
Analyzing Pre-fetching in Large-scale Visual Simulation

Chu-Ming Ng, Cam-Thach Nguyen, Dinh-Nguyen Tran, Tiow-Seng Tan∗
National University of Singapore

Shin-We Yeow†

G Element Pte Ltd

ABSTRACT

This paper studies pre-fetching mechanisms that support walk-
throughs of virtual environments with overall data sizes exceeding
current core memory capacities of PCs. Specifically, it formulates
the pre-fetch problem using motion characteristics of the viewer,
the data density of the virtual environment, and the data transfer
capability of the disk. It further analyzes two fundamental classes
of pre-fetching schemes, which are classified by their uses of cer-
tain pre-assigned spatial or temporal thresholds. The analysis is
supported and verified by experiments on terrain walkthroughs per-
formed on different configurations of PCs. An interesting finding
is the understanding of how the terrain data density supportable is a
function of the duration of time allocated to disk-level pre-fetching.
On the whole, this paper provides a methodology for analyzing pre-
fetch performance as well as presents insights instrumental in the
design and optimization of out-of-core walkthrough systems.

CR Categories: I.3.5 [Computer Graphics]: Methodologies
and Techniques; I.3.6 [Computer Graphics]: Three-Dimensional
Graphics and Realism—Virtual reality

Keywords: virtual environment, terrain, walkthrough, out-of-core
algorithms

1 INTRODUCTION

The visual simulation of virtual environments plays an important
role in a variety of applications such as training and simulation in
large scale military war games, verification and visualization of
complex computer-aided-design models, and the walkthrough or
flythrough of an architectural building or an urban environment.
Large-scale virtual environments typically have overall data sizes
that exceed current core memory capacities. Due to the enormous
amount of data involved, traditional rendering algorithms need to be
extended to deal with the fact that the entire dataset is too large to fit
in core memory. In addition, these algorithms are designed to work
on PCs as they are attractive alternatives to high-end specialized
graphics machines due to the PC’s rapidly increasing performance
in handling graphics at low cost.

The problem of out-of-core visualization is addressed on several
fronts, which we broadly classify into three closely interlinked sub-
problems that require algorithmic innovation. These sub-problems
arerender, queryandpre-fetch, which correspond, respectively, to
processing (retrieved) data to be displayed, identifying and orga-
nizing data to be retrieved, and retrieving data into core memory in
anticipation of their needs for processing in the near future.

The render sub-problem arises from the complexity of out-of-
core data which makes it infeasible to render the geometry of the
entire scene. State-of-the-art approaches focus on reducing scene
complexity by reducing the amount of geometry to be processed by
the graphics pipeline, while maintaining good visual fidelity. Such

∗{ngchumin, nguyenca, trandinh, tants}@comp.nus.edu.sg
†shinwe@gelement.com

approaches include level-of-detail (LOD) control in rendering; see
for example [1, 13]. In a recent work, [12] employs a multi-level
pyramid representation, called geometry clipmaps, for the walk-
through of a large terrain with all its data compressed and loaded
entirely in-core.

The query sub-problem involves the layout of data and the index-
ing of objects so that region queries can efficiently identify objects
in the view frustum. Current approaches use spatial data structures
such as quadtrees, octrees and R-trees that perform spatial partition-
ing and clustering of objects in the scene (see for example, [2, 3, 5]).
These structures provides fast scene queries through their hierarchi-
cal properties to localize data currently in view (see [14]).

The pre-fetch sub-problem is the main focus of our paper. It con-
cerns the retrieval of data from disk into core memory to fulfill fu-
ture processing requirements. The objective is to ensure that at any
one time, data required is already loaded in memory. Some existing
out-of-core applications leave it to the operating system to do the
actual fetching (paging) of data during runtime [10, 11, 15]. There
are also approaches that use speculative pre-fetching depending
on the viewer’s current location and velocity to fetch data needed
for future frames [4, 5, 7]. These approaches are sometimes cou-
pled with sophisticated occlusion culling techniques; see [3, 5, 16].
However, it is not clear how they can provide specific quality-of-
service guarantees with respect to the problem of page faults. Page
faults, which happen when required data is not in the core mem-
ory, can adversely affect the frame rate required for a smooth walk-
through or flythrough.

The general lack of quantitative work addressing the pre-fetch
sub-problem underlies our motivation to study it in detail. Our
objective is to obtain good insights into pre-fetching mechanisms
so as to build and optimize pre-fetching schemes. To this end,
the paper first proposes formalism for the qualitative and quanti-
tative analysis of the pre-fetch sub-problem, which takes into con-
sideration the motion characteristics of the viewer, the data density
of the virtual environment, and the data transfer capability of the
disk. It then contributes in the analysis of two fundamental pre-
fetching schemes, which are characterized by their uses of certain
pre-assigned spatial or temporal thresholds. An interesting find-
ing, as verified in our experiments with terrain walkthroughs, is the
relationship between the data density supportable by pre-fetching
scheme and the duration of time allocated to disk level pre-fetching.

The rest of the paper is organized as follows: Section 2 presents a
survey of related previous work. Section 3 formulates the pre-fetch
sub-problem. Section 4 discusses two basic pre-fetching schemes:
spatial and temporal. Section 5 presents analysis for spatial and
temporal threshold schemes, and Section 6 details experiments to
verify the analysis. Section 7 concludes the paper.

2 RELATED WORK

Out-of-core visualization has received much research interest for
over a decade. Early work on managing large amounts of data in-
cludes the work of Funkhouseret al. [9] on the walkthrough of
large architectural models and Falbyet al. [8] on a real-time 3D vi-
sual simulator. We shall focus on outlining approaches dealing with
the pre-fetch sub-problem.

Recent works on handling large-scale datasets feature a gen-
eral trend towards deploying advanced data layouts and index-

ing schemes. Some of these methods rely on the data manage-
ment capabilities of the operating systems to do demand paging
(see [10, 15]). For example, the work of Lindstrom and Pascucci
[11] has a new LOD scheme along with a data layout and index-
ing scheme using interleaved quadtrees. There is no explicit pre-
fetching but the operating system handles the necessary paging of
data. In the area of scientific visualization, Cox and Ellsworth [6]
discuss the use of application specific knowledge to control the
loading and unloading of data for better performance.

Works on pre-fetching schemes generally rely on multiple pro-
cesses/threads, with one dedicated for pre-fetching. Varadhan and
Manocha [16] present a system that uses a scene graph containing
static LODs in a hierarchical LOD scheme. The system implements
a priority-based pre-fetching algorithm which prioritizes objects in
the scene based on some screen space error metric as well as their
relative deviations from the viewer’s line of sight. The pre-fetching
routine then fetches multiple LODs for each object according to
their priority in order to ensure that there is a high hit rate even
when the object switches from one LOD to the next. The approach
employs an expanded view frustum to reduce the page fault rate
and the objects in the expanded view frustum are also prioritized
according to their distance away from the actual view frustum. It
pre-fetches data one frame in advance, and is implemented on an
SGI workstation and an Onyx.

Unlike the above-mentioned pre-fetching methods that employ
occlusion culling based on from-region visibility algorithms run-
ning on multiprocessor machines, Correaet al. [5] present a specu-
lative pre-fetching system that works with from-point visibility al-
gorithms and runs as a separate thread on a uniprocessor machine.
The from-point pre-fetching method has several advantages, such
as a shorter preprocessing time and better prediction on the set of
objects to be pre-fetched. The system predicts the viewer’s loca-
tions based on its current location as well as its translational and
angular speeds.

Zach [17] describes a pre-fetching model using a conservative
view frustum which is the union of all possible future view frus-
tums within some time interval, based on the viewer’s motion pa-
rameters. All data in the conservative view frustum, taking LOD se-
lection and geomorphing into consideration, should be pre-fetched
within a time interval ofτ. Suchτ should be as small as possible
to improve path prediction, yet large enough to compensate for the
high complexity of the selection process.

Our work aims to improve the understanding of pre-fetching
mechanisms qualitatively and quantitatively, so as to design good
pre-fetching schemes. This differs from all the above-mentioned
works that focus on building pre-fetching systems for walkthrough
and visualization; we analyze pre-fetching issues and design ex-
periments to explore them. Unlike plain speculative pre-fetching,
such as in the work of Chimet al. [4], our analysis also adapts the
conservative view frustum approach in [17]. It differs from [17] in
the analytical approach to derive a suitable time interval for pre-
fetching to support high data densities.

3 PRE-FETCHING I SSUES

The main objective of any pre-fetching scheme is to ensure that
any required data at any time in the visual simulation is already
resident in core memory. Failure of a pre-fetching scheme to meet
the above objective results in the occurrence ofpage faults. Page
faults cause either the visual simulation to be stalled waiting for
data retrieval or computation involving those data to be skipped,
resulting in degraded system performance. Therefore, the aim of
pre-fetching schemes is to minimize the number of page faults with
respect to a given operating environment (of viewer’s motion) in
a given system configuration (of available core memory and data
transfer capability).

The execution flow of a pre-fetching scheme can be viewed as a
chain of pre-fetches. LetSi be the data in some region of the envi-
ronment, called thepre-fetch region, to be fetched into core mem-
ory. It is determined at timeti by the pre-fetching scheme while the
viewer is atOi , to support a certain amount of look-ahead in time.
Oi is associated toSi as its reference pointand Bi its boundary.
Figure 1 shows two successive pre-fetch regionsSi (solid oval) and
Sj (dashed oval) with reference pointsOi andO j , respectively, and
boundariesBi andB j , respectively.

In a usual pre-fetching scheme, all pre-fetching requests are
strictly sequential where no new request can be initiated until an
ongoing one has been completed. That is, the scheme has only 1
outstanding pre-fetch request at any time. Presenting this on a time
line for any two successive pre-fetching regionsSi andSj , we have
ti < t i ≤ t j < t j whereSi andSj are pre-fetched starting atti andt j ,
and completely pre-fetched into core memory att i and t j respec-
tively.

Such an approach is obviously beneficial when multiple pre-
fetching threads decrease the disk throughput. On the other hand, if
the disk throughput can be improved due to the support of concur-
rent disk operations, we can execute our single pre-fetch operation
over multiple threads to achieve better performance while treating
it as one thread with higher data transfer capability in our following
analysis.

With ti < t i ≤ t j < t j , there are three time intervals of interest.
During ti to t i , only a part of the data inSi is in the memory and
the remaining is being fetched. Duringt i to t j , Si is completely
in the memory. Fromt j to t j more and more data inSj −Si is
progressively being fetched into the memory. However, in general,
there may not be guarantee of these (partial) data being immediately
available and useful to the application, hence a pre-fetching scheme
should not depend on them and should regard data inSi ∩Sj , which
are in memory att j , as the only available data fromt j to t j .

3.1 Pre-fetch Mechanism

With the above notation, we proceed to analyze, in general, the
working of a (deterministic) pre-fetch mechanism with the aim of
minimizing the occurrences of page faults. Note that for a given
pre-fetching scheme, variables such asSi andti are dependent on
the given walkthrough or flythroughζ . In this section, we explicitly
tag ζ onto the variables such asSi(ζ), ti(ζ) to denote this depen-
dency.

The objective of pre-fetching can be stated as follows: during
any walkthroughζ , data in the view frustum at timet, denoted as
Ft(ζ), is resident in memory, i.e,

∀ζ ,∀t,Ft(ζ) is in core memory (1)

This is equivalent to the following statement which can be used to
design pre-fetching mechanisms:

∀ζ ,∀t, ti(ζ)≤ t ≤ t j (ζ)→ Ft(ζ)⊆ Si(ζ) (2)

Figure 1: At time t j , the pre-fetching scheme decides to fetch Sj . As
some part of Sj is already in memory, pre-fetching is only needed for
Sj −Si . Note that the two triangles represent the view frustums at
Oi and O j , respectively.

See Appendix A for the proof of the above equivalence. The im-
portant implication of statement (2) is that it allows a pre-fetching
scheme to work with discrete time intervals in practice. That is,
from the viewers motion, a pre-fetching scheme can calculate, for
any particular timeti , the various possible positions of the viewing
frustums within a period of timeδ t into the future, and thus deter-
mineSi (and thus the particular shape ofSi) with a guarantee that no
page fault will occur fromti to ti + δ t. Clearly, the size ofSi must
not exceed the portion of core memory designated to pre-fetch.

3.2 Disk Constraint

It is easy to realize that the performance of pre-fetching is depen-
dent on the characteristics of the viewer’s motion, the data distri-
bution of the virtual environment, as well as the disk transfer rate.
Formally, the relationship among the above factors can be stated
with the following simple equation:

σ(Sj −Si)≤ H(τ) (3)

where thedata transfer capabilityH(τ) is defined to be the amount
of data that can be transferred into core memory in timeτ, and
σ(Sj −Si) is the largest possible amount of data inSj −Si . This
data is derived from the motion characteristics of user. To ensure
a smooth walkthrough, equation (3) must be observed at all time.
We note here that our analysis is independent of data layout since
any choice of a particular layout scheme essentially translates to
modifying the data transfer capability.

When a new pre-fetch is issued before an outstanding pre-fetch
completes loading all requested data, we say there is ascheme fail-
ure. A scheme failure may not result in a subsequent page fault as
those pages that have not been fetched may not be needed at all. Al-
though scheme failures are tolerable in practice, any guarantee on
system performance will be lost if they occur. On the other hand,
a page fault is a result of a scheme failure. Hence, we restate the
aim of a pre-fetching scheme as avoiding scheme failures, given an
operating environment and system configuration.

4 PRE-FETCHING SCHEMES

In this section, we discuss two main classes of pre-fetching
schemes: spatial threshold in Section 4.1 and temporal threshold
in Section 4.2. A qualitative comparison between them is given in
Section 4.3. The following are two reasonable assumptions which
enable us to do a qualitative discussion here and a quantitative anal-
ysis in Section 5.

First, a virtual environment generally has varying densities over
different regions. For a pre-fetching mechanism to avoid failures,
it has to be capable of handling the region with highest density.
Thus, in our analysis we assume that the virtual environment has a
uniform data densityρ, defined to be the amount of data per unit
area. In practice,ρ is set to be the highest density over the entire
virtual environment. We say that a pre-fetching scheme cansupport
a data densityρ if no scheme failure occurs when the scheme runs
on a dataset of densityρ. In this case,ρ is supportableby the
scheme.

Second, we consider schemes that maintain an invariant shape
of pre-fetch region. That is to say that, for instance, the region
covered bySi overlaps exactly with the region covered bySj under
some translation and rotation.

4.1 Spatial Threshold Schemes

Following the discussion in Section 3, one way to categorize pre-
fetching schemes is based on their decisions on (a) whether to trig-
ger pre-fetching at current timet j and (b) if so, the amount of data

needed to be pre-fetched. For a pre-determined shape of the re-
gion covered bySi (which is the most recent pre-fetching before
time t j), both decisions depend mainly on the distance of the cur-
rent view frustum to the boundaryBi of Si . The reason is as fol-
lows: the nearer the distance, the less amount of time available for
pre-fetching before the view frustum moves out ofBi to result in a
scheme failure, and the larger the amount of data inSj −Si to be
fetched.

As such, one can employ a closed boundary at some constant
distance away fromBi to be a thresholdbi for a general spatial
threshold scheme: the system does not perform data fetches until
the current view frustum touches the thresholdbi . When it does
so at timet j , it defines a new reference pointO j at the viewer’s
location to calculateB j , set a new thresholdb j , and start fetching
Sj −Si . Our choice of constant distance away from the boundary
for the threshold is explained next. In the worst-case scenario, the
viewer always moves towards the point of shortest distance from
the threshold to the boundary. Thus, an arbitrary threshold is not
better than a threshold of constant distance (equals to the shortest
distance) from the boundary. Refer to Figure 2(a) for a possible
sequence of events in a general spatial threshold scheme.

Let τb be the shortest possible amount of time the view frustum
atOi takes to touch the thresholdbi , and letτ be the shortest possi-
ble amount of time from the instance the view frustum touchesbi to
the instance when it touchesBi , i.e. the duration of time allowed to
complete fetchingSj −Si . By statement (2),Si (and, similarly,Sj)
must contain sufficient data to support at leastτb + τ time starting
at Oi (and, similarly,O j as defined when the view frustum touches
some point onbi). For a givenτ, by varyingτb, we can obtain vari-
ous sizes of pre-fetch regions. But, we must haveτb≥ τ; otherwise,
in the worst case, when the scheme uses upτb time to fetch a part
but yet the whole ofSj , the view frustum can already touchb j and
thus trigger the scheme to request for a new pre-fetching while one
is still on-going. This is not allowed as all such requests are strictly
sequential. For a givenτ, we define the spatial threshold schemeS
as the general spatial threshold scheme whereτb = τ.

4.2 Temporal Threshold Schemes

For the above spatial threshold schemeS, the “busiest” situation
is when it finishes a pre-fetch while the view frustum just touches
the threshold of the pre-fetch region, thus initiating a new pre-fetch
request immediately after the previous request finishes. In this case,
S pre-fetches in everyτ interval. Similar in spirit to the “busiest”
situation ofS, a temporal threshold schemeT does the pre-fetching
at some regular interval ofτ. To initiate a pre-fetching at timet j ,
it also sets the new reference pointO j at the current location of the
viewer to calculateB j so as to fetchSj −Si while Si has sufficient
data to last tillt j + τ (andSj will contain enough data to last till
t j + 2τ). The scheme does not set any physical threshold, but is
implemented with system interrupt at regular intervalτ to trigger
pre-fetching. See Figure 2(b) for a possible sequence of events of
such a scheme.

4.3 Between Spatial and Temporal

For a givenτ, the spatial threshold schemeS converges in its worst
case (busiest situation) to the temporal threshold schemeT, but S
andT in general are different in thatS needs to always fetch the
largest region whileT does not necessarily do so. On the other
hand,T performs pre-fetching more frequently thanS. In some
sense, (diligent)T does pre-fetching more frequently but fetches
less each time, while (lazy)S only pre-fetches when needed but
fetches more at one go. In practice, due to unforeseen circum-
stances, such as when the disk under-performs,S is more prone
to causing scheme failures thanT.

Figure 2: Possible sequences of events in (a) a general spatial and (b) a temporal threshold scheme.

5 THE PRE-FETCH DURATION τ

This section derives a relationship betweenρ , the data density sup-
portable, andτ, the duration of pre-fetching time available in a gen-
eral spatial threshold scheme. This derivation is done on a virtual
environment that can be represented as a 2D map such as a terrain
model, with the viewer’s motion governed by a maximum trans-
lational speedv and a maximum angular speedω. We note that
the analysis is also applicable to the spatial threshold schemeS
by choosing the appropriateτb = τ, and to the temporal threshold
schemeT asS converges toT in its “busiest” situation.

5.1 Shapes of Pre-fetch Region

At time t j , a pre-fetching scheme calculatesSj . We would likeSj
to support a smooth walkthrough for some duration of time, say
δ t, into the future. By statement (2), it must at least contain the
region that the view frustum can possibly cover withinδ t time
starting from timet j . With the constraints on the viewer’s motion,
interesting shapes of such region for our analysis are the fan shape
(as shown in Figure 3(a), which is the most conservative region)
and the circle shape (as shown in Figure 3(b), which extend the
most conservative region of the fan shape to further cache all data
needed in all possible rotational motions).

Fan Shape. Let O be the reference point of a pre-fetch region of
the viewer. The current view frustum with field of viewα is shown
shaded as an isosceles triangle with two equal sides of lengthl and
the third side representing the far plane. For simplicity, we ignore
the small difference in the view frustum due to the truncation
effect of the near plane. The whole region as shown is a fan shape,
bounded by the arcDC

_
of radiusr = v δ t with centerO, CB , BA

_
of

radiusR= r + l with centerO, andAD. It defines the region needed
by the viewer for aδ t time interval whereδ t is the time needed
for its view frustum to reach the boundary of the pre-fetch region.
Specifically, the region is obtained by rotating the view frustum
by the maximum amountβ = ω δ t to cover the space due to the
rotational motion, and then translating this space in any direction
away fromO with the maximum amountr. We note thatOM is
parallel toDA, soβ1 = β + sin−1(r/R). The small shaded region

atA’s corner (and similar atB’s) is not reachable withinδ t time but
is included in the pre-fetch region for simplicity in our calculation.

Circle Shape. We extend the fan shape to a circle so as to cache
all data needed in all possible rotational motions for any duration
of time into the future while the position of the viewer remains un-
changed; see Figure 3(b) where the circle shape is extended (as
shown shaded) from the fan shapeABCD. (It is not possible to
cache the same way for the translational motion unless the core
memory is big enough to store the complete dataset.) As a result, it
can reduce the amount of data to be pre-fetched per unit time (at the
expense of using more core memory, as shown in Figure 5). When
δ t is large enough, the circle itself is the most conservative region
to avoid scheme failures.

Our analysis does not consider the case where∠AOB> π in the
fan shape (in Figure 3(a)). This is because such a shape is com-
plicated to analyze and it does not have the advantages of a circle
shape even though it caches more data than the fan shape. Thus, it
is unlikely to result in better support of a highρ .

Figure 3: Shapes of pre-fetch regions.

5.2 Sj −Si of Fan Shape

At time ti , the viewer is atOi = O and the system, which has a part
of Si in its core memory, does pre-fetching fromti till ti +τ to obtain
the completeSi . At time t j = ti + τb, the viewer is assumed to have
moved toO j = O′, with its view frustum touchingbi in the worse
case. At this point, the system has a fullSi (asτb ≥ τ) but only a
part ofSj in memory. Thus it needs to start pre-fetching from this
time till time ti + τb + τ to obtain the completeSj while the view
frustum is still guaranteed to be insideSi . In the following, we
want to calculate the maximum region covered bySj −Si , denoted
by Tmax, for some givenτb andτ, then derive aτb that minimizes
Tmax for each fixedτ.

Refer to Figure 4(a). The transformation fromSi to Sj can be
separated into 2 parts: the rotation by angleγ ≤ ωτb aboutO and

the translation along vector~p =
−−→
OO′ (with magnitudep = |~p| ≤

vτb). The rotation transformsB to B1, A to A1 andD to D1. Then
the translation transformsA1 to A′, B1 to B′, D1 to D′, andE1 to
E′. Let I be the intersection point ofA1D1 with the line segment
extended fromAD beyondD, and letλ be the angle∠O′Ox. The
amount of data to pre-fetch isSj −Si , as shown in five regions. To
calculate the areas of the regions, we use the simple lemma as stated
in Appendix B to get:

T1 = area bounded byA′B′
_

,B′B1,B1A1
_

andA1A′

= p|B1A1|sin(∠(~p,
−−−→
B1A1))

= 2pRsin(β1 +
1
2

α)cos(γ−λ) .

T2 = area of the parallelogram,D1D′A′A1

= p|D1A1|sin(∠(~p,
−−−→
D1A1))

= p
√

R2− r2sin(λ − (
1
2

α +β + γ)) .

T3 = area bounded byE′D′
_

,D′D1,D1E1
_ andE1E′

= p|D1E1|sin(∠(~p,
−−−→
D1E1)) = pr(1−cos(∠E1OD1))

= rp(1−cos(
1
2

α +β + γ−λ)) .

T4 = area bounded byIA1,A1A
_

andAI

=
1
2
|IA1| |A1A|sin(∠(

−→
IA1,

−−→
A1A))+

1
2

R2(γ−sinγ)

=
1
2

γR2− r2 tan(
1
2

γ) .

T5 = area bounded byDD1
_

,D1I andID

= |ID| |DO|− 1
2

γr2

= r2(tan(
1
2

γ)− 1
2

γ) .

To address the worst case, we calculate the maximum region cov-
ered bySj −Si . Notice thatT1, T2, andT3 are functions of~p, γ , and
λ , while T4 andT5 are those ofγ . So, to obtainTmax, we maximize
T1 +T2 +T3 andT4 +T5:

Figure 4: Regions (shaded) covered by Sj −Si .

T1 +T2 +T3 = pr + pRsin(
α
2

+β +sin−1(
r
R

)− γ +λ)

≤ pr + pR≤ vτb(r +R)

and T4 +T5 = 1
2γ(R2− r2)≤ 1

2ωτb(R2− r2).

So, Tmax = vτb(r + R) + 1
2ωτb(R2− r2) when γ = ωτb, p = vτb

andλ = 1
2π − (1

2α + β + sin−1(r
R)−ωτb). If τ is fixed, Tmax is

an increasing function ofτb for τb≥ τ and is thus minimized when
τb = τ. This is the case of the spatial threshold schemeS. In this
case, we haveTmax as a function ofτ :

Tmax(τ) = (4v2 +2ωvl)τ2 +(vl +
ω l2

2
)τ . (4)

5.3 Sj −Si of Circle Shape

Refer to Figure 4(b). The new region (shaded)Sj −Si swept out
as the reference point changes fromO to O′ is via a translation

along the vector~p =
−−→
OO′ (with magnitudep = |~p| ≤ vτb). Note

that rotation has no contribution toSj −Si .
Then, the region covered bySj −Si is:

T = (π−2cos−1(
p

2R
))R2 + p

√
R2− p2

4
.

It is easy to see thatT achieves its maximum value whenOO′ is
maximized; i.e.p = vτb. So,

Tmax= (π−2cos−1(
vτb

2R
))R2 +vτb

√
R2− (

vτb

2
)2.

As in the case of the fan shape,Tmax for the circle shape is an
increasing function ofτb for τb ≥ τ and thus is minimized when
τb = τ. So, we haveTmax as a function ofτ:

Tmax(τ) = (π−2cos−1(
vτ

2(2vτ + l)
))(2vτ + l)2

+vτ
√

(2vτ + l)2− (
vτ
2

)2 .

(5)

From the above discussion, we conclude that among all the general
spatial threshold schemes using fan shape or circle shape with fixed
τ , the spatial threshold schemeS supports the highest density.

D
en

si
ty

 [
K

B
/m

]

v = 70m/s
ω = 6 /s
l = 1.155 km
α = 60

Fan-Density

Circle-Density

Fan-Memory

Circle-Memory

2

τ [seconds]
1 2 3 4 5

0

0.1

0.2

0.3

0.4

0.5

300

600

900

1200

1500

M
em
o
r
y
 R

eq
u

ir
ed

 f
o
r

d
en

si
ty

 0
.2

K
B

/m

[M

B
]

2

o

o

1

1

2

2

3

3

4

4

Figure 5: Data density supportable and the amount of core memory
required by different pre-fetch duration τ.

5.4 Data Density Supportable

We first examine equation (4) to understand the highest data den-
sity supportable by a scheme with the fan shape. Suppose the disk
data transfer capabilityH is the ideal case ofH(τ) = Kτ for some
constantK. In practice, there are additional delays due to various
overheads, such as disk seek latencies, which is temporarily over-
looked. Then from equations (3) and (4), we have:

ρ ≤ Kτ
Tmax

=
2K

(8v2 +4ωvl)τ +(2vl +ω l2)
≤ K

vl + ω l2

2

.

It is interesting to notice thatvl is the area covered by the trans-
lational motion andω l2

2 by the rotational motion per unit time, and
ρ is no larger than the data transfer rateK over the sum of these
areas.

Now supposeH is a more realistic functionH(τ) = K(τ − ε)
whereε is the system overhead such as the seek time. Then,

ρ ≤ K(τ− ε)
Tmax

=
2K(τ− ε)

(8v2 +4ωvl)τ2 +(2vl +ω l2)τ
. (6)

The data density supportable is a function ofτ, shown as a curve
(labelled 1) in Figure 5 for a particular operating environment. Sim-
ple calculus shows that the highest data density supportable is at:

τmax= ε +

√
ε2 +

2vl +ω l2

8v2 +4ωvl
ε . (7)

The function increases very rapidly to support larger data density
whenτ increases towardsτmax, and then it decreases gradually for
τ moving away fromτmax. This is verified experimentally as dis-
cussed in the next section.

Similarly, we can obtain a curve (labelled 2) based on equation
(5) for the circle shape as shown in Figure 5. The figure also shows
that the circle shape can result in higher data density supportable
than the fan shape does for the same set of parameters. This is
the case when the rotational motionω plays a more significant role
compared to the translational motionv. Such situation may not be
true when the translational motionv dominates region covered by
Sj −Si as in our experiments (Section 6). Nevertheless, the circle
shape requires much more core memory (curve 4) than that for the
fan shape (curve 3) as shown in Figure 5.

5.5 Possible Extensions

The above calculation is a showcase of a methodology to analyze
pre-fetching schemes. It can be extended with appropriate modifi-
cations to cater to specialized classes of viewer’s motion such as in
3D maps or flythrough applications. In case of 3D maps, it is un-
doubtedly complex but remains possible to obtain a cubic function
of τ for Tmax and thus a relationship between data densityρ andτ.

Also, it is possible to analyze maps with a simple type of LOD
support where progressively lower LOD is used with increasing dis-
tance from the viewer. In such a case, the calculation ofSj −Si for
the highest LOD remains the same while the subsequent LODs are
done in a simple way.Tmax is the union of all data at all LODs.
For example, in a 2D map, data within 200m is to be supported at
maximum detail; data between 200m to 600m, at half detail; and
data from 600m to 1km, at quarter detail. Then with the same set of
motion parameters as in Figure 5, the analysis shows that the high-
est density supportable for the highest LOD is twice that of the case
without LOD support.

6 EXPERIMENTS ON TERRAIN

Our experiments are conducted on two different dual-processor
PC systems, an Intel Xeon 2.8GHz with 2GB (PC2100 266MHz
SDRAM) of core memory on an Iwill DP533 motherboard run-
ning Windows XP with data stored in a 36GB Maxtor Atlas 10K
IV U320 SCSI disk (10000 RPM, 4.3ms average seek time), and
an Intel Xeon 2.1GHz with 2GB (PC800 400MHz RDRAM) of
core memory on a Supermicro SUPER P4DC6 motherboard run-
ning Windows 2000 with a 80GB Seagate ST380021A IDE disk
(7200 RPM, 9.5ms average seek time). We refer to the two systems
in the experiment as IDE-2.1 and SCSI-2.8. The OS disk caching
mechanisms for each system is set to on or off to get four different
configurations in total.

Following our analysis in Section 5, our experiments are con-
ducted in the context of a 2D terrain walkthrough. We generated
terrain datasets of different data densities of up to a total of 20 GB
on disk, stored as a grid of cells where each is a 64m×64m square
region. Pre-fetching is done for data in cells overlapping the region
covered bySj −Si . We use temporal pre-fetching scheme with a
fan shape; it is implemented as a separate thread from the rendering
thread. A fixed pool of core memory is used for the management
of terrain data. To realize the worst case scenario, we program the
viewer’s motion to follow a path that causes the maximum amount
of data to be transferred on each pre-fetch request. There are in total
100 pre-fetches in our chosen path. The circle shape is not experi-
mented as it would require much larger amount of core memory to
create scheme failures.

The role of τ. For each configuration of our systems, we col-
lected statistics on its number of scheme failures for terrains of dif-
ferent data densities. Two sets (out of four) of data, one with disk
caching mechanism enabled and one without, are shown in Fig-
ure 6; the two other sets of data are not shown here, but reflect sim-
ilar trends. In each chart, we show four representative data density
curves out of the many different ones that we have collected. These
statistics testify the theoretical prediction in the previous section
that for each data density, there is a range ofτ that achieves close
to zero scheme failures. Another finding is that the higher the data
density, the smaller the range of such goodτ.

Highest Data Densityρ . For eachτ, we ran experiments for
a range of data densities to determine the highestρ for which no
scheme failure occurs (with allowance of occasional 1 scheme fail-
ure due to noise). Such values are used to plot Figure 7. The shapes
of these curves conform to the theoretical one as shown in Figure 5.

Best range ofτ. In addition, Figure 7 also shows that the good
τ which support the highest density for IDE-2.1 (OS disk caching

Figure 6: Scheme failures against τ with OS disk caching en-
abled(top)/disabled(bottom) for SCSI-2.8/IDE-2.1

disabled) is in the range of 0.5 to 0.8 second. For such a case where
OS disk caching is disabled, we can derive a reasonable bound of
ε between 0.22 to 0.31 through a linear regression on the hard disk
performance statistics, and apply it to equation (7) to obtain the
theoretical goodτ of between 0.6 to 0.9 second. These two ranges
of goodτ in the case of SCSI-2.8 (withε between 0.31 to 0.54 again
obtained through linear regression) are from 0.6 to 0.9 second in the
experiments and from 0.8 to 1.2 second in equation (7). When OS
disk caching is enabled, we do not have a good bound onε due to
the large variance in disk performance, and thus cannot compare
those values ofτ in experiments to those in theory.

System Configuration.Referring to Figure 7, we note that OS
disk caching helps to increase the highest density supportable for
eachτ. When the disk caching is disabled, the highest densities
supportable on each configuration conform to those predicted by
equation (6). In particular, for IDE-2.1, equation (6) gives between
65 to 70 KB/cell, while the experimental result is 60 KB/cell; for
SCSI-2.8, between 70 to 80 KB/cell while the experimental result
62.5 KB/cell. Some discrepancy between the result of equation (6)
and the experiments (besides unavoidable noise in the experiments)
can be attributed to the fact that experimental data is grid based
while the analysis assumes an infinitely fine grid.

7 CONCLUDING REMARKS

Overall, this paper presents both analytical and experimental stud-
ies on pre-fetching schemes. In particular, it formulates the pre-
fetch problem, discusses design parameters of spatial and temporal
pre-fetching schemes and relates data densities supportable by these
schemes to the duration of time allocated to do pre-fetching. Our
work serves to supplement the meager pool of knowledge in un-
derstanding pre-fetching quantitatively. The analysis also serves to
showcase a methodology for understanding pre-fetching schemes.
One implication of our work is that for each data set there is a need

τ [second]

0.0 0.4 0.8 1.2 1.6 2.0 2.4 2.8 3.2 3.6 4.0

D
e

n
si

ty
 [

K
B

/c
e

ll
]

0

10

20

30

40

50

60

70

80

90 IDE-2.1 disk caching disable

SCSI-2.8 disk caching disable

IDE-2.1 disk caching enable

SCSI-2.8 disk caching enable

Figure 7: Highest density supportable for each τ.

to find the corresponding pre-fetch interval to achieve good perfor-
mance.

With the insights provided by the theoretical analysis, we con-
clude by presenting some practical considerations to augment our
pre-fetch mechanisms. For example, while our analysis assumes
constant data density, a system can incorporate “lazy” pre-fetching
which defers fetching requests in low density regions. This can
potentially improve the performance of the system by delaying
data transfers until they are absolutely needed. Alternatively, when
lower densities are encountered, more data can be loaded in ad-
vance in anticipation of later use. Better performance can also be
achieved by incorporating some form of path prediction to cull re-
gions that are unlikely to be reached by the user. Other useful opti-
mizations such as proximity-based prioritized fetching can also be
incorporated to build a practical pre-fetching system. All these will
potentially improve the performance of pre-fetching systems.

ACKNOWLEDGEMENTS

This research is supported by the National University of Singapore
under grant R-252-000-181-112.

REFERENCES

[1] Daniel Aliaga, Jon Cohen, Andrew Wilson, Eric Baker, Han-
song Zhang, Carl Erikson, Kenny Hoff, Tom Hudson, Wolfgang
Stuerzlinger, Rui Bastos, Mary Whitton, Fred Brooks, and Dinesh
Manocha. MMR : An interactive massive model rendering system
using geometric and image-based acceleration. InProceedings of the
1999 Symposium on Interactive 3D graphics, pages 199–206. ACM
Press, 1999.

[2] Xiaohong Bao and Renato Pajarola. LOD-based clustering techniques
for optimizing large-scale terrain storage and visualization. InPro-
ceedings of the SPIE Conference on Visualization and Data Analysis,
pages 225–235, 2003.

[3] William V. Baxter, III, Avneesh Sud, Naga K. Govindaraju, and Di-
nesh Manocha. Gigawalk: Interactive walkthrough of complex en-
vironments. InProceedings of the 13th Eurographics Workshop on
Rendering, pages 203–214. Eurographics Association, 2002.

[4] Jimmy H. P. Chim, Mark Green, Rynson W. H. Lau, Hong Va Leong,
and Antonio Si. On caching and prefetching of virtual objects in dis-
tributed virtual environments. InProceedings of the 6th ACM Inter-
national Conference on Multimedia, pages 171–180, 1998.

[5] W. T. Correa, J. T. Klosowski, and C. T. Silva. Visibility-based
prefetching for interactive out-of-core rendering. InIEEE Symposium
on Parallel and Large-Data Visualization and Graphics, pages 1–8,
2003.

[6] Michael Cox and David Ellsworth. Application-controlled demand
paging for out-of-core visualization. InProceedings of the 8th Con-
ference on Visualization ’97, pages 235–244, 1997.

[7] Douglass Davis, William Ribarsky, Nickolas Faust, and T. Y. Jiang.
Intent, perception, and out-of-core visualization applied to terrain. In
Proceedings of the Conference on Visualization ’98, pages 455–458,
1998.

[8] John S. Falby, Michael J. Zyda, David R. Pratt, and Randy L. Mackey.
NPSNET: Hierarchical data structures for real-time three-dimensional
visual simulation. InComputer & Graphics, pages 65–69, 1993.

[9] Thomas A. Funkhouser, Carlo H. Sequin, and Seth J. Teller. Manage-
ment of large amounts of data in interactive building walkthroughs.
In Proceedings of the 1992 Symposium on Interactive 3D graphics,
pages 11–20, 1992.

[10] Benjamin Gregorski, Mark Duchaineau, Peter Lindstrom, Valerio Pas-
cucci, and Kenneth I. Joy. Interactive view-dependent rendering of
large isosurfaces. InProceedings of the Conference on Visualization
’02, pages 475–484, 2002.

[11] Peter Lindstrom and Valerio Pascucci. Terrain simplification simpli-
fied: A general framework for view-depandent out-of-core visualiza-
tion. In IEEE Transactions on Visualization and Computer Graphics,
pages 239–254, 2002.

[12] Frank Losasso and Hugues Hoppe. Geometry clipmaps: terrain ren-
dering using nested regular grids.ACM Transactions on Graphics,
23(3):769–776, 2004.

[13] David Luebke, Martin Reddy, Jonathan Cohen, Amitabh Varshney,
Benjamin Watson, and Robert Huebner.Level of Detail for 3D Graph-
ics. Elsevier Science, 2003.

[14] Renato Pajarola. Large scale terrain visualization using the restricted
quadtree triangulation. InProceedings of the Conference on Visual-
ization ’98, pages 19–26. IEEE Computer Society Press, 1998.

[15] Valerio Pascucci and Randall J. Frank. Global static indexing for real-
time exploration of very large regular grids. InProceedings of the
2001 ACM/IEEE Conference on Supercomputing, 2001.

[16] Gokul Varadhan and Dinesh Manocha. Out-of-core rendering of mas-
sive geometric environments. InProceedings of the Conference on
Visualization ’02, pages 69–76, 2002.

[17] Christopher Zach. Integration of geomorphing into level of detail
management for realtime rendering. InProceedings of the 18th Spring
Conference on Computer Graphics, pages 115–122, 2002.

APPENDIX A

We provide the proof of the equivalence of statements (1) and (2).
Assume statement (1) holds but statement (2) does not for a given

ζ and t. Then there is someti(ζ) ≤ t ≤ t j (ζ) such thatFt(ζ) 6⊆
Si(ζ). We first argue thatt is not from t i(ζ) till t j . From t i(ζ)
till t j , the core memory contains onlySi(ζ), and fromt j till t j ,
the core memory contains some part (if not all) ofSi(ζ). And,
Ft(ζ) is in the core memory as given by statement (1), thusFt(ζ)⊆
Si(ζ). As such, the mentionedt is such thatti(ζ)≤ t ≤ t i(ζ). Now
we consider a walkthrough or flythroughζ ′ such thatζ andζ ′ are
identical until t but then the viewer remains stationary until time
t i(ζ ′). Sinceζ ′ andζ are identical untilt, Si(ζ ′) = Si(ζ). Thus
Ft i

(ζ ′) = Ft(ζ ′) = Ft(ζ) 6⊆ Si(ζ) = Si(ζ ′). This is a contradiction
as at timet i , we have as we argued in the above thatFt i

(ζ ′)⊆Si(ζ ′).
Thus if statement (1) holds then statement (2) holds.

Conversely, assume that statement (2) holds. Then for allt, there
arei and j such that:ti(ζ)≤ t ≤ t j (ζ). There are three cases of time
interval to consider. First, ift i(ζ) ≤ t ≤ t j (ζ), thenFt(ζ) ⊆ Si(ζ)
as given andSi(ζ) is in the core memory, thusFt(ζ) is in the core
memory. Second, ift j (ζ) ≤ t ≤ t j (ζ), then as this interval is a
sub-interval of bothti(ζ) till t j (ζ) and t j (ζ) till tk(ζ) where tk
is the time where the next successive pre-fetching afterSj is per-
formed, we haveFt(ζ) is a subset of bothSi(ζ) andSj (ζ). Thus,
Ft(ζ) ⊆ Si(ζ)∩Sj (ζ) and is in the core memory (even though the
parts ofSi(ζ) that are not inSj (ζ) have already been moved out
of the memory). Third, ifti(ζ)≤ t ≤ t i(ζ), this is just the same as

the previous case by shifting the discussion to one preceding pre-
fetching. This finishes the proof of the claim.

APPENDIX B

Lemma. Suppose we have an arcAB
_

, and its displacement by

a vector~p =
−−→
OO′ results in the arcA′B′

_
. If these two arcs do

not intersect, then the area bounded by them andAA′, BB′ is

|~p|× |−→AB|×sin(∠(~p,
−→
AB)).

Figure 8: Illustration of lemma.

