

†e-mails: {ngtuenyo, tants}@comp.nus.edu.sg
‡e-mails: {zhangxy, kimy}@ewha.ac.kr

The 2005 Computer Graphics International, 22-24 June,
Stony Brook, New York, USA.

Generating an ω -Tile Set for Texture Synthesis

Tuen-Young Ng†, Conghua Wen, Tiow-Seng Tan† Xinyu Zhang‡, Young J. Kim‡

School of Computing
National University of Singapore, Singapore

Dept of Computer Science and Engineering
Ewha Womans University, Korea

Figure 1: Four small patches are extracted from an input texture to form 16 different texturing blocks; an example of such a block
is shown on the left. A tile is cut from the center of each block to obtain in total 16 ω-tiles as shown on the right. The color at each
corner of an ω-tile indicates the color of the patch that contributes to the corner. The interior (shown within each curve) of each
ω-tile is obtained by sampling another patch from the input texture.

Abstract

This paper presents an effective approach to generate a set of
small textures from an input texture that can be tiled together to
synthesize large textures. Such a small set can be useful in
texturing any large area realistically and efficiently while
consuming only a small amount of texture memory. Our approach
is advantageous in its ability to generate a smaller number of tiles
that can embed much more texture patterns and with less
conspicuous seams within each tile than earlier approaches. As a
result, our approach can generate large textures that look as if
each were from a continuous part of the input texture while
avoiding highly repetitive patterns. In general, our approach
performs very well and shows a particular strength, compared to
earlier approaches, for input textures of elaborate or relatively
large features, or with distinctive colors.

CR Categories: I.3.3 [Computer Graphics]: Picture/Image
Generation; I.3.6: [Computer Graphics]: Methodology and
Techniques; I.4.3 [Image Processing]: Smoothing

Keywords: non-repetitive tiling, Wang tile, image generation

1. INTRODUCTION
From a given input texture, texture synthesis is to generate

large textures, i.e. synthesized textures that maintain the
underlying global distribution pattern of the input texture. In some
applications, a large synthesized texture is pre-computed from a
small input texture to texture map a large area; see, for example,
the pixel- [4, 6, 9, 21] and patch-based [1, 5, 13, 15] synthesis
approaches. In other, a set of small textures is pre-computed from
an input texture for use to tile into a large texture (during real-time
rendering). This avoids the need for a large texture memory when
texturing a large area. The main focus of this paper lies in the
latter usage of texture synthesis.

Our work is motivated by the approach provided in [3] that
generates a set of square texture tiles, called Wang tiles, for tiling
to form large textures. We propose a novel and competitive
approach to create a new set of texture tiles, called ω-tiles. The
approach first extracts four small patches from an input texture S
to arrange them into blocks to derive ω-tiles; see Figure 1.

Our approach addresses the following three important issues
arising in generating a set of tiles for texture synthesis:

• The content of each tile should look as if it were a continuous
part of S.

• Tiles should be seamless across the boundaries in their
synthesized textures.

• A large synthesized texture from these tiles should maintain
the underlying global distribution pattern of S.

Our approach, first of all, addresses the possible seams
occurring inside a tile by providing a large search space so as to
control the seams that can result from combining patches in S.
Furthermore, seams within each tile form a closed curve (rather
than a cross as in previous approaches), and they can be softened
using a Poisson approach [16].

 Secondly, the seams between two ω-tiles adjacent to each
other are avoided by matching the sides of two patches from S.
Note that the junctions where four patches from S meet must be
treated with care, as they are particularly conspicuous to human
eyes [8, 19]. Our approach allows a high degree of control of the
content at junctions as two of the four textures at each junction are
obtained by a careful searching.

Finally, our approach achieves a good underlying global
distribution pattern of S in the synthesized texture as it can embed
diverse texture patterns in ω-tiles. The patterns in ω-tiles are not
restricted to the four patches initially extracted from S.

The rest of the paper is organized as follows. Section 2
highlights previous work on texture synthesis, in particular the
approach of Wang tile [3]. Section 3 describes the creation of ω-
tile in our approach. Section 4 presents our approach to generate a
set of ω-tiles and synthesize large textures with less repetitive
patterns. Section 5 presents our experimental results, and Section
6 concludes the paper with limitations of our approach and
suggestions on future work.

2. PREVIOUS WORK
There are a few methods to synthesize a large texture. First

of all, the procedural texturing [7, 17, 22] can generate details at
arbitrary resolutions with no periodicity and very low memory.
However, there are certain material aspects of textures that cannot
be generated using these techniques.

Secondly, pattern-based texturing uses a set of different,
small texture patches to define a pattern. These small patches are
used to tile a large area while avoiding the periodicity and
repetitiveness of a naïve tiling. Examples of this method include
aperiodic tiling [20], triangular patterns [14], virtual atlases [18],
sparse convolution [12], chaos mosaic [23] and Wang tile [3].
These approaches generally need more texture memory than the
procedural texturing, but require a lower computational cost
during rendering.

Lastly, the pattern-based procedural texturing [11] combines
the aforementioned two methods. It determines the texture value
at any surface location by combining the provided patterns in an
aperiodic manner according to user-defined controls such as a
probability distribution and animation of textures. This method
provides a sophisticated control to texture a large area with the
texture indirection ability available in recent graphics processing
units. In general, the method requires more computations during
rendering than the pattern-based texturing.

Our work is related to that of Cohen et al. [3] on Wang tiles.
A set of Wang tiles is created where each tile is obtained from a
different arrangement of four (or more), not necessarily distinct,
patches overlapping in small regions, as shown in Figure 2(a). The
overlapping regions are used to compute cutting paths to define
the four partitions contributed by each patch. Cutting paths can
result in prominent seams between patches and are thus computed
with different criteria such as minimizing the difference in pixel
values across the patches.

We note that the generation of Wang tiles as implemented by
Burke [2] adapts an alternative overlapping arrangement to
combine four sample patches; see Figure 2(b). The sample patches
used are of the same size as the output Wang tiles. In general, this
alternative is easier to implement and provides a larger
overlapping area to search for better cutting paths.

3. CONSTRUCTION OF A TILE
Our approach starts with randomly obtaining a set F of four

small square patches from the input texture S. With these, it forms
each time a square block to construct eventually an ω-tile. Each
block is a non-overlapping arrangement of four (not necessarily
distinct) patches of F. Figure 3 shows an example of four such
blocks A, B, C and D (obtained from different arrangements of the
four patches in F) and the intermediate tiles Ai, Bi, Ci, and Di cut
from the center of A, B, C and D. The seams in each intermediate

tile are removed by replacing the interior of the tile with other
pattern from S to generate an ω-tile.

Sections 3.1 and 3.2 discuss the removal of the vertical and
horizontal seams in an intermediate tile with cutting curve, and
Section 3.3 the softening of seams around the cutting curve with
Poisson smoothing [16].

3.1 Cutting Path and Cutting Curve
We note that the middle of each Wang tile is a junction

where four patches meet; see Figure 2. Such a kind of a junction,
due to cutting paths, also occurs at the corners of each Wang tile
in tiling a large area. These are the seams that can be prominent to
the naked eyes; the contents around them should be controlled if
possible. For junctions at the corners of four Wang tiles, there is
no known, good way to control the cutting paths to minimize the
prominence of junctions. Cohen et al. call this the corner
problem, and suggest, for example, expanding from a set of 8
Wang tiles to at least 64 Wang tiles with matching corners. This,
however, demands more texture memory during rendering.

One of our aims is to reduce the prominence of junctions.
Our approach searches a good pattern C to replace the interior
portion inclusive of the vertical and horizontal seams in each
intermediate tile. Such a pattern is enclosed by a closed curve,
termed a cutting curve, passing through the middle point of each
side of the intermediate tile. As a result, when these tiles are laid
on a large area with matching sides, the junctions where four
textures meet appear in the middle point of each side; see the
center picture of Figure 3.

In Wang tiles, junctions are resulted from a fixed set of
patches that generates the Wang tiles, whereas in ω-tiles, two out
of four patches meeting at a junction are obtained by searching
good patterns in S. Thus, our approach has good control of the
content at each junction and thus good chances to avoid the
prominence of junctions.

(a) (b)

Figure 2: (a) Four square patches (shown in different colors) are
combined to form a diamond block to extract a Wang tile at the center.
(b) An alternative overlapping arrangement used by Burke [2] to
combine four square patches to extract a Wang tile (of the same size as
the square patches).

Figure 3: Four intermediate tiles Ai , Bi , Ci and Di cut from blocks A, B, C and D, respectively, are used to generate four
ω-tiles Aω , Bω , Cω and Dω , which, in turn, tile the 2-by-2 area in the middle.

3.2 Computation of Cutting Curve
From S, we can pick a patch O (Figure 4(b)) of the same size

as the intermediate tile I (Figure 4(a)) to be a candidate with a
part of its interior to replace the corresponding part of the interior
of I. Each candidate O is first superimposed on I to compute a
cutting curve (Figure 4(c)), passing through the middle points of
the four sides of I. The curve is also restricted to lie inside a
(pink) circle with the same center as I and having the diameter
equal to the width of I. The area of I within the cutting curve is
then replaced by the corresponding content C in O (Figure 4(d)).
The best C, from all possible candidates O available from S, is
one where the seams along the cutting curve are least prominent.

Figure 4: (a) Intermediate tile I with vertical and horizontal
seams across patches. (b) A candidate O extracted from S.
(c) The intermediate tile of (a) with its interior removed
along a cutting curve. (d) The removed part is replaced by
the corresponding part C of O to obtain an ω-tile as shown.

To derive a C, we adopt the method of Kwatra et al. [10]. In

essence, their work formulates the problem of calculating a
cutting path for a given pair of patches I and O as a graph
problem. The method regards pixels in the overlapping area as
nodes and the link between any two neighboring pixels as an edge
in the graph. Moreover, each edge is assigned a weight as a flow
capacity which is the sum of the transition errors of the two nodes
divided by the sum of their gradients in the patches:

() () () ()
(,)

() () () ()I I O O

I s O s I t O t
Weight s t

G s G t G s G t

− + −
=

+ + +

where s, t are neighboring pixels (sharing a side) in the
overlapping area; I(s) and I(t) are the values of pixels s and t,
respectively, in patch I; O(s) and O(t) are the values of pixels s
and t, respectively, in patch O; ()IG s denotes the gradient of
pixel s in the patch I along the gradient direction from s to t, and

(),IG t (),OG s ()OG t are similarly defined. Then, the cutting path
is calculated as a min-cut which cuts the graph edges with a
minimum sum of flow capacities from the source pixels of I to
the sink pixels of O.

We adapt the above technique to find a cutting curve shown
as in Figure 5. We have (shaded) pixels of I outside the circle
defined as sources, two vertical columns and two horizontal rows
of (shaded) pixels at the center of O defined as sinks, and weights

of edges incident to white pixels defined as in the above Weight
function.

In practice, one can employ heuristics to avoid computing the
above cutting curve for all possible choices of O to locate the best
C. We can choose to examine just a single or a few O’s to
compute a good enough C. One possible heuristic is to pick O
with the smallest sum of weights for the pixels around the (pink)
circle (in Figures 4(a) and 4(b)). This is an attempt to select O that
is similar to I and thus with a good chance of obtaining a cutting
curve with less prominent seams. We use this heuristic in our
experiments reported in Section 5. An alternative choice is to pick
O with the smallest sum of weights for the pixels near the middle
of the four sides. This is to emphasize the importance of having
matching contents at junctions.

With the above process, each ω-tile obtained has generally
less than a half of its area occupied by patches in F and the
remaining occupied by some other patch in S. The interesting
result is that for a set of 16 ω-tiles, for example, used in
synthesizing a large texture, there are twenty different patches
(randomly chosen) from S appearing in the large texture, and less
than half of the area is occupied by the patches in F. Due to the
many sample patches, all or large aspects of the source texture S
generally do appear in the synthesized texture. This is observed in
our experiments as long as each of the twenty sample patches has
size at least twice the sizes of prominent patterns/objects in S. In
comparison, large texture synthesized by Wang tiles is fully filled
by, for example, the four patches initially generating the set of
Wang tiles. Thus, a set of ω-tiles is a more attractive option than a
set of Wang tiles in avoiding repetitive patterns in synthesizing
large textures, and can better preserve the underlying global
distribution pattern of S.

3.3 Poisson Smoothing
For some input textures, it remains challenging to obtain

good cutting curves (as well as cutting paths) to avoid prominent
seams in resulting ω-tiles. We observe one such class of input
textures as having elaborate or large features or with distinctive
colors. For these input textures (such as the two shown in Figure
10), we have found that the Poisson approach to guided
interpolation in [16] is effective in removing prominent seams in
ω-tiles.

Using the approach and the terminology defined in [16], we
let C (as defined in Section 3.1) be the source image, and I (as
defined in Section 3.2) be the destination image with those pixels
of I adjacent to the cutting curve as the boundary ∂C. We want to
insert a modified version C’ of C into I under the gradient field of
C. The insertion is such that it minimizes the sum of difference in
gradient between C’ and C at each pixel, while obeying the
constraint that the content of I and C’ along ∂C is the same.

Figure 5: A schematic diagram of the graph problem
to compute a cutting curve within the circle.

(a) (b)

(d) (c)

As shown in Figure 6(a), the application of Poisson
smoothing to an ω-tile is very natural with the source and
destination being C and I, respectively. The result of the Poisson
approach is that the seams along the boundary ∂C are softened
with color interpolation to converge near the center of the tile.

On the other hand, we do not know of a good way to smooth
Wang tiles due to the different topology of (“cross”) seams in
Wang tiles. Though we have experimented with different ways to
define the source and destination images for a Wang tile, we do
not find any particular satisfactory one. For example, the choice of
source and destination used as in Figure 6(b) can soften the seams
between them, but, at the expense of convergence of colors on the
left and right edges of a Wang tile. The consequence is that
vertical seams can appear in a tiling (such as in Figure 10(a)(iii)
and Figure 10(b)(iii)) due to matching Wang tiles no longer
having matching colors for all pixels across a boundary.

(a) C

source

C’
I ∂C

destination

(b)

D

source

J

D’ ∂D

destination

J

Figure 6: (a) Our use of Poisson approach to smooth an ω-tile. (b) One
attempt to apply Poisson approach to smooth a Wang-tile. The bowtie-
shaped source, D, is cut from the Wang tile. The destination, J , is
obtained by combining the lower half of the northern sample (shown in
red) and upper half of the southern sample (shown in blue).

4. FORMATION OF A SET OF TILES
We use a set of patches F ={R, G, B, Y} obtained from S to

form blocks and then extract intermediate tiles to finally derive a
set of ω-tiles to tile a large area. The tiling using ω-tiles is carried
out from left to right and top to bottom.

4.1 Sets of 4 and 8 ω -tiles
Figure 7 shows examples of a set of 4 and 8 ω-tiles that can

tile any large area. However, for the former, once the top-leftmost
ω-tile is fixed, the rest of the ω-tiles in the tiling are decided from
left to right, and top to bottom; for the latter, there is an additional
choice of an ω-tile at the leftmost column. Thus, both may
generate undesirable repetitive patterns for a large synthesized
texture. One way to overcome this is to retain in the set two good
ω-tiles from the computation with each intermediate tile in
Section 3.2. This method effectively doubles the number of ω-
tiles, but provides at least two choices of tiles at each tiling step.

4.2 Sets of 16 ω -tiles
There are many possible sets of ω-tiles that can tile any large

area without seams across the tiles’ boundaries. Still, we would
like to avoid repetitive patterns in synthesized textures. Our
experiments on sets of 16 ω-tiles such as those in Figure 8 have
been encouraging. Using either set in Figure 8(a) or 8(b), we can
always make at least two choices of ω-tiles at the top row and the
leftmost column. Again, we can have a variant to this technique
by generating two ω-tiles from an intermediate tile and thereby
obtaining a total of 32 ω-tiles. This larger set provides at least two
choices of ω-tiles at each tiling step.

B Y

R G

G B

Y R

R G

B Y

Y R

G B

B Y

R G

G B

Y R

R G

B Y

Y R

G B

Y R

R G

B Y

Y R

G B

B Y

R G

G B

(a) A set of ω-tiles of size 4

(b) A set of ω-tiles of size 8

Figure 7: Sets of ω-tiles of size 4 and size 8.

B Y

R G

B R

Y G

B Y

Y R

B R

R B

Y R

G B

Y G

R B

Y R

R G

Y G

G Y

R G

B Y

R B

G Y

R G

G B

R B

B R

G B

Y R

G Y

B R

G B

B Y

G Y

Y G

 (a)

B R

Y G

B Y

R G

B R

R B

B Y

Y B

G R

Y B

G Y

R B

G R

R G

G Y

Y G

R B

B Y

R B

G R

R G

G Y

R G

B R

Y G

B Y

Y B

G Y

Y G

G R

Y B

B R

 (b)

Figure 8: Sets of ω-tiles of size 16.

We note here that the sets in Figure 8 possess four important
properties; we refer the readers to the appendix for a full
discussion. With these (particularly Property 1), no two tiles
sharing a side in a synthesized texture are the same ω-tile, i.e. in a
large synthesized texture, a tile is never the same as any of its four
neighboring tiles (left, right, top and bottom). This can avoid
significantly repetitive patterns in a synthesized texture as the
same ω-tile does not appear very close to each other. We note,
however, that the same ω-tile can still appear sharing a corner, i.e.
immediately diagonal to each other.

5. EXPERIMENTAL RESULTS
We implement our ω-tile generation algorithm using C#

under MS Windows on a Pentium P4 1.6GHz CPU with 256 MB
main memory. For purposes of comparison, we also implemented
the Wang tile generation algorithm similar to that of Burke [2].
Besides the dynamic programming approach of [5] (as originally
used in [3]), we incorporated the alternative option of using
graph-cut to search for cutting paths in generating Wang tiles.
Also, we implemented the Poisson approach to guided
interpolation of [16] as an option to smooth ω-tiles and Wang
tiles.

To test the above algorithms, we used input textures of size
128×128 from http://astronomy.swin.edu.au/~pbourke/texture/,
http://vismod.media.mit.edu/vismod/imagery/VisionTexture/viste
x.html, and http://www.ux.his.no/~tranden/brodatz.html. The
algorithms output tiles of size 64×64 to tile large textures.

The comprehensive set of our results and comparisons can be
found at http://www.comp.nus.edu.sg/~tants/w-tile/. It contains a
few sets of results for Wang tiles generated by dynamic
programming, Wang tiles generated by graph-cut, and ω-tiles
generated by graph-cut, with and without smoothing of tiles, and
for different sizes of synthesized textures.

Some samples of our texture synthesis results produced by
ω-tiles are shown in Figure 9. On the whole, we observe that ω-
tiles generally outperform Wang tiles when synthesizing large
textures. Synthesized textures by ω-tiles have less prominent
junctions as explained at the end of Section 3.1, and can better
preserve the global distribution of the underlying pattern of the
input textures as explained at the end of Section 3.2 and Section
4.2.

On the other hand, for input textures with significantly
straight features (such as a regular brick wall), the synthesized
textures by ω-tiles are inferior to that by Wang tiles as the
“straightness” quality of the input texture is better preserved in
Wang tiles than in ω-tiles. In general, for a highly structured input
texture, our approach may not perform well as it tends to
“destroy” the structure with more patterns embedded in each ω-
tile.

Figure 10 (see also the color plate) shows two extreme
examples when comparing large textures generated by Wang tiles
and ω-tiles. These examples can be categorized as having
elaborate large features and distinctive colors. In these cases, the
seams in the synthesized textures are rather prominent (Figure
10(a)(i) and (ii), and Figure 10(b)(i) and (ii)). But Poisson
smoothing on ω-tiles can produce very convincing results (Figure
10(a)(iv) and Figure 10(b)(iv)). As mentioned, we do not know of
a good way to smooth Wang tiles. Our simplistic smoothing
approach of Figure 6(b) on Wang tiles produces no better results
(Figure 10(a)(iii) and Figure 10(b)(iii)). Worst still, it amplifies
the vertical seams some what because smoothing is applied
towards the left and right sides of each Wang tile.

6. CONCLUDING REMARKS
This paper presents a novel technique to generate a small set

of ω-tiles to synthesize a large texture. It proposes the use of
cutting curve to be found in a large area to generate a seamless
tile, and discusses a few schemes to generate a small set of 4, 8,
16 or 32 ω-tiles that can tile any large area without seams. Our
approach allows for the embedding of many texture patterns of
input texture into ω-tiles to synthesize textures. This can better
preserve the underlying global pattern of the input texture.

Our current approach, adopted from [10], only uses the pixel
values in finding a good cutting curve. However, it does not take
into account of the structure of patterns in textures. As such, the
algorithm may not produce satisfactory results as a cutting curve
can cut through patterns and cause unnatural “half” or overlapping
patterns. It may be interesting to investigate the possibility of
incorporating pattern detection in the search of good cutting
curves.

For the aim to maintain the underlying global pattern
distribution of the input texture, our ω-tiles only attempt to avoid
periodic patterns. There are possibly other factors such as scaling
of features that one could further explore.

ACKNOWLEDGEMENTS
The authors would like to express their thanks to Tony Tan

for providing programming assistance, and anonymous reviewers
for their constructive comments. This project is supported under
grant R-252-000-124-112 of the National University of Singapore,
and in part under grant R08-2004-000-10406-0 of MOST, the
Ewha SMBA consortium and the ITRC program.

REFERENCES
[1] M. Ashikhmin. Synthesizing natural texture. Proceedings of

Symposium on Interactive 3D Graphics, pp. 217-226, 2001.

[2] R. Burke. http://www.heroicsalmonleap.net/mle/wang/,
August 2003.

[3] M. F. Cohen, J. Shade, S. Hiller and O. Deussen. Wang tiles
for image and texture generation. Proceedings of SIGGRAPH,
pp. 287-302, 2003.

[4] J. S. de Bonet. Multiresolution sampling procedure for
analysis and synthesis of texture image. Proceedings of
SIGGRAPH, pp. 361-368, 1997.

[5] A. A. Efros and W. T. Freeman. Image quilting for texture
synthesis and transfer. Proceedings of SIGGRAPH, pp. 341-
346, 2001.

[6] A. A. Efros and T. K. Leung. Texture synthesis by
nonparametric sampling. Proceedings of International
Conference on Computer Vision, Vol. 2, pp. 1033-1038, 1999.

[7] D. Ebert, K. Musgrave, D. Peachey, K. Perlin and Worley.
Texture and modeling: a procedural approach. Academic
Press, ISBN 0-12-228760-6, 1994.

[8] M. Fahle. Human pattern recognition: parallel processing and
perceptual learning. Perception Vol. 23, pp. 411-427, 1994.

[9] D. J. Heeger and J. R. Bergen. Pyramid-based texture
analysis/synthesis. Proceedings of SIGGRAPH, pp. 229-238,
1995.

[10] V. Kwatra, A. Schodl, I. Essa, G. Turk and A. Bobick.
Graphcut texture: image and video synthesis using graph cuts.
Proceedings of SIGGRAPH, pp. 277-286, 2003.

[11] S. Lefebvre and F. Neyret. Pattern based procedural texture.
Proceedings of Symposium on Interactive 3D Graphics, pp.
203-212, 2003.

[12] J. P. Lewis. Algorithms for solid noise synthesis. Proceedings
of SIGGRAPH, pp. 263-270, 1989.

[13] L. Liang, C. Liu, Y.Q. Xu, B. Guo and H.Y. Shum. Real-time
texture synthesis by patch-based sampling. ACM Transactions
on Graphics, Vol. 20, No. 3, pp. 127-150, 2001.

[14] F. Neyret and M. Cani. Pattern-based texturing revisited.
Proceedings of SIGGRAPH, pp. 235-242, 1999.

[15] A. Neubeck, A. Zalesny and L. van Gool. Cut-primed smart
copying. Proceedings of Texture Workshop, pp. 71-76, 2003.

[16] P. Pérez, M. Gangnet and Blake. Poisson Image Editing.
Proceedings of SIGGRAPH, pp. 313-318, 2003.

[17] K. Perlin. An image synthesizer. Proceedings of SIGGRAPH,
pp. 287-296, 1985.

[18] C. Soler, M. P. Cani and A. Angelidis. Hierarchical pattern
mapping. Proceedings of SIGGRAPH, pp. 673-680, 2002.

[19] I. A. Shevelev, V. M. Kamenkovich and G. A. Sharaev. The
role of lines and corners of geometric figures in recognition
performance. Acta Neurobiol Exp, Vol. 63, No. 4, pp. 361-
368, 2003.

[20] J. Stam. Aperiodic texture mapping. Tech. Rep. R046,
European Research Consortium for Informatics and
Mathematics (ERCIM), 1997.

[21] L. Wei and M. Levoy. Fast texture synthesis using tree-
structured vector quantization. Proceedings of SIGGRAPH,
pp. 479-488, 2000.

[22] S. P. Worley. A cellar texturing basis function. Proceedings
of SIGGRAPH, pp. 291-294, 1996.

[23] Y. Y. Xu, B. Guo, and H. Shum. Chaos mosaic: fast and
memory efficient texture synthesis. Technical Report, MSR-
TR-2000-32, Microsoft Research, 2000.

APPENDIX

This appendix shows that a set W of 16 ω-tiles possess four
properties defined below can tile any large area without seams
across tiles’ boundaries. This serves as a showcase for designing
other sets of ω-tiles.

To discuss the properties, we first need some notations. An
ω-tile has four corners contributed by patches R, G, B, and Y in F.
We use a tuple , , ,− − − − with four elements to represent the four
corners where each element in the tuple, from left to right,
represents, respectively, the top-left, bottom-left, top-right, and
the bottom-right corners in an ω-tile. We use “–” in the tuple to
mean “don’t care”. For example, , , ,R G − − means any ω-tile
with the left column occupied by R on top of G, while we have no
information about its right column.

Let a b↓ , where ,a b ∈ F, denote that there is no tuple of the
form , , ,a b − − in W. For example, R Y↓ means there does not
exist a tuple of the form , , ,R Y − − in W. For Figure 8(a), we
have ,R Y↓ ,G R↓ ,B G↓ and ;Y B↓ for Figure 8(b), we
have ,R Y↓ ,Y R↓ ,B G↓ and .G B↓ With these, we can now
state the four properties:

1. Each ω-tile , , ,a b c d in W where , , ,a b c d ∈ F is such
that , ,a b a c≠ ≠ b d≠ and .c d≠

2. (i) For any a ∈F, there exists a unique 'a ∈ F such that
'a a↓ and 'aa ≠ , and

(ii) For any ,a b ∈ F and ,a b≠ if 'a a↓ and 'b b↓
where ', 'a b ∈F, then ' '.a b≠

3. For each , , ,a b − − in W, we have a tuple , , ,a b− − in
W and vice versa.

4. For each , , ,a b c d in W, d is such that neither b d↓ nor
c d↓ is true.

Property (1) requires that no two quadrants sharing a side
come from the same patch of F. The consequence is that ω-tiles
sharing a side in a synthesized texture are never the same tile.

Property (2) states that (i) each patch (when placed at the
top-left quadrant of a ω-tile) has a forbidden counterpart (at the
bottom-left quadrant), and (ii) two different patches have different
forbidden counterparts. With the first two properties, we have two
scenarios for distinct elements , , ,a b c d ∈ F : (1) , ,a b b c↓ ↓
c d↓ and d a↓ (such as in Figure 8(a)) and (2) ,a b↓

,b a↓ and c d d c↓ ↓ (such as in Figure 8(b)). Also, there can
exist only 4 2 8× = different tuples , , ,a b − − where .a b≠

From Property (3) and continuing with the example in Figure
8(a), we can have , , , ,R G G − , , , ,R G B − , , ,R B G − and

, , , .R B B − With the first three properties, there are now 16
tuples with “don’t care” conditions for their fourth elements.
Property (4) defines the fourth element. We get , , , ,R G G B

, , , ,R G B Y , , ,R B G Y and , , ,R B B R where the first and the
last tuples have the alternative choices of , , ,R G G Y and

, , , ,R B B Y respectively. Formally, we show in the next
paragraph that W that possesses all four properties is non-empty.

There are two types of tuples obtained from the first three
properties: , , ,a b b − and , , ,a b c − where , ,a b c in F and

.a b c≠ ≠ For , , , ,a b b − it is clear that Property (4) has two
choices to assign a patch to the fourth element. For , , , ,a b c − we
derive from Property (3) that a c↓ is not true. Thus, by Property
(2)(i), a d↓ for an unique d ∈F { , , }.a b c− By Property (2)(ii),
neither b d↓ nor c d↓ is true, so Property (4) can thus generate

, , ,a b c d (and possibly , , ,a b c a if neither b a↓ nor c a↓ is
true).

We next show that W that possesses the four properties can
tile any large area without seams across the boundaries of ω-tiles.
That is, at any tiling step to place a tile at ith row and jth column,
i.e. position (i, j), we can find one tile in W to match (if any) the
bottom side of the tile at (i–1, j), and (if any) the right side of the
tile at (i, j–1). If the needed tile is of the form , , , ,a b b − then
Property (4) applies to the tile at (i, j–1) means that a b↓ is not
true, and thus the needed tile is in W by Properties (1) to (3). If
the needed tile is of the form , , ,a b c − where ,a b c≠ ≠ then
a b↓ is not true as before, and a c↓ is not true by Property (4)
applied to the tile at (i–1, j). We thus have the needed tile in W by
Properties (1) to (3).

(a)

(b)

(c)

(d)

(e)

(f)

(g)

(h)

Figure 9: Texture synthesis results produced by a set of 16 ω-tiles, each having 64×64 pixels. For each example, the small image is the input texture of
128×128 pixels, and the large image is the synthesized texture on a 4-by-4 tiling area (i.e. 256×256 pixels).

(a)

(i) Wang-tiles (dynamic programming)

(ii) ω-tiles (graph-cut)

(iii) Wang-tiles with smoothing

(iv) ω-tiles with smoothing

(b)

(i) Wang-tiles (dynamic programming)

(ii) ω-tiles (graph-cut)

(iii) Wang-tiles with smoothing

(iv) ω-tiles with smoothing

Figure 10: Comparison of synthesized textures by the Wang tiles and the ω-tiles. For each example, the leftmost image shows the input texture of
128×128 pixels. (i) shows a result of 4-by-4 tiling area using a set of 18 Wang tiles, each of size 64×64 pixels, and (ii) shows a result of 4-by-4
tiling area using a set of 16 ω-tiles, each of size 64×64 pixels. The outcomes of smoothing are shown in (iii) for Wang tiles and (iv) for ω-tiles.

