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Figure 1: Four small patches are extracted from an input texture to form 16 different texturing blocks; an example of such a block 
is shown on the left. A tile is cut from the center of each block to obtain in total 16 ω-tiles as shown on the right. The color at each 
corner of an ω-tile indicates the color of the patch that contributes to the corner. The interior (shown within each curve) of each 
ω-tile is obtained by sampling another patch from the input texture.  

 

Abstract 

This paper presents an effective approach to generate a set of 
small textures from an input texture that can be tiled together to 
synthesize large textures. Such a small set can be useful in 
texturing any large area realistically and efficiently while 
consuming only a small amount of texture memory. Our approach 
is advantageous in its ability to generate a smaller number of tiles 
that can embed much more texture patterns and with less 
conspicuous seams within each tile than earlier approaches. As a 
result, our approach can generate large textures that look as if 
each were from a continuous part of the input texture while 
avoiding highly repetitive patterns. In general, our approach 
performs very well and shows a particular strength, compared to 
earlier approaches, for input textures of elaborate or relatively 
large features, or with distinctive colors. 

CR Categories: I.3.3 [Computer Graphics]: Picture/Image 
Generation; I.3.6: [Computer Graphics]: Methodology and 
Techniques; I.4.3 [Image Processing]: Smoothing 
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1. INTRODUCTION 
From a given input texture, texture synthesis is to generate 

large textures, i.e. synthesized textures that maintain the 
underlying global distribution pattern of the input texture. In some 
applications, a large synthesized texture is pre-computed from a 
small input texture to texture map a large area; see, for example, 
the pixel- [4, 6, 9, 21] and patch-based [1, 5, 13, 15] synthesis 
approaches. In other, a set of small textures is pre-computed from 
an input texture for use to tile into a large texture (during real-time 
rendering). This avoids the need for a large texture memory when 
texturing a large area. The main focus of this paper lies in the 
latter usage of texture synthesis. 

Our work is motivated by the approach provided in [3] that 
generates a set of square texture tiles, called Wang tiles, for tiling 
to form large textures. We propose a novel and competitive 
approach to create a new set of texture tiles, called ω-tiles. The 
approach first extracts four small patches from an input texture S 
to arrange them into blocks to derive ω-tiles; see Figure 1.   

Our approach addresses the following three important issues 
arising in generating a set of tiles for texture synthesis: 

• The content of each tile should look as if it were a continuous 
part of S.  

• Tiles should be seamless across the boundaries in their 
synthesized textures. 

• A large synthesized texture from these tiles should maintain 
the underlying global distribution pattern of S. 

Our approach, first of all, addresses the possible seams 
occurring inside a tile by providing a large search space so as to 
control the seams that can result from combining patches in S. 
Furthermore, seams within each tile form a closed curve (rather 
than a cross as in previous approaches), and they can be softened 
using a Poisson approach [16]. 

 Secondly, the seams between two ω-tiles adjacent to each 
other are avoided by matching the sides of two patches from S. 
Note that the junctions where four patches from S meet must be 
treated with care, as they are particularly conspicuous to human 
eyes [8, 19]. Our approach allows a high degree of control of the 
content at junctions as two of the four textures at each junction are 
obtained by a careful searching.   

Finally, our approach achieves a good underlying global 
distribution pattern of S in the synthesized texture as it can embed 
diverse texture patterns in ω-tiles. The patterns in ω-tiles are not 
restricted to the four patches initially extracted from S.  

The rest of the paper is organized as follows. Section 2 
highlights previous work on texture synthesis, in particular the 
approach of Wang tile [3]. Section 3 describes the creation of ω-
tile in our approach. Section 4 presents our approach to generate a 
set of ω-tiles and synthesize large textures with less repetitive 
patterns. Section 5 presents our experimental results, and Section 
6 concludes the paper with limitations of our approach and 
suggestions on future work. 

 



 

2. PREVIOUS WORK 
There are a few methods to synthesize a large texture. First 

of all, the procedural texturing [7, 17, 22] can generate details at 
arbitrary resolutions with no periodicity and very low memory. 
However, there are certain material aspects of textures that cannot 
be generated using these techniques.  

Secondly, pattern-based texturing uses a set of different, 
small texture patches to define a pattern. These small patches are 
used to tile a large area while avoiding the periodicity and 
repetitiveness of a naïve tiling. Examples of this method include 
aperiodic tiling [20], triangular patterns [14], virtual atlases [18], 
sparse convolution [12], chaos mosaic [23] and Wang tile [3]. 
These approaches generally need more texture memory than the 
procedural texturing, but require a lower computational cost 
during rendering. 

Lastly, the pattern-based procedural texturing [11] combines 
the aforementioned two methods. It determines the texture value 
at any surface location by combining the provided patterns in an 
aperiodic manner according to user-defined controls such as a 
probability distribution and animation of textures. This method 
provides a sophisticated control to texture a large area with the 
texture indirection ability available in recent graphics processing 
units. In general, the method requires more computations during 
rendering than the pattern-based texturing.  

Our work is related to that of Cohen et al. [3] on Wang tiles. 
A set of Wang tiles is created where each tile is obtained from a 
different arrangement of four (or more), not necessarily distinct, 
patches overlapping in small regions, as shown in Figure 2(a). The 
overlapping regions are used to compute cutting paths to define 
the four partitions contributed by each patch. Cutting paths can 
result in prominent seams between patches and are thus computed 
with different criteria such as minimizing the difference in pixel 
values across the patches. 

We note that the generation of Wang tiles as implemented by 
Burke [2] adapts an alternative overlapping arrangement to 
combine four sample patches; see Figure 2(b). The sample patches 
used are of the same size as the output Wang tiles. In general, this 
alternative is easier to implement and provides a larger 
overlapping area to search for better cutting paths.  

 

3. CONSTRUCTION OF A TILE 
Our approach starts with randomly obtaining a set F of four 

small square patches from the input texture S. With these, it forms 
each time a square block to construct eventually an ω-tile. Each 
block is a non-overlapping arrangement of four (not necessarily 
distinct) patches of F. Figure 3 shows an example of four such 
blocks A, B, C and D (obtained from different arrangements of the 
four patches in F) and the intermediate tiles Ai, Bi, Ci, and Di cut 
from the center of A, B, C and D. The seams in each intermediate 

tile are removed by replacing the interior of the tile with other 
pattern from S to generate an ω-tile.   

Sections 3.1 and 3.2 discuss the removal of the vertical and 
horizontal seams in an intermediate tile with cutting curve, and 
Section 3.3 the softening of seams around the cutting curve with 
Poisson smoothing [16]. 

 

3.1 Cutting Path and Cutting Curve 
We note that the middle of each Wang tile is a junction 

where four patches meet; see Figure 2. Such a kind of a junction, 
due to cutting paths, also occurs at the corners of each Wang tile 
in tiling a large area. These are the seams that can be prominent to 
the naked eyes; the contents around them should be controlled if 
possible. For junctions at the corners of four Wang tiles, there is 
no known, good way to control the cutting paths to minimize the 
prominence of junctions. Cohen et al. call this the corner 
problem, and suggest, for example, expanding from a set of 8 
Wang tiles to at least 64 Wang tiles with matching corners. This, 
however, demands more texture memory during rendering. 

One of our aims is to reduce the prominence of junctions. 
Our approach searches a good pattern C to replace the interior 
portion inclusive of the vertical and horizontal seams in each 
intermediate tile. Such a pattern is enclosed by a closed curve, 
termed a cutting curve, passing through the middle point of each 
side of the intermediate tile. As a result, when these tiles are laid 
on a large area with matching sides, the junctions where four 
textures meet appear in the middle point of each side; see the 
center picture of Figure 3.  

In Wang tiles, junctions are resulted from a fixed set of 
patches that generates the Wang tiles, whereas in ω-tiles, two out 
of four patches meeting at a junction are obtained by searching 
good patterns in S. Thus, our approach has good control of the 
content at each junction and thus good chances to avoid the 
prominence of junctions. 

 
 

 

 
 

 
(a) (b) 

Figure 2: (a) Four square patches (shown in different colors) are 
combined to form a diamond block to extract a Wang tile at the center. 
(b) An alternative overlapping arrangement used by Burke [2] to 
combine four square patches to extract a Wang tile (of the same size as 
the square patches). 
 

Figure 3: Four intermediate tiles Ai , Bi , Ci and Di cut from blocks A, B, C and D, respectively, are used to generate four 
ω-tiles Aω , Bω , Cω and Dω , which, in turn, tile the 2-by-2 area in the middle.  



 

3.2 Computation of Cutting Curve 
From S, we can pick a patch O (Figure 4(b)) of the same size 

as the intermediate tile I (Figure 4(a)) to be a candidate with a 
part of its interior to replace the corresponding part of the interior 
of I. Each candidate O is first superimposed on I to compute a 
cutting curve (Figure 4(c)), passing through the middle points of 
the four sides of I. The curve is also restricted to lie inside a 
(pink) circle with the same center as I and having the diameter 
equal to the width of I. The area of I within the cutting curve is 
then replaced by the corresponding content C in O (Figure 4(d)). 
The best C, from all possible candidates O available from S, is 
one where the seams along the cutting curve are least prominent. 

 
 
 

 

Figure 4: (a) Intermediate tile I with vertical and horizontal 
seams across patches. (b) A candidate O extracted from S. 
(c) The intermediate tile of (a) with its interior removed 
along a cutting curve. (d) The removed part is replaced by 
the corresponding part C of O to obtain an ω-tile as shown. 
 
To derive a C, we adopt the method of Kwatra et al. [10]. In 

essence, their work formulates the problem of calculating a 
cutting path for a given pair of patches I and O as a graph 
problem. The method regards pixels in the overlapping area as 
nodes and the link between any two neighboring pixels as an edge 
in the graph. Moreover, each edge is assigned a weight as a flow 
capacity which is the sum of the transition errors of the two nodes 
divided by the sum of their gradients in the patches: 

( ) ( ) ( ) ( )
( , )

( ) ( ) ( ) ( )I I O O

I s O s I t O t
Weight s t

G s G t G s G t

− + −
=

+ + +
     

where s, t are neighboring pixels (sharing a side) in the 
overlapping area; I(s) and I(t) are the values of pixels s and t, 
respectively, in patch I; O(s) and O(t) are the values of pixels s 
and t, respectively, in patch O; ( )IG s  denotes the gradient of 
pixel s in the patch I along the gradient direction from s to t, and 

( ),IG t ( ),OG s  ( )OG t are similarly defined. Then, the cutting path 
is calculated as a min-cut which cuts the graph edges with a 
minimum sum of flow capacities from the source pixels of I to 
the sink pixels of O. 

We adapt the above technique to find a cutting curve shown 
as in Figure 5. We have (shaded) pixels of I outside the circle 
defined as sources, two vertical columns and two horizontal rows 
of (shaded) pixels at the center of O defined as sinks, and weights 

of edges incident to white pixels defined as in the above Weight 
function.  

In practice, one can employ heuristics to avoid computing the 
above cutting curve for all possible choices of O to locate the best 
C. We can choose to examine just a single or a few O’s to 
compute a good enough C. One possible heuristic is to pick O 
with the smallest sum of weights for the pixels around the (pink) 
circle (in Figures 4(a) and 4(b)). This is an attempt to select O that 
is similar to I and thus with a good chance of obtaining a cutting 
curve with less prominent seams. We use this heuristic in our 
experiments reported in Section 5. An alternative choice is to pick 
O with the smallest sum of weights for the pixels near the middle 
of the four sides. This is to emphasize the importance of having 
matching contents at junctions. 

With the above process, each ω-tile obtained has generally 
less than a half of its area occupied by patches in F and the 
remaining occupied by some other patch in S. The interesting 
result is that for a set of 16 ω-tiles, for example, used in 
synthesizing a large texture, there are twenty different patches 
(randomly chosen) from S appearing in the large texture, and less 
than half of the area is occupied by the patches in F. Due to the 
many sample patches, all or large aspects of the source texture S 
generally do appear in the synthesized texture. This is observed in 
our experiments as long as each of the twenty sample patches has 
size at least twice the sizes of prominent patterns/objects in S. In 
comparison, large texture synthesized by Wang tiles is fully filled 
by, for example, the four patches initially generating the set of 
Wang tiles. Thus, a set of ω-tiles is a more attractive option than a 
set of Wang tiles in avoiding repetitive patterns in synthesizing 
large textures, and can better preserve the underlying global 
distribution pattern of S.  

 

3.3 Poisson Smoothing  
For some input textures, it remains challenging to obtain 

good cutting curves (as well as cutting paths) to avoid prominent 
seams in resulting ω-tiles. We observe one such class of input 
textures as having elaborate or large features or with distinctive 
colors. For these input textures (such as the two shown in Figure 
10), we have found that the Poisson approach to guided 
interpolation in [16] is effective in removing prominent seams in 
ω-tiles.  

Using the approach and the terminology defined in [16], we 
let C (as defined in Section 3.1) be the source image, and I (as 
defined in Section 3.2) be the destination image with those pixels 
of I adjacent to the cutting curve as the boundary ∂C. We want to 
insert a modified version C’ of C into I under the gradient field of 
C. The insertion is such that it minimizes the sum of difference in 
gradient between C’ and C at each pixel, while obeying the 
constraint that the content of I and C’ along ∂C is the same.  

            

 

 
 

Figure 5: A schematic diagram of the graph problem 
to compute a cutting curve within the circle. 

(a) (b) 

(d) (c) 



 

As shown in Figure 6(a), the application of Poisson 
smoothing to an ω-tile is very natural with the source and 
destination being C and I, respectively. The result of the Poisson 
approach is that the seams along the boundary ∂C are softened 
with color interpolation to converge near the center of the tile.  

On the other hand, we do not know of a good way to smooth 
Wang tiles due to the different topology of (“cross”) seams in 
Wang tiles. Though we have experimented with different ways to 
define the source and destination images for a Wang tile, we do 
not find any particular satisfactory one. For example, the choice of 
source and destination used as in Figure 6(b) can soften the seams 
between them, but, at the expense of convergence of colors on the 
left and right edges of a Wang tile. The consequence is that 
vertical seams can appear in a tiling (such as in Figure 10(a)(iii) 
and Figure 10(b)(iii)) due to matching Wang tiles no longer 
having matching colors for all pixels across a boundary. 
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Figure 6: (a) Our use of Poisson approach to smooth an ω-tile. (b) One 
attempt to apply Poisson approach to smooth a Wang-tile. The bowtie-
shaped source, D, is cut from the Wang tile. The destination, J , is 
obtained by combining the lower half of the northern sample (shown in 
red) and upper half of the southern sample (shown in blue). 

 

4. FORMATION OF A SET OF TILES 
We use a set of patches F ={R, G, B, Y} obtained from S to 

form blocks and then extract intermediate tiles to finally derive a 
set of ω-tiles to tile a large area. The tiling using ω-tiles is carried 
out from left to right and top to bottom.  

 

4.1 Sets of 4 and 8 ω -tiles 
Figure 7 shows examples of a set of 4 and 8 ω-tiles that can 

tile any large area. However, for the former, once the top-leftmost 
ω-tile is fixed, the rest of the ω-tiles in the tiling are decided from 
left to right, and top to bottom; for the latter, there is an additional 
choice of an ω-tile at the leftmost column. Thus, both may 
generate undesirable repetitive patterns for a large synthesized 
texture. One way to overcome this is to retain in the set two good 
ω-tiles from the computation with each intermediate tile in 
Section 3.2. This method effectively doubles the number of ω-
tiles, but provides at least two choices of tiles at each tiling step. 

 

4.2 Sets of 16 ω -tiles 
There are many possible sets of ω-tiles that can tile any large 

area without seams across the tiles’ boundaries. Still, we would 
like to avoid repetitive patterns in synthesized textures. Our 
experiments on sets of 16 ω-tiles such as those in Figure 8 have 
been encouraging. Using either set in Figure 8(a) or 8(b), we can 
always make at least two choices of ω-tiles at the top row and the 
leftmost column. Again, we can have a variant to this technique 
by generating two ω-tiles from an intermediate tile and thereby 
obtaining a total of 32 ω-tiles. This larger set provides at least two 
choices of ω-tiles at each tiling step.   
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(a) A set of ω-tiles of size 4 

(b) A set of ω-tiles of size 8  
 
Figure 7: Sets of ω-tiles of size 4 and size 8. 
 
 
 

  

  

B      Y 
 
R      G 

  

  

B      R 
 
Y      G 

  

  

B      Y 
 
Y      R 

  

  

B      R 
 
R      B 

  

  

Y      R 
 
G      B 

  

  

Y      G 
 
R      B 

  

  

Y      R 
 
R      G 

  

  

Y      G 
 
G      Y 

  

  

R      G 
 
B      Y 

  

  

R      B 
 
G      Y 

  

  

R      G 
 
G      B 

  

  

R      B 
 
B      R 

  

  

G      B 
 
Y      R 

  

  

G      Y 
 
B      R 

  

  

G      B 
 
B      Y 

  

  

G      Y 
 
Y      G 

 
  (a) 
 
 

  

  

B      R 
 
Y      G 

  

  

B      Y 
 
R      G 

  

  

B      R 
 
R      B 

  

  

B      Y 
 
Y      B 

  

  

G      R 
 
Y      B 

  

  

G      Y 
 
R      B 

  

  

G      R 
 
R      G 

  

  

G      Y 
 
Y      G 

  

  

R      B 
 
B      Y 

  

  

R      B 
 
G      R 

  

  

R      G 
 
G      Y 

  

  

R      G 
 
B      R 

  

  

Y      G 
 
B      Y 

  

  

Y      B 
 
G      Y 

  

  

Y      G 
 
G      R 

  

  

Y      B 
 
B      R 

 
  (b) 
 

Figure 8: Sets of ω-tiles of size 16. 



 

We note here that the sets in Figure 8 possess four important 
properties; we refer the readers to the appendix for a full 
discussion. With these (particularly Property 1), no two tiles 
sharing a side in a synthesized texture are the same ω-tile, i.e. in a 
large synthesized texture, a tile is never the same as any of its four 
neighboring tiles (left, right, top and bottom). This can avoid 
significantly repetitive patterns in a synthesized texture as the 
same ω-tile does not appear very close to each other. We note, 
however, that the same ω-tile can still appear sharing a corner, i.e. 
immediately diagonal to each other. 

 

5. EXPERIMENTAL RESULTS 
We implement our ω-tile generation algorithm using C# 

under MS Windows on a Pentium P4 1.6GHz CPU with 256 MB 
main memory. For purposes of comparison, we also implemented 
the Wang tile generation algorithm similar to that of Burke [2]. 
Besides the dynamic programming approach of [5] (as originally 
used in [3]), we incorporated the alternative option of using 
graph-cut to search for cutting paths in generating Wang tiles. 
Also, we implemented the Poisson approach to guided 
interpolation of [16] as an option to smooth ω-tiles and Wang 
tiles.  

To test the above algorithms, we used input textures of size 
128×128 from http://astronomy.swin.edu.au/~pbourke/texture/, 
http://vismod.media.mit.edu/vismod/imagery/VisionTexture/viste
x.html, and http://www.ux.his.no/~tranden/brodatz.html. The 
algorithms output tiles of size 64×64 to tile large textures. 

The comprehensive set of our results and comparisons can be 
found at http://www.comp.nus.edu.sg/~tants/w-tile/. It contains a 
few sets of results for Wang tiles generated by dynamic 
programming, Wang tiles generated by graph-cut, and ω-tiles 
generated by graph-cut, with and without smoothing of tiles, and 
for different sizes of synthesized textures.  

Some samples of our texture synthesis results produced by 
ω-tiles are shown in Figure 9. On the whole, we observe that ω-
tiles generally outperform Wang tiles when synthesizing large 
textures. Synthesized textures by ω-tiles have less prominent 
junctions as explained at the end of Section 3.1, and can better 
preserve the global distribution of the underlying pattern of the 
input textures as explained at the end of Section 3.2 and Section 
4.2.  

On the other hand, for input textures with significantly 
straight features (such as a regular brick wall), the synthesized 
textures by ω-tiles are inferior to that by Wang tiles as the 
“straightness” quality of the input texture is better preserved in 
Wang tiles than in ω-tiles. In general, for a highly structured input 
texture, our approach may not perform well as it tends to 
“destroy” the structure with more patterns embedded in each ω-
tile. 

Figure 10 (see also the color plate) shows two extreme 
examples when comparing large textures generated by Wang tiles 
and ω-tiles. These examples can be categorized as having 
elaborate large features and distinctive colors. In these cases, the 
seams in the synthesized textures are rather prominent (Figure 
10(a)(i) and (ii), and Figure 10(b)(i) and (ii)). But Poisson 
smoothing on ω-tiles can produce very convincing results (Figure 
10(a)(iv) and Figure 10(b)(iv)). As mentioned, we do not know of 
a good way to smooth Wang tiles. Our simplistic smoothing 
approach of Figure 6(b) on Wang tiles produces no better results 
(Figure 10(a)(iii) and Figure 10(b)(iii)). Worst still, it amplifies 
the vertical seams some what because smoothing is applied 
towards the left and right sides of each Wang tile. 

 

6. CONCLUDING REMARKS 
This paper presents a novel technique to generate a small set 

of ω-tiles to synthesize a large texture. It proposes the use of 
cutting curve to be found in a large area to generate a seamless 
tile, and discusses a few schemes to generate a small set of 4, 8, 
16 or 32 ω-tiles that can tile any large area without seams. Our 
approach allows for the embedding of many texture patterns of 
input texture into ω-tiles to synthesize textures. This can better 
preserve the underlying global pattern of the input texture.  

Our current approach, adopted from [10], only uses the pixel 
values in finding a good cutting curve. However, it does not take 
into account of the structure of patterns in textures. As such, the 
algorithm may not produce satisfactory results as a cutting curve 
can cut through patterns and cause unnatural “half” or overlapping 
patterns. It may be interesting to investigate the possibility of 
incorporating pattern detection in the search of good cutting 
curves.  

For the aim to maintain the underlying global pattern 
distribution of the input texture, our ω-tiles only attempt to avoid 
periodic patterns. There are possibly other factors such as scaling 
of features that one could further explore. 
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APPENDIX 
 

This appendix shows that a set W of 16 ω-tiles possess four 
properties defined below can tile any large area without seams 
across tiles’ boundaries. This serves as a showcase for designing 
other sets of ω-tiles. 

To discuss the properties, we first need some notations. An 
ω-tile has four corners contributed by patches R, G, B, and Y in F. 
We use a tuple , , ,− − − − with four elements to represent the four 
corners where each element in the tuple, from left to right, 
represents, respectively, the top-left, bottom-left, top-right, and 
the bottom-right corners in an ω-tile.  We use “–” in the tuple to 
mean “don’t care”. For example, , , ,R G − −   means any ω-tile 
with the left column occupied by R on top of G, while we have no 
information about its right column.  

Let a b↓ , where ,a b ∈ F, denote that there is no tuple of the 
form , , ,a b − − in W. For example, R Y↓  means there does not 
exist a tuple of the form , , ,R Y − −  in W. For Figure 8(a), we 
have ,R Y↓  ,G R↓  ,B G↓  and ;Y B↓ for Figure 8(b), we 
have ,R Y↓  ,Y R↓  ,B G↓  and .G B↓  With these, we can now 
state the four properties: 

1. Each ω-tile , , ,a b c d in W where , , ,a b c d ∈ F is such 
that ,  ,a b a c≠ ≠ b d≠ and .c d≠  

2. (i) For any a ∈F, there exists a unique 'a ∈ F such that  
'a a↓  and 'aa ≠ , and 

(ii) For any ,a b ∈ F and ,a b≠ if 'a a↓  and 'b b↓  
where ', 'a b ∈F, then ' '.a b≠  

3. For each , , ,a b − − in W, we have a tuple , , ,a b− − in 
W and vice versa.  

4. For each , , ,a b c d in W, d is such that neither b d↓ nor 
c d↓ is true. 

Property (1) requires that no two quadrants sharing a side 
come from the same patch of F. The consequence is that ω-tiles 
sharing a side in a synthesized texture are never the same tile.  

Property (2) states that (i) each patch (when placed at the 
top-left quadrant of a ω-tile) has a forbidden counterpart (at the 
bottom-left quadrant), and (ii) two different patches have different 
forbidden counterparts. With the first two properties, we have two 
scenarios for distinct elements , , ,a b c d ∈ F  : (1) ,  ,a b b c↓ ↓   
c d↓ and d a↓  (such as in Figure 8(a)) and (2) ,a b↓  

,b a↓  and c d d c↓ ↓  (such as in Figure 8(b)). Also, there can 
exist only 4 2 8× =  different tuples , , ,a b − − where .a b≠   

From Property (3) and continuing with the example in Figure 
8(a), we can have , , , ,R G G −  , , , ,R G B −  , , ,R B G − and 

, , , .R B B −  With the first three properties, there are now 16 
tuples with “don’t care” conditions for their fourth elements. 
Property (4) defines the fourth element. We get , , , ,R G G B  

, , , ,R G B Y , , ,R B G Y  and , , ,R B B R where the first and the 
last tuples have the alternative choices of , , ,R G G Y and 

, , , ,R B B Y  respectively. Formally, we show in the next 
paragraph that W that possesses all four properties is non-empty. 

There are two types of tuples obtained from the first three 
properties: , , ,a b b − and , , ,a b c −  where , ,a b c in F and 

.a b c≠ ≠  For , , , ,a b b − it is clear that Property (4) has two 
choices to assign a patch to the fourth element. For , , , ,a b c − we 
derive from Property (3) that a c↓  is not true. Thus, by Property 
(2)(i), a d↓  for an unique d ∈F  { , , }.a b c−  By Property (2)(ii), 
neither b d↓  nor c d↓ is true, so Property (4) can thus generate 

, , ,a b c d  (and possibly , , ,a b c a if neither b a↓  nor c a↓  is 
true).  

We next show that W that possesses the four properties can 
tile any large area without seams across the boundaries of ω-tiles. 
That is, at any tiling step to place a tile at ith row and jth column, 
i.e. position (i, j), we can find one tile in W to match (if any) the 
bottom side of the tile at (i–1, j), and (if any) the right side of the 
tile at (i, j–1). If the needed tile is of the form , , , ,a b b −  then 
Property (4) applies to the tile at (i, j–1) means that a b↓ is not 
true, and thus the needed tile is in W by Properties (1) to (3). If 
the needed tile is of the form , , ,a b c −  where ,a b c≠ ≠ then 
a b↓  is not true as before, and a c↓  is not true by Property (4) 
applied to the tile at (i–1, j). We thus have the needed tile in W by 
Properties (1) to (3). 
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Figure 9: Texture synthesis results produced by a set of 16 ω-tiles, each having 64×64 pixels. For each example, the small image is the input texture of 
128×128 pixels, and the large image is the synthesized texture on a 4-by-4 tiling area (i.e. 256×256 pixels). 
 



 

 
(a) 

 
(i) Wang-tiles (dynamic programming) 

 
(ii) ω-tiles (graph-cut) 

 

 
(iii) Wang-tiles with smoothing 

 
(iv) ω-tiles with smoothing 
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(iii) Wang-tiles with smoothing 
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Figure 10: Comparison of synthesized textures by the Wang tiles and the ω-tiles. For each example, the leftmost image shows the input texture of 
128×128 pixels. (i) shows a result of 4-by-4 tiling area using a set of 18 Wang tiles, each of size 64×64 pixels, and (ii) shows a result of 4-by-4 
tiling area using a set of 16 ω-tiles, each of size 64×64 pixels. The outcomes of smoothing are shown in (iii) for Wang tiles and (iv) for ω-tiles. 


