USING CONCURRENT STATES
TO REBUILD THE THEORY FOR DISTRIBUTED COMPUTING

Y.C. Tay and X.B. Shen
tay@acm.org shenxb@comp.nus.edu.sg
Department of Mathematics and Department of Computer Science
National University of Singapore

Abstract Much of the theory for distributed computing is constructed with
global states, i.e. simultaneous local states across space. However, it is known
— since the discovery of relativity — that global states do not exist. It is
therefore inevitable that, to progress as a science, the theory must be rebuilt
without using global states. This paper suggests that the theory should be
based on concurrent states.

Keywords: Distributed computing, time, concurrent states.

1 Introduction

TODC, or the Theory of Distributed Computing (mutual exclusion, deadlock detec-
tion, leader election, Byzantine agreement, self-stabilization, etc.) is largely constructed
with global states, i.e. vectors of the form (s1(t),..., s, (t)) where ¢ is real time (or global
clock, Nature’s clock, etc.) and s;(¢) is the state of process i at time ¢. In other words,
s1(t),...,s,(t) are simultaneous states of process 1,...,n. Yet, it is well-known that real
time (or Newton’s universal time) is a fiction [1, 2], that there is no simultaneity across
space, so global states are not only unobservable, they simply do not exist. Another pop-
ular model that uses a total, global ordering of events has the same weakness. It follows
that much of TODC has a shaky foundation.

One could argue that, when constructing a theory in computer science, we must
always pick appropriate abstractions (messages, events, states, etc.) that approximate
reality, and the global state is one such abstraction; after all, Newtonian mechanics is
a very good approximation of reality. However, whereas a theory in physics focuses on
deriving descriptions and predictions that approximate nature, a theory like TODC is
mostly about correctness proofs, and correctness has no approximation: A protocol for

achieving approximate agreement [3], say, is either correct, or not.

We believe that, eventually, TODC will be overhauled to take into account the de-
pendence between space and time. And this is likely to happen sooner, rather than later:
Already, quantum mechanics has made inroads into the theories of computability, com-
plexity and cryptography, relativistic effects have been observed in Global Positioning
Systems [4], and the design of an interplanetary Internet has begun [5]. A theory meant
for a technology that prides itself on its breath-taking pace must surely incorporate, soon,

the effects and implications of a scientific discovery that is almost 100 years old.

1

Relativistic effects (like time dilation) have interesting ramifications on specific prob-
lems in TODC (like clock synchronization), but it is the implication that there is no global
state that has pervasive impact on TODC.

Since every process decides its actions based only on local observations, a correctness
proof should (if not for scientific reasons, then for aesthetics) also be based on local
observations, rather than on a global state. However, the point of distributed computing
is to achieve some global objective; for example, in distributed consensus, the objective is
to have all correct processes agree on a common (i.e. global) value despite failures. Can
one prove that a global objective is (or cannot be) achieved without using global states in
the proof? For instance, to prove that a deadlock detector is correct, one must start with
the definition of a deadlock, which — intuitively — is a set of processes waiting for each

other simultaneously. Can deadlocks be defined without using global states?

This paper introduces the notion of a concurrent state as a generalization of the
global state, and as a basis for rebuilding TODC. (We are encouraged by the fact that
Dirac had also tried to replace the non-relativistic concept of “the same instant of time”
in quantum field theory by a “many-time formalism” that has a time associated with each
particle [6, p54, p261].) We demonstrate its relevance to Chandy and Lamport’s snapshot
protocol [7], its application in Tay and Loke’s theory for deadlocks [8], and its use for
proving the Fischer-Lynch-Paterson impossibility theorem in distributed consensus [9].

2 Model: Time, State, Events and Transition

A distributed system consists of processes. Let P be a process. We assume there is
a non-empty set of P-times (or local times) Tp. A P-time is a logical entity; it may be a
value on a physical clock that P can read, or an element in the total order of events in a

P that migrates from site to site. The elements of T = |J, Tp are called times.

Each process intersperses its computations with message transmissions to, and recep-
tion from, another process. The nature of the distributed system (client/server, shared-
memory or massively parallel architecture, process migration, holographic routing, etc.) is
entirely contained in the messages, which are an abstraction for communication in the sys-
tem and therefore logical in nature, rather than physical. For instance, a message may be
implemented as a procedure call or an access to shared memory (cf. Bar-Noy and Dolev’s
translations between message-passing and shared-memory [10] and Valiant’s messages in
his bridging model [11]).

A message is represented by a predicate msg(Psend, Precvs tsend, trecv), Which is true
if and only if a message was sent by process Psenq at local time tgena(€ Tp,,,) and re-
). We assume the local times in Tp are
and <p

recv

ceived by process Precy at local time trecy (€ Tp,

recv

totally ordered by some <p. We can therefore represent <p as lines, and

send

f1

{oend - Tpsend
Tp -
Ureoy o b) b
Figure 1 msg(Piend, Precvs tsends trecy) Figure 2 Examples of cuts.

mSE(Psend, Precvs tsend, trecvy) Dy an arrow between them, as in Figure 1.

<p and messages induce a partial ordering < on all the times in T, as follows [12]: For
all t1,to € T, t1<to if and only if (i) ¢t; <p ty for some P, where ¢; and t; are P-times, (ii)
mSg(Psend, Precvs 11, t2) for some Pyeng and Precy, or (iii) 1<t and <t for some t € T. We
assume that the laws of physics guarantee the existence of such an ordering. In particular,
for P-times t; and tg, t1<t2 if and only if t1 <p t5. We write t; < t5 if t; <p t3 and P is
clear from the context. A system may be running multiple protocols, in which case they

induce their own (albeit compatible) partial orders.

Consider a system with n processes Py, ..., P,. A (time) cut is a vector of local times
(tl, .. ,tn), where t; € Tpi for all 4. In Figure 2, (tl, tz, t3), (tl, tz, tgl) and (tl, tz, t3”) are
examples of cuts. We say (t1,...,t,) < (¢1,...,%,") if and only if t; < ¢;’ for all 1.

Two times ¢t and t' are concurrent, denoted t||¢’, if and only if ¢t £ ¢’ and ¢’ £ ¢. In
Figure 2, t1||ts” but ¢1)| t3 and ¢1)| t3’. Since <p is a total ordering, we have t £ ¢, so t||t
for any P-time ¢. A cut (t1,...,t,) is concurrent if and only if ¢;||¢; for all 4 and j. In
Figure 2, (t1,t2,t3") is concurrent, but (¢1,%2,%3) and (¢1,t2,t3’) are not. In a global time
model, Tp = T for all processes, and only cuts of the form (¢,...,t) are concurrent.

We are interested in the progress of a system in which the processes Pi,..., P, run
a protocol X; i.e. each P; executes an algorithm X that includes exchange of messages

with other processes.

Changes at a process P; are modeled by changes in its state at time ¢;, denoted
S;i(t;). Depending on the context, S;(¢;) may include the process’s memory contents, the
messages it has sent and received, the local time, its location (in the case of migrating
processes), etc. Different problems in distributed computing focus on different constituents
of S;(t;). For example, the snapshot protocol records the part of S;(¢;) that is affected by
some underlying computation, distributed consensus considers only the memory contents,
and clock synchronization studies adjustments of ¢;. We use S;(¢;).part to denote some
particular part of S;(¢;); e.g. Si(t;).memory refers to the memory contents, and S;(¢;).T =

t;. Si(t;) is changed by execution at P;.

There are two conflicting considerations when modeling ezecutions: We want to
discretize an execution of a process into a sequence of atomic events, by which we mean
an event cannot be interrupted, except by a failure, and can be assigned a time instant ¢
so we can say the event occurs at time . On the other hand, an event changes the state
of a process, and it will be awkward to associate more than one state to ¢t. We resolve this

conflict with the following model:

e every event e; of a process P; occurs at some Pj-time t;;

e ¢; spans a time interval from ¢; to ¢;+, where t; < t;+;

e if P; has another non-failure event e;’ occurring at t;’, then ;" < t; or t;+ < t;;

e if e; changes the state of P; from S;’ to S;”, then S;’ is the state at ¢; and S;” the state
at t;+, denoted S;’ = S;(t;) and S;"" = S;(t;+)-

Ift = (t1,...,t,) is a cut and s; is some part of S;, we call s(t) = (s1(t1) ..., sn(tn))
a state-cut. If t is a concurrent cut, we call s(t) a concurrent state. Some work in the liter-
ature [13] are based on consistent cuts, where (t1,...,%,) is consistent if and only if there
is no msg(P;, P}, tsend, trecv) Such that t; < tgend and trecy < tj. In Figure 2, (¢1,12,t3) and
(t1,t2,t3") are consistent but (¢, t2,t3’) is not. Consistent is weaker than concurrent: Sup-
pose (t1,...,t,) is not consistent, so there are t; and t; such that msg(P;, P}, tsend, trecv),

t; < tsend and trecy < t;. Then ¢;<%; so (t1,...,ty) is not concurrent.

Transitions in our model are driven by the following lemma:

One-Step Lemma

Suppose t = (t1,...,t,), t is a concurrent cut, P; has an event e; at t.,, where ¢; < t.,, and
there is no event at P; in the time interval (¢;,%.,). Let t' = (¢1/,...,t,") where t;/ = t.,+
and t' = t;, for k # i. If e; is not a message reception, or if we have msg(P;, P;, tsend, te;)

and tsena < tj, then t’ is a concurrent cut.

Proof

Consider k # i. If h # 4, then ¢/ = i, tn' = tp, so ti'||tn’ since tx|[tp. Next, if
t;'<tg', then t; < to, < te,+ = t;'<ty’ = ti, contradicting ¢;||tx. Now suppose t,'<t;’,
i.e. ty<te,+. Since t||t;, tx<te,+ must be induced by some msg(P;, P;, tsend; trecv) Where
t; < trecy < le;+ and t =< tgend. P; has no events in the interval (¢;,t.,+) except at t.,,
SO trecy = te; and tgeng < tj. Thus ty =< tsena < t;, contradicting ¢x||¢;. O

Let t, t' and e; be as in the One-Step Lemma. We denote their relationship by
s(t) F*s(t’). For two concurrent cuts t and t”, t < t”, we write s(t) F*s(t”) if and only
if s(t) = s(t”) or s(t) F*s(t’) F"s(t”) for some event e; and concurrent cut t’ < t”. Two

events at different processes commute in the following sense:

Commutativity Lemma
Suppose t is a concurrent cut, s(t) F*s(t®) and s(t) F“s(t%), where events e; and e;

occur at some processes P; and P;, i # j. Define t' = (¢1/,...,t,’") where t;/ = 7,

t;' = t;i and ¢, =ty for k # 4,j. Then t’ is a concurrent cut and s(t) F*s(t%) F“s(t’)
and s(t) Fs(t%) Fs(t).

Proof

By the One-Step Lemma, t* is a concurrent cut. Suppose we have msg(Py, Pj, tsend, t;),
where tgeng < t5. Then tgng < & < tfi if h = ¢ and tgeng < tp, = tzi if h 7é 1, SO
s(t®) F%s(t’) by the One-Step Lemma. Similarly, s(t%) F*s(t’). O

3 Applications

We now apply the model to some problems in distributed computing.

3.1 Mutual Exclusion

One classical problem in distributed computing is mutual ezclusion [14], in which the
objective is to ensure that at most one process is privileged at any global time. We can

use concurrent states to formulate this global objective, i.e. without using global time.

Suppose there is a predicate @ on local states, and s; is privileged if and only if Q(s;)
is true. Then the objective in the Mutual Exzclusion problem is for a concurrent state

(8i(ts),---,8n(tn)) to satisfy the predicate Ly where at most one s;(¢;) is privileged, i.e.

Lye(81(t1)s -+ -5 8n(tn)) = (ViV] tillt;) — ViVi=((i # 5)AQ(si(t:))AQ(s;(t5))). O

3.2 Snapshot Protocol

The snapshot protocol is a general protocol that any system can run to record the
local states of some underlying computation. Babaoglu and Marzullo observed that the
snapshot protocol records some s(t) such that t is consistent, but this t is not any arbitrary

consistent cut. We now see why:

Proposition 1

The local states recorded in the snapshot protocol constitute a concurrent state. O

For their system, Chandy and Lamport made two assumptions: messages are pipelined,
and the receipt of a marker (a special message used by the protocol) has no effect on the
underlying computation. This second assumption implies that the recorded state is con-

current.

3.3 Distributed Deadlocks

Tay and Loke have developed an axiomatic theory for deadlocks. Since a deadlock

is, intuitively, a set of processes waiting for each other simultaneously, the challenge lies

5

in not using global states in the theory. This is achieved by having local states that, in
principle, record when a process sends a request for a resource (ﬁR), when the resource
manager receives that request (PR), when it grants the request (EP), when a process
receives notification of that grant (RP), when it releases the resource (wRP), when the

manager receives the release message (—RP), and when a process aborts (all times local).

If concurrent state is to be a generalization of global state, there should be some
necessary and sufficient conditions for a deadlock that are in terms of concurrent states.

Indeed, one can prove the following:

Proposition 2

Suppose s(t) is a concurrent state and in s;(¢;), for i« = 1,...,n, process P; is holding
resource R;1; and waiting for resource R; (i.e. Ri+113i and I%Ri, where n+1 = 1). Then
Pi,..., P, are deadlocked at tq,...,t, over Ry,...,R,. O

(In the above statement, “deadlock” is as defined by Tay and Loke). A necessary condition
is harder to state — the processes in some s(t) may be deadlocked without t being a
concurrent cut — unless we make some extra assumptions (e.g. a process that is waiting

for a resource may not send any messages.)

3.4 Distributed Consensus

A fundamental result in distributed computing is the FLP Theorem that says it is
impossible for an asynchronous system to guarantee consensus despite one failure. We

now apply our model to this result.

The part of local state that is of interest to the problem is the memory, so henceforth,
s;(t;) = S;(t;).memory. The occurrence of events is determined by this s;(¢;). A process
can fail at any time — this failure event f can occur even during another event. If P; fails
at t;, then s;(¢;') = szfa“ for all t;" > t;.

There are two distinguished registers named input and output; input values belong to
{0,1} and output values belong to {1,0,1}. A process P; begins executing the consensus

protocol with an initial state si™*; the input in si"® is initialized by P; or some other
init
i

value is 1. P; is undecided in s(t) if and only if s;(¢;) has output value L. For 8=0,1, we

process, and the rest of s!™* is specified by the protocol — in particular, the initial output
say process P; decides on f in concurrent state s(t) if and only if s;(¢;) has output value
B. P; cannot change its decision — if s;(¢;) has output value 3, then s;(¢;’) has the same

value for all ¢,/ > t;.

Let si™(t) = (st ... sin%) where t is a concurrent cut and the inputs initialized

in some way. The problem requires that the consensus protocol must satisfy the following

requirements:

(C1) Consensus: Suppose s™(t) ="s(t/).
(a) If there are no failures, then there is s(t”) such that s(t’) F*s(t”), with no
failures, and some process decides in s(t”).

(b) If processes P; and P; decide in s(t’), then they decide on the same value.

(C2) Nontriviality: There is some s (t) F*s(t/), with no failures, where some P; de-
cides on 0 in s(t'); there is some s“*(t) F*s(t”), with no failures, where some P;

decides on 1 in s(t").

(C3) Fault-tolerance:
(a) Suppose there is one failure in s (t) F*s(t'). Then there is s(t') F*s(t”), with
no failures, such that some process decides in s(t").
(b) There is no infinite sequence s***(t) I—e(l)s(t(l)) ¢ ... in which at most one

e® is a failure, and all processes are undecided in every s(t(*)).

(Cla) and (C3a) say the protocol can always proceed to a decision, as long as there is
no, or one, failure. (C1lb) captures the meaning of consensus. (C2) ensures the protocol
is nontrivial (e.g. does not make the same decision regardless of initialization), while
(C3b) ensures that the protocol does not postpone a decision indefinitely. We can now
use concurrent cuts to adapt Bridgland and Watro’s proof of the impossibility result [15].

Due to space constraint, we just outline our proof with three lemmas.

To begin, s(t) is bivalent if and only if there are s(t) F*s(t°) and s(t) +"s(t!) where

some P; decides on 0 in s(t°) and some P; decides on 1 in s(t').

Bivalence Lemma

Assume the consensus protocol satisfies (C1). Then every process is undecided in a bivalent

s(t). O

Next, for 8 € {0,1}, we say s(t) is S-valent if and only if, for every s(t) F*s(t'), if P;
decides in s(t’), it decides on /.

Univalence Lemma
Assume the consensus protocol satisfies (C1).
(a) Let 8 € {0,1}. If s(t) is S-valent and s(t) F"s(t’), then s(t’) is S-valent.

(b) If s™™it(t) F*s(t), then s(t’) cannot be both 0-valent and 1-valent. O
We may therefore call s(t) univalent if it is 0-valent or 1-valent.

Initialization Lemma
A consensus protocol that satisfies (C1), (C2) and (C3) must have a bivalent initialization

(sinit, ... ginit), O

Proposition 3 (FLP Theorem)
There is no consensus protocol satisfying (C1), (C2) and (C3).

References

1.

10.

11.

12.

13.

14.

15.

P.C.W. Davies. About Time: FEinstein’s Unfinished Revolution. Simon & Schuster,
New York, USA (1995).

V. Pratt. Modeling concurrency with partial orders. Int. J. Parallel Programming 15,
1(1986), 33-71.

D. Dolev, N.A. Lynch, S.S. Pinter, EEW. Stark and W.E. Weihl. Reaching approximate
agreement in the presence of faults. J. ACM 33, 3(July 1986), 499-516.

G. Strang and K. Borre. Linear Algebra, Geodesy, and GPS. Wellesley-Cambridge
Press (1997).

Interplanetary Internet Research Group Charter,

http://www.irtf.org/charters/ipnrg.html.

S.S. Schweber. QED And The Men Who Made It: Dyson, Feyman, Schwinger And
Tomonaga. Princeton University Press, Princeton, USA (1994).

K.M. Chandy and L. Lamport. Distributed snapshots: determining global states of
distributed systems. ACM Tans. Computer Systems 3, 1(Feb. 1985), 63-75.

Y.C. Tay and W.T. Loke. On deadlocks of exclusive AND-requests for resources.
Distributed Computing 9 (May 1995), 77-94.

M.J. Fischer, N.A. Lynch and M.S. Paterson. Impossibility of distributed consensus
with one faulty process. J. ACM 32, 2(Apr. 1985), 374-382.

A. Bar-Noy and D. Dolev. Shared memory versus message-passing in an asynchronous
distributed environment. Proc. ACM Symp. Principles of Distributed Computing,
Edmonton, Canada (Aug. 1989), 307-318.

L. G. Valiant. A bridging model for parallel computation. Comm. of the ACM 33,
8(Aug. 1990), 103-111.

L. Lamport. Time, clocks, and the ordering of events in a distributed system. Comm.
ACM 21, 7(Nov. 1978), 558-565.

O. Babaoglu and K. Marzullo. Consistent global states of distributed systems. In
Distributed Systems, 55-96, S. Mullender (ed.), Addison-Wesley, New York (1993).

E.W. Dijkstra. Solution of a problem in concurrent programming control, Comm.
ACM 8, 9(Sept. 1965), 569.
M.F. Bridgland and R.J. Watro. Fault-tolerant decision making in totally asyn-

chronous distributed systems, Proc. ACM Symp. Principles of Distributed Com-
puting, Vancouver, Canada (Aug. 1987), 52-63.

