = K(1 — €) on disk, stored as a grid of cells where each is a 84dm square
wheree is the system overhead such as the seek time. Then, region. Pre-fetching is done for data in cells overlapping the region
covered byS; —§. We use temporal pre-fetching scheme with a
K(t—¢) 2K(T—¢) fan shape; itis implemented as a separate thread from the rendering
p< = (6) thread. A fixed pool of core memory is used for the management

~ (82 2 27"
Trax (8v2 +4wvi) T2+ (vl + wl )T of terrain data. To realize the worst case scenario, we program the

viewer’'s motion to follow a path that causes the maximum amount
The data density supportable is a functiorrpghown as acurve  of data to be transferred on each pre-fetch request. There are in total
(labelled 1) in Figure 5 for a particular operating environment. Sim- 100 pre-fetches in our chosen path. The circle shape is not experi-
ple calculus shows that the highest data density supportable is at: mented as it would require much larger amount of core memory to
create scheme failures.
] 2 The role of 1. For each configuration of our systems, we col-
Tnax— €+ 1824 —2 9" o @) lected statistics on its number of scheme failures for terrains of dif-
8v2 + 4wvl ferent data densities. Two sets (out of four) of data, one with disk
caching mechanism enabled and one without, are shown in Fig-
The function increases very rapidly to support larger data density ure 6; the two other sets of data are not shown here, but reflect sim-
whenTt increases towardenayx and then it decreases gradually for ilar trends. In each chart, we show four representative data density
T moving away fromrtmay. This is verified experimentally as dis-  curves out of the many different ones that we have collected. These
cussed in the next section. statistics testify the theoretical prediction in the previous section
Similarly, we can obtain a curve (labelled 2) based on equation that for each data density, there is a range tffiat achieves close
(5) for the circle shape as shown in Figure 5. The figure also shows to zero scheme failures. Another finding is that the higher the data
that the circle shape can result in higher data density supportabledensity, the smaller the range of such gaod
than the fan shape does for the same set of parameters. This is Highest Data Densityp. For eachr, we ran experiments for
the case when the rotational motiarplays a more significantrole  a range of data densities to determine the higpefsir which no
compared to the translational motiwn Such situation may not be  scheme failure occurs (with allowance of occasional 1 scheme fail-
true when the translational motiondominates region covered by  ure due to noise). Such values are used to plot Figure 7. The shapes
Sj —§ as in our experiments (Section 6). Nevertheless, the circle of these curves conform to the theoretical one as shown in Figure 5.
shape requires much more core memory (curve 4) than that for the Best range oft. In addition, Figure 7 also shows that the good
fan shape (curve 3) as shown in Figure 5. T which support the highest density for IDE-2.1 (OS disk caching
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to find the corresponding pre-fetch interval to achieve good perfor-
mance.

With the insights provided by the theoretical analysis, we con-
clude by presenting some practical considerations to augment our
pre-fetch mechanisms. For example, while our analysis assumes
constant data density, a system can incorporate “lazy” pre-fetching
which defers fetching requests in low density regions. This can
potentially improve the performance of the system by delaying
data transfers until they are absolutely needed. Alternatively, when
lower densities are encountered, more data can be loaded in ad-
vance in anticipation of later use. Better performance can also be
achieved by incorporating some form of path prediction to cull re-

disabled) is in the range of 0.5 to 0.8 second. For such a case whergyions that are unlikely to be reached by the user. Other useful opti-
OS disk caching is disabled, we can derive a reasonable bound ofmizations such as proximity-based prioritized fetching can also be

€ between 0.22 to 0.31 through a linear regression on the hard diskincorporated to build a practical pre-fetching system. All these will

performance statistics, and apply it to equation (7) to obtain the phntentially improve the performance of pre-fetching systems.

theoretical good of between 0.6 to 0.9 second. These two ranges
of goodr in the case of SCSI-2.8 (withbetween 0.31 to 0.54 again

obtained through linear regression) are from 0.6 to 0.9 second in the ACKNOWLEDGEMENTS

experiments and from 0.8 to 1.2 second in equation (7). When OS
disk caching is enabled, we do not have a good bound due to
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APPENDIX A

We provide the proof of the equivalence of statements (1) and (2).

Assume statement (1) holds but statement (2) does not for a given
¢ andt. Then there is somg({) <t <{;j({) such thatR({) Z
S({). We first argue that is not fromf;(Z) till ;. Fromf;({)
till tj, the core memory contains onB(¢), and fromt; till {j,
the core memory contains some part (if not all)${). And,

R ({) isin the core memory as given by statement (1), thgg) C
S({). As such, the mentionedds such that; () <t <f;({). Now
we consider a walkthrough or flythrough such thai and{’ are
identical untilt but then the viewer remains stationary until time
ti(¢’). Sincel’ and{ are identical untit, S({’) = S({). Thus

R ({") =R({") =R({) £ S({) =S({’). Thisis a contradiction
as attimd;, we have as we argued in the above ta¥’) C S(').
Thus if statement (1) holds then statement (2) holds.

Conversely, assume that statement (2) holds. Then fortakre
arei andj such thattj({) <t <t;({). There are three cases of time
interval to consider. First, ifi({) <t <tj({), thenR({) € S({)
as given and5 () is in the core memory, thug({) is in the core
memory. Second, ifj({) <t <tj({), then as this interval is a
sub-interval of botht;j() till Tj({) andt;({) till T({) wherety
is the time where the next successive pre-fetching &ies per-
formed, we havéy ({) is a subset of botl({) andS;j({). Thus,
R({) € S({)nSj({) and is in the core memory (even though the
parts ofS({) that are not inSj({) have already been moved out
of the memory). Third, itj({) <t <fj({), this is just the same as



