Dynamic equation-based memory allocation for stream processing engines

Rengan Dou, Richard T.B. Ma, Y.C. Tay National University of Singapore context:

streaming applications (e.g. surgery, autonomous driving, high-frequency trading)

Apache Flink

execution model:

directed acyclic graph (DAG)

question:

Fig. 4: EMM Framework

Rengan Dou, Richard T. B. Ma: *Latency-Oriented Elastic Memory Management* at *Task-Granularity for Stateful Streaming Processing*. INFOCOM 2023.

cache miss model:

Fagin/Che Appromixation

assumptions:

- LRU replacement
- no cold misses, no writes

uniform object (state) sizes independent references (no locality)

cache miss model:

- Fagin/Che Appromixation assumptions:
 - LRU replacement

no cold misses, no writes True \times 1.0 Che CacheMissEqn 0.8 cold miss prob P* 9.0 Ratio Miss 0.4 hit prob: $h = (1 - P^*) \sum_{n} \left(\frac{\lambda_n}{\sum_k \lambda_k} \right) (1 - e^{-\lambda_n T_c})$ 0.2 200 400 600 800 1000 1200 1400 Ó Cache Size (a) A workload with update prob- $T_{\rm C}: \qquad C = (1 - P^*) \sum_n (1 - e^{-\lambda_n T_c})$ ability 0.1 1.1 True × Che 1.0 CacheMissEgn 0.9 8.0 Ratio

Miss 0.7

0.6

0.5

0

20

40

60

Cache Size

(b) Stock trading workload

80

100

uniform object (state) sizes independent references (no locality)

 M^* , M_b , P^* , P_c calibrated by (M, P^{miss}) sample

X True

200 400 600 800 1000 1200 1400

Cache Size

Che

x True

60

Cache Size

(b) Stock trading workload

40

Che

CacheMissEgn

80

100

CacheMissEqn

1.0

0.8 9.0 Ratio

0.4

0.2

Ó

ability 0.1

1.1

1.0

0.9 8.0 Ratio

Wiss W 0.7

0.6

0.5

+++++++

0

20

Miss

Cache Miss Equation:

origin:

Y. C. Tay, Min Zou:

A page fault equation for modeling the effect of memory size. Performance Evaluation (2006).

derivation:

References + Replacement Invariant: For any terminating workload,

$$\left(1-\frac{1}{r}\right)\left(1+\frac{t_{\text{RAM}}}{t_{\text{disk}}}\right)\approx 1$$
 for small M .

Cache Miss Equation

previous applications:

* fair page allocation to processes

[Tay, Zou: A page fault equation for modeling the effect of memory size. Performance Evaluation (2006)]

* tuning database record buffers for a transaction mix [Tran, Huynh, Tay, Tung: A new approach to dynamic self-tuning of database buffers. ACM ToS (May 2008)]

* sizing heaps for garbage-collected languages [Tay, Zong, He: *An equation-based heap sizing rule*. Performance Evaluation 70, 11 (Nov. 2013)]

* partitioning router buffers for Named Data Networking [Rezazad, Tay: A cache miss equation for partitioning an NDN content store. Proc. AINTEC (2013)]

* sizing a 3-level cache

[Venkatesan, Tay, Zhang, Wei: A 3-level cache miss model for a nonvolatile extension to transcendent memory. CloudCom (2014)]

Fig. 4: EMM Framework

MemUpdateCoordinator embedded into Flink's JobManager

states stored in RocksDB bckend

using *M** from Cache Miss Equation to allocate memory to each task NEXMark benchmark query Q20

Join SQL:

FROM

bid AS B INNER JOIN auction AS A on B.auction = A.id

Join Operator:

For **Auction**, record in state (writes, 10KB/state), 3000/sec, 48K auctions For **Bid**, match the state (random reads of last 10sec), 800/sec

4 tasks (480MB state size, task0 delayed to simulate latency imbalance)

using *M** from Cache Miss Equation to allocate memory to each task NEXMark benchmark query Q20

4 Join tasks share 100MB equal share of Bid requests

task0 slower (EMM: task0 requires P^{miss} = 0)

using M* from Cache Miss Equation to allocate memory to each task

NEXMark benchmark query Q20

4 Join tasks share 100MB equal share of Bid requests

task0 slower (EMM: task0 requires P^{miss} = 0)

memory allocation:

baseline: (25MB, 25MB, 25MB, 25MB) Che: (40MB, 20MB, 20MB, 20MB) CacheMissEqn: (100MB, 0MB, 0MB, 0MB)

(b) Task-level latency under baseline allocation

(c) Task-level latency under Che's model $10^{5} \\ 10^{4} \\ (\underbrace{s}_{1} 10^{3} \\ 10^{2} \\ 10^{1} \\ 10^{0} \\ 0 \\ 100 \\ 200 \\ 300 \\ 400 \\ 500 \\ 600 \\ 700 \\ time \\ 0 \\ 100$

(d) Task-level latency under CacheMissEqn model conclusion:

Fagin/Che Appromixation may not be good for your application assumptions:

LRU replacement

no cold misses, no writes

uniform object (state) sizes

independent references (no locality)

Cache Miss Equation may be a better choice assumptions: **LRU** replacement no cold misses, no writes uniform object (state) sizes independent references (no locality) cold miss
$$\begin{split} P^{\text{miss}} &= f(M \mid M^*, M_b, P^*, P_c) & \text{d} \\ &= \frac{1}{2}(H + \sqrt{H^2 - 4})(P^* + P_c) - P_c, \end{split}$$
dynamic allocation, etc. ideal M where $H = 1 + \frac{M^* + M_b}{M + M_b}$, for $M \le M^*$. space overhead cache size

Dynamic equation-based memory allocation for stream processing engines

Rengan Dou, Richard T.B. Ma, Y.C. Tay National University of Singapore

Tay and Zou, A page fault equation for modeling the effect of memory size, Perf. Eval. 2006