
Bottleneck Analysis for Cloud Transaction Architectures

Y.C. Tay

National University of Singapore

Abstract

At the SIGMOD 2010 conference, Kossman, Kraska
and Loesing presented an experimental comparison
of four cloud architectures for transaction processing.
The paper concluded that “It is still unclear whether
the observed results are an artifact of the level of
maturity of the studied services or fundamental to the
chosen architecture”. This issue is addressed here via
a theoretical analysis that focuses on the bottleneck
in each architecture.

1 Introduction

The experimental comparison by Kossman, Kraska
and Loesing [KKL] considers four architectures:
classic (Fig.1), partition (Fig.2), replicated
(Fig.3) and dist.control (Fig.4). The figures show
— for each architecture — a brief description, the
major issue, and one or two commercial examples.
The comparison considers transaction processing

(OLTP), not business analytics (OLAP). It uses, as
workload, the TPC-W benchmark that models an on-
line bookstore by running an update-intensive mix of
14 transaction types.
The workload intensity is controlled by varying the

number of emulated browsers (EB) that were run on
EC2 machines in Amazon’s cloud. The throughput
comparison uses WIPS (web interactions per second)
as metric.
The dataset had 10000 items that added up to

315MB of raw data and 1GB of index. (Image blobs
were in a filesystem outside the database.) The
database server is the bottleneck, except for repli-
cated (where Azure used a high-end database server)
and dist.control (S3).

Fig.5 from the experiments shows that the different
architectures have distinctly different throughput be-
havior. In their conclusion, the authors asked if such
differences were artifacts induced by the services, or
fundamental to the architectures.

In the following, we present a bottleneck analysis
to address the question posed by the authors.

2 Bottlenecks

The experimental comparison focuses on throughput
limits, so we use bottleneck analysis [Tay] to study
the asymptotic bound as EB increases.

Bottleneck analysis cannot model the through-
put degradation seen in the partition+replicated
architectures (SDB and AppEng); modeling such
degradation would require an analysis of the consis-
tency and reliability protocol.

Table 1 lists some of the variables used in the anal-
ysis.

2.1 Assumptions

(A1) Web/application servers and storage servers
use similar (commodity) machines M.

(A2) For classic, the database server uses a machine
that is c times as fast as M.

(A3) Trasaction arrivals are evenly distributed
among the servers.

1



2.2 Classic

By (A3), the transaction arrival rate at a
web/application server is λ

NWA
; in steady state, the

server utilization is λ
NWA

DWA.

Utilization is at most 1, so we get an asymptotic
bound

λ ≤
NWA

DWA

.

If λ exceeds this bound, the system cannot settle into
a steady state: queues build up, buffers overflow, etc.
Conversely, if this bound holds, then the system con-
verges to a steady state where the throughput is λ.
Similarly,

λ ≤
Nst

Dst

.

By (A2), the service demand at the database server
in classic is Ddb

c
, so

λ ≤
c

Ddb

.

Together, we get λ ≤ λclassic, where

λclassic = min

{

NWA

DWA

,
c

Ddb

,
Nst

Dst

}

. (1)

This is the saturation throughput and the limit on
steady state transaction arrivals.

2.3 Partition

Similarly, the bound for partition is λ ≤ λpartition,
where

λpartition = min

{

NWA

DWA

,
N ′

st

Ddb +Dst

}

. (2)

2.4 Distributed

For dist.control, we have λ ≤ λdist.control, where

λdist.control = min

{

N ′

WA

Ddb +DWA

,
Nst

Dst

}

. (3)

2



Figure 5: Comparison of Architectures [WIPS]

3 Analysis

Fig. 5 shows

• one dist.control architecture, namely Ama-
zon’s S3;

• one replicated architecture, namely Microsoft’s
Azure;

• two classic architectures, namely Amazon’s
MySQL and relational database service (RDS);

• two partition+replicated architectures,
namely Amazon’s SimpleDB (SDB) and Google
AppEngine with MemCache (AE/C);

We now use the equations to analyze the through-
put limits shown in the plot. (We omit Microsoft
Azure, since we do not model replicated.)

3.1 Classic vs Partition

The two partition+replicated architectures per-
form worse than the classic. Is this inherent in the
architectures?

If the bottleneck is in the database server(s), then

λclassic =
c

Ddb

λpartition =
N ′

st

Ddb +Dst

(4)

λdist.control =
N ′

WA

Ddb +DWA

.

In particular, λpartition (for SDB and AE/C) can be
raised to match λclassic (for MySQL and RDS) in

Fig. 5 if
N ′

st

Ddb+Dst
= c

Ddb
, i.e.

N ′

st =
(

1 +
Dst

Ddb

)

c. (5)

3.2 Classic vs Distributed Control

In Fig. 5, the throughput for dist.control (Ama-
zon’s S3) eventually exceeds that for classic, and
appears to scale linearly as EB increases. Since no
system scales linearly forever. where is the limit for
dist.control?
For the configuration in the experiments, p586

of the paper [KKL] says a medium EC2 machine

3



Model Parameters
NWA number of web/application servers without co-located database servers
N ′

WA number of web/application servers with co-located database servers
Nst number of storage servers without co-located database servers
N ′

st number of storage servers with co-located database servers
DWA service demand (seconds on M) per transaction at web/application server
Dst service demand (seconds on M) per transaction at storage server
Ddb service demand (seconds on M) per transaction at database server
c ratio of database server speed in classic architecture to M

λ transaction arrival rate
EB number of emulated TPC-W browsers
WIPS web interactions per second

Table 1: Glossary

can support 1500EBs as web/application server and
900EBs as web/application/database server. This
suggests

1500DWA = 900(DWA +Ddb)

i.e. DWA =
900

600
Ddb =

3

2
Ddb (6)

(so DWA is actually larger than Ddb).
Moreover, NWA = 6 and N ′

WA = 10; subsituting
these and Eqn.(6) into Eqns.(1)–(3), we get

λclassic = min

{

4

Ddb

,
c

Ddb

,
Nst

Dst

}

λpartition = min

{

4

Ddb

,
N ′

st

Ddb +Dst

}

(7)

λdist.control = min

{

4

Ddb

,
Nst

Dst

}

.

Thus, for λclassic = λdist.control, it suffices that c ≥ 4.
If c = 1 for λclassic in the MySQL and RDS ex-

periments, this suggests that their throughputs can
be raised 4 times to match λdist.control for S3, i.e. S3
throughput in fact saturates at 1800WIPS.

4 Conclusion

Our analysis of the issue posed by Kossman, Kraska
and Loesing shows that the throughput differences

that they observed are not fundamental to the archi-
tectures. In particular,

• partition can match classic if there are enough
storage servers (Eqn. (5));

• dist.control has a saturation throughput that
classic can match if its database server were fast
enough (Sec. 3.2).

These conclusions may err if our assumptions
(Sec. 2.1) are wrong or if we misunderstood the pa-
per (e.g. Eqn.(6)). However, bottleneck analysis is
a powerful technique that requires minimal assump-
tions (e.g. we did not assume any particular arrival
process or execution time distribution). We expect
the analysis can be fine-tuned to remove any error
and thus model the architectures more accurately.

5 References

[KKL] D. Kossmann, T. Kraska and S. Loesing, An
evaluation of alternative architectures for trans-
action processing in the cloud, Proc. SIGMOD,
2010.
http://dl.acm.org/citation.cfm?id=1807231

[Tay] Y.C. Tay, Analytical Performance Modeling

for Computer Systems, Morgan & Claypool
(2010).
http://www.morganclaypool.com/toc/csl/2/1

4


