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ABSTRACT
Out-of-order execution is essential for high performance, general-
purpose computation, as it can �nd and execute useful work instead
of stalling. However, it is limited by the requirement of visibly se-
quential, atomic instruction execution — in other words in-order
instruction commit. While in-order commit has its advantages, such
as providing precise interrupts and avoiding complications with
the memory consistency model, it requires the core to hold on to
resources (reorder bu�er entries, load/store queue entries, registers)
until they are released in program order. In contrast, out-of-order
commit releases resources much earlier, yielding improved per-
formance with fewer traditional hardware resources. However,
out-of-order commit is limited in terms of correctness by the con-
ditions described in the work of Bell and Lipasti. In this paper we
revisit out-of-order commit from a di�erent perspective, not by
proposing another hardware technique, but by examining these
conditions one by one and in combination with respect to their
potential performance bene�t for both non-speculative and spec-
ulative out-of-order commit. While correctly handling recovery
for all out-of-order commit conditions currently requires complex
tracking and expensive checkpointing, this work aims to demon-
strate the potential for selective, speculative out-of-order commit
using an oracle implementation without speculative rollback costs.
We learn that: a) there is signi�cant untapped potential for aggres-
sive variants of out-of-order commit; b) it is important to optimize
the commit depth, or the search distance for out-of-order commit,
for a balanced design: smaller cores can bene�t from shorter depths
while larger cores continue to bene�t from aggressive parameters;
c) the focus on a subset of out-of-order commit conditions could
lead to e�cient implementations; d) the bene�ts for out-of-order
commit increase with higher memory latency and works well in
conjunction with prefetching to continue to improve performance.
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1 INTRODUCTION
Dynamically-scheduled superscalar processors execute instructions
out-of-order but commit in-order to present to the programmer the
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Figure 1: Performance comparison (harmonic mean of IPCs
across SPEC CPU2006) of in-order and two types of safe out-
of-order commit, reluctant (ROOC) and aggressive (AOOC),
with a commit depth of 4 and ROB size for increasingly ag-
gressive microarchitectures. �ese experiments respect all
traditional commit conditions, and show that aggressive out-
of-order commit can reach the performance of the next class
of processor.

illusion that instructions execute atomically and sequentially as
intended by the program. In this context, precise interrupts are
easily provided as the processor veri�es correct execution before
each instruction is commi�ed [15].

�e disadvantage of in-order commit is that it ties up resources
(reorder bu�er [ROB] entries, load/store queue [LSQ] entries, and
physical registers) for a much longer time than is necessary for
correct execution. In-order commit ties up resources until all in-
structions complete and commit in the correct sequential program
order. �is means that execution is halted when any of the resources
are exhausted: when the ROB �lls up, or when we run out of either
LSQ entries or registers. To overcome this hurdle, designers size
these structures so that they minimize the chances of any single
resource becoming exhausted, creating a balanced microarchitec-
ture. �is, however, contributes to the power-ine�ciency of the
OoO cores. At the very least, a�er a certain point, increasing the
size of the LSQ (which is usually implemented as an expensive
CAM) or the size of the register �le results in an increase in energy
consumption that far exceeds the performance bene�t, a signi�cant
disadvantage for power-constrained processors.

�us, the incentive for pursuing out-of-order commit (OOC) lies
in the promise of higher performance with fewer resources. A
turning point in our understanding of out-of-order commit came
with the work of Bell and Lipasti [3] who articulated the limiting
factors for OOC. �e necessary conditions to allow an instruction
to be commi�ed range from the completion status of the instruction
itself, to the branch prediction and exception state of intervening
instructions. Several proposals for out-of-order commit, implicitly
or explicitly, abide by these conditions, providing the means and
resulting e�ciency cost to enforce them.
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What we do do: �e question we explore in this paper is what
could the performance gain be if we had the means to evade any one
or even all of these conditions together. �is work is the �rst, to our
understanding, to evaluate the potential performance contribution
of each individual commit condition. For example, what would
we gain if we could correctly commit past unresolved branches,
or stores with unresolved addresses, or instructions that could
generate an exception? Answering this question allows us to focus
on understanding the most pro�table conditions.

What we do not do: However, in this paper we do not quan-
tify the cost that would be required to guarantee correctness when
commi�ing past any or all of these conditions, as this would be
tied to a speci�c hardware or so�ware mechanism. Instead, we
evaluate the potential performance bene�ts available as the means
to gauge the e�ciency of future proposals in relation to their cost.
In the same vein, we have not implemented every possible core
optimization that could be construed as extending the instruction
window outside the core (e.g, run-ahead execution) as we would
need to take into account the additional cost in all the possible ways
that it could be reallocated (e.g., increasing cache size or improving
the branch predictor). Clearly this is intractable. �us, we chose to
study three known architectures to allow for known baselines with
understood costs. Adding proposed processor improvements (and
evaluating their power, energy, area, etc.) is beyond the scope of
this work.

Contributions: We study safe out-of-order commit (refraining
from commi�ing until all conditions are met) and unsafe out-of-
order commit (commi�ing even before all conditions are met as-
suming the potential for correct recovery and commit). In addition
to studying both safe and unsafe out-of-order commit as minimum
and maximum potential performance improvement, we also study
out-of-order commit in two additional dimensions: aggressiveness
and degree of speculation:

• Aggressiveness: A related dimension that determines this
potential bene�t is the aggressiveness of the out-of-order-
commit implementation. Prior work [14] examines this ag-
gressiveness in their implementation of checkpoint-based
out-of-order commit, where they show a middle-ground
in aggressiveness is needed to mitigate checkpoint-based
penalties while still improving performance. In addition,
work on non-speculative out-of-order commit [3] has rec-
ognized that a restricted commit window can achieve a
good portion of the performance improvements compared
to an unrestricted, unlimited out-of-order commit imple-
mentation.

• Degree of speculation: Apart from the aggressiveness of
commit, we also consider varying degrees of speculation.
�e insight of this study is that selective speculation, pre-
serving or relaxing of one more conditions necessary for
out-of-order commit, could lead to more e�cient imple-
mentations. In fact, recent work [9, 10] has shown that
this might be the case for load instructions.

Results: �is study aims to provide a guide post for each major
parameter of out-of-order commit to provide an upper bound on the
performance bene�ts given aggressiveness and degree of selective
speculation. In this work, we show that

• there is signi�cant untapped potential for unsafe out-of-
order commit beyond traditional in-order and safe out-of-
order commit; the gap widens in more powerful architec-
tures;

• for energy-e�cient cores with moderately-sized instruc-
tion windows, reluctant, limited, out-of-order commit is
su�cient to reap the most bene�t, while aggressive ver-
sions of out-of-order commit become a requirement for
larger cores;

• the order of importance of the commit conditions changes
depending on the type of application (e.g., FP vs. integer),
the architecture (limited or aggressive OoO processor), and
the aggressiveness of out-of-order commit;

• a focus on speci�c out-of-order commit conditions could
be an important future direction for high-performance,
e�cient out-of-order processors;

• potential bene�ts of out-of-order commit increase with
memory latency (relativelymore for unsafe) while prefetch-
ing bene�ts are orthogonal to out-of-order commit bene�ts.
�is raises the enticing possibility of reducing system-wide
�nancial cost without compromising performance by cou-
pling dense but higher-latency (slow-but-e�cient) DRAM
with out-of-order commit cores.

All in all, our study shows that as a future direction, unsafe out-of-
order commit appears to be very promising. �is is especially true
if the potential bene�ts can be tapped with much more e�cient
and selective mechanisms to guarantee correctness, instead of bulk
checkpointing and rollback. �e rest of this paper is organized as
follows. In Section 2we �rst provide an overview of the conditions
that need to be honored for in-order commit as well as provide an
overview of out-of-order commit. Next, in Section 3 we present
our evaluation methodology and simulated system con�gurations.
Section 4 provides a detailed performance analysis for each out-of-
order commit condition, both from the point of view of aggressive
and reluctant out-of-order commit. Finally, the related works and
conclusion are presented in Section 5 and 6 respectively.

2 OUT-OF-ORDER COMMIT
�e introduction of the reorder-bu�er (ROB) to provide in-order
commit in an out-of-order scheduled superscalar pipeline was an
important advance for computer architecture culminating an e�ort
that started with Tomasulo’s algorithm, and included techniques
such as reservation stations and the register-update unit (RUU) [16].
�e reorder bu�er maintains precise architectural state in the pres-
ence of interrupts, unknown memory dependencies, or memory
re-orderings that can perturb the ordering required by a memory
consistency model.

Out-of-order commit, on the other hand, a�empts to break this
rigid updating of the architectural state either in a safe way (i.e.,
one that does not require additional speculation and rollback to
revert changes to the architectural state) or in an unsafe way (i.e.,
one that does).

Safe vs. Unsafe OOC. A turning point in our understanding of
out-of-order commit came with the work of Bell and Lipasti [3] in
the form of a number of limiting conditions for safe out-of-order
commit. �e necessary conditions to allow an instruction to be
commi�ed out-of-order are:
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(1) �e instruction is completed: instructions can commit only
a�er their completion.

(2) �e instruction is not involved in memory replay traps.
�is condition simply says that we cannot commit specu-
lative loads or their dependent instructions. �is condition
relates to unresolved memory dependencies or memory
consistency enforcement. For example, total store order
(TSO) requires a replay of speculative loads that violate
load!load ordering when this reordering is detected by
other cores.

(3) Register WAR hazards are resolved (i.e., a write to a partic-
ular register cannot be permi�ed to commit before all prior
reads of that architectural register have been completed).

(4) Previous branches are successfully predicted. �is condi-
tion simply says that we can commit only while on the
correct path of execution.

(5) No prior instruction in program order is going to raise an
exception. �is condition provides precise interrupts and
is essential in easing handling of, e.g., page faults.

In the rest of this paper we will use the following convention to
discuss how we evade the Bell/Lipasti conditions.

(1) Safe OOC where all out-of-order-commit conditions are
preserved. �is case provides the minimum potential per-
formance improvement of out-of-order commit, but also
the minimum hardware to implement as it does not rely on
speculation and rollback beyond what is already available
in the out-of-order core.

(2) Unsafe OOC where one or more (or all) of the out-of-
order commit conditions are evaded (apart from true depen-
dencies). Doing so, the maximum potential performance
improvement of out-of-order commit is evaluated, but this
may require extra support for speculation and rollback to
be able to revert changes in the architectural state that
were found to be incorrect a�er the commit.

Reluctant vs. Aggressive OOC Aside from the limiting condi-
tions described above, a separate dimension is the aggressiveness
of commi�ing out-of-order.

�us, concerning the mechanics of out-of-order commit, we
distinguish two versions:

(1) Reluctant out-of-order-commit (ROOC): where the out-of-
order commit mechanisms are engaged only when needed
and,

(2) Aggressive out-of-order-commit (AOOC): where the out-
of-order commit mechanisms are continuously active, look-
ing for opportunities to commit instructions as early as
possible.

While the always on nature of the aggressive out-of-order com-
mit is obvious in its meaning, the when needed of the reluctant
out-of-order-commit requires clari�cation. For this paper, reluctant
out-of-order commit is engaged only when the core is in imminent
danger of going into a complete stall. In other words, we engage re-
luctant out-of-order commit only when one of the critical resources
(ROB entries, registers, load-store queue entries) is all but exhausted
and cannot support the fetching of new instructions in the front
end of the pipeline. As such, reluctant out-of-order commit acts as
a safety valve to release the pressure on resources (just before this

pressure reaches a critical point), rather than aggressively trying
to keep resource pressure low.

In contrast, aggressive out-of-order commit releases resources
more eagerly, but disregards the following issues:

(1) it might prove wasteful as traditional in-order commit may
still be able to provide su�cient resources for forward
progress;

(2) it may be futile as the chances of encountering an in-
struction that restricts further commit (e.g., an unresolved
branch) tends to increase with aggressiveness.

(3) it creates a signi�cant management problem as out-of-
order commit can create gaps in several structures, includ-
ing the ROB and also the load queue and store queue (which
is not completely addressed in prior works [3, 13, 14]).

Commit Width and Depth
�e �nal parameter to explore within the context of out-of-order

commit is the commit depth to scan for potential instructions to
commit out-of-order. While commit width is the number of in-
structions that can be commi�ed simultaneously per cycle, the
commit depth is the measure of how far the core can scan looking
for instructions to commit out-of-order in a given cycle.

2.1 OOC Conditions
In Section 3, we describe the methodology used to commit instruc-
tions out-of-order. With this methodology, we can selectively relax
the commit conditions described in Section 1 (except completion)
while still guaranteeing correct execution. For example, by relaxing
the branch condition (Unsafe BR): “commi�ing only down a non-
speculative path,” we can continue to free resources past unresolved
branches but e�ectively only commit from the correct path. In
this paper we do not evaluate the implementation required to relax
these conditions, but instead evaluate the potential for performance
improvement. We evaluate the maximum potential performance
improvement with a speculative out-of-order rollback cost of zero.
In this section we provide details on the performance implications
of the relaxation of a single and combination of conditions.

2.1.1 Instruction complete. �e core waits for an instruction
to �nish executing before commit can occur. We do not examine
early commit of loads [9, 10] that miss in the cache and instead we
consider them available for commit only a�er the data returns and
is bound to the destination register.

2.1.2 Memory replay traps (safe ST and safe LD). We describe
two sub-cases for this condition:

Store-Load (safe ST): �is condition applies to same-thread
memory dependencies involving a store and a load. In particular,
we cannot commit a load out-of-order in the presence of a prior
store with an unresolved address. If the store and the load prove to
be dependent (the load should have taken the value of the store)
the commit would have been incorrect. �e LD condition disallows
the commit of a load and its dependent instructions until all prior
stores resolve their addresses and all the memory dependencies
are correctly enforced. By relaxing this condition, we can commit
loads and their dependent instructions even if prior non-aliasing
stores have unresolved addresses.

Load-Load (safe LD):�is concerns memory consistency mod-
els that enforce load!load ordering (e.g., Sequential Consistency
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Figure 2: Conceptual comparison of in-order and out-of-
order commit (commit depth=4). C: Ready to commit, X: Not
ready to commit, E: Executing, I: Issued, O: Empty entry.

or TSO). Under this ordering constraint it is possible to allow loads
out-of-order as long as this is not observed in the memory system.
�e safe LD condition disallows the out-of-order commit of loads
unless it is guaranteed that the correct order will be observed by
the memory system.To relax this condition we allow load!load
re-orderings that are not observed by other cores. A very speci�c
case would be a memory mapped IO (MMIO) request that might
change the order of memory operations. �e MMIO case acts as a
’coprocessor’, meaning that we have a multi-processor system here.
We ignore memory requests from other cores (IO/Coprocessor).

2.1.3 WAR hazards. WAR hazards are already handled by the
out-of-order core within the ROB, and we assume a solution such
as the Value Bu�er [13] for commi�ing out-of-order. �us, we do
not consider this condition further.

2.1.4 Unresolved Branches (safe BR). �is condition guarantees
that we commit only from the correct path of execution. Out-of-
order commit should not proceed past unresolved branches until
they are correctly resolved. We can relax this condition and commit
past an unresolved branch if we are able to undo the commit. To
evaluate maximum performance potential we assume a zero roll-
back cost for out-of-order commit misspredictions. However, the
normal branch misprediction cost (10 cycles) is faithfully accounted
(see Subsection 4.9 for more details.). In addition, we evaluate the
rollback count for this condition in Subsection 4.9.

2.1.5 Exceptions (safe EXC). �is condition caters to precise
interrupts. Enforcing this condition requires that we do not commit
past an instruction (�oating-point, memory access, or any instruc-
tion that may cause an exception) unless we make sure that the
instruction will not cause a exception. To relax this safe EXC con-
dition, we assume the code regions are exception free.

2.2 Safe and Unsafe Out-of-Order Commit
Normally, discussion of out-of-order commit tends to focus on the
changes that occur in the back end of the pipeline. However, the
purpose of out-of-order commit is to enable the front end to proceed.
�e perception that out-of-order commit increases performance
can also be misleading: instruction execution is not sped up; it is

Figure 3: Functionality of AOOC andROOC. In this example
AOOC commits one more instruction than ROOC (commit
depth=4). C: Ready to commit, X: Not ready to commit, E:
Executing, I: Issued, O: Empty entry.

the removal of conditions that stall the front end that increases
performance. More speci�cally, in an unconstrained architecture
(unrestricted ROB, registers, and load/store queue entries), safe
out-of-order commit does not perform faster than in-order com-
mit. For restricted, real-world implementations, Safe OOC helps
to ameliorate this problem.

In contrast, Unsafe OOC has the capacity to exceed the per-
formance of an unconstrained in-order commit architecture as it
removes penalties needed to guarantee correctness (e.g., correctly
handling memory dependencies, correctly enforcing memory con-
sistency ordering, etc.) in situations that the hardware does not
have any other means of imposing such correctness. In this case,
Unsafe OOC has the potential to violate correctness and requires a
means to revert back to a safe state if a violation occurs. �is can
be a good trade-o� when the conditions that violate correctness
are rare. We implement an oracle version of Unsafe OOC, in that it
violates the correctness conditions because it will be safe to do so
(and therefore no correctness problems will occur). �is removes
the need to provide the mechanisms to revert to a safe state in the
case of a misspeculation. �is model provides a best-case speedup
as recovery from misspeculation is zero cost.

2.3 Aggressive and Reluctant OOC
Orthogonal to the enforcement of the out-of-order commit condi-
tions, the aggressiveness of out-of-order commit plays a signi�cant
role in the resulting performance and the cost it incurs. We intro-
duced two approaches for out-of-order commit: Aggressive (AOOC)
and Reluctant (ROOC) out-of-order commit. A good way to de-
scribe them is to contrast their main di�erence: how o�en each
mechanism is engaged.

AOOC is engaged all the time, i.e., it constantly tries to �nd
instructions to commit out-of-order if the opportunity arises. In
this respect it aims to increase commit bandwidth.

In contrast, ROOC is only engaged when one of the critical
resources in the core (ROB entries, registers, Load/store queue en-
tries) is about to be exhausted. ROOC is concerned about front end
stalls, not about commit bandwidth. �is means that the number
of instructions that ROOC needs to �nd that can commit out-of-
order is limited: ROOC needs to provide enough free entries in the
ROB/registers/LSQ so that the front end can dispatch as many in-
structions as possible (up to the dispatch width) to the out-of-order
engine. Figure 2 shows this with an example. �e reason that the
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Table 1: Baseline core parameters
Full system simulation 3.4 GHz, x86-64
L1i/d 32KiB, 8-way, 4clk
L2 256KiB, 8-way, 12clk
L3 1MiB, 8-way, 36clk
DRAM 200clk
Branch Predictor Tournament, front end penalty 10clk
Prefetcher OFF(default)/ON Stride, degree 8

Table 2: Microarchitecture con�gurationwith reorder bu�er
(ROB), instruction queue (IQ), load and store queues (LQ/SQ)
and integer and �oating-point register �le (RF) details. Dis-
patch width (D), commit width (CW) and Out-of-Order com-
mit depth (CD) is the same to enable a fair comparison (SLM
hardware has a D/CW of 2). Register values are additional
physical registers above architectural state.

Microarchitecture D/CW/CD ROB IQ LQ/SQ RF(INT,FP)
Silvermont-like (SLM) 4/4/8 32 32 10/16 32,32
Nehalem-like (NHM) 4/4/8 128 56 48/36 68,68
Haswell-like (HSW) 4/4/8 192 60 72/42 130,130

commit stage of an in-order commit is blocked is because of an
unresolved instruction at the head of ROB. A four-wide superscalar,
shown in Figure 2, tries to commit four instructions per cycle. While
the �rst instruction at the head of ROB can commit, the second
oldest instruction causes the commit stage to block and instead of
four, only one instruction commits (in-order). �e behavior of
out-of-order commit depends on its aggressiveness:

AOOC: AOOC a�empts to �nd up to commit-width instructions
so it can satisfy the need to commit at the highest possible com-
mit bandwidth. In our example it aims to �nd four instructions.
However, since only one more is needed to �ll the gap in the head
group of four leading instructions, AOOC produces an excess of
commit-ready instructions that can potentially be exploited in the
near future.

ROOC: ROOC on the other hand, aims to �nd the minimum
number of instructions needed to commit (out-of-order) so that
no resource is exhausted and the front end can continue to issue
instructions at its peak bandwidth. �e reason for seeking the
minimum number of instructions to commit out-of-order is that
this minimizes the perturbations in instruction order. �is could
potentially lead to more e�cient hardware implementations. While
Figure 3 only considers the ROB, in the general case all dispatch-
related resources are considered in the same way.

In our particular example, ROOC needs to �nd just one instruc-
tion to commit out-of-order. �e ROB already contains two empty
slots, and the in-order commit mechanisms can �nd one instruction
to commit, leaving one le� for ROOC. In contrast, in AOOC mode,
there are in total three instructions that commit (instructions #1, #3
and #4 in Figure 3). �e result is that AOOC needs to scan deeper
than ROOC.

3 METHODOLOGY
We use the gem5 [4] simulator in full system mode to simulate an
x86-64 target with a frequency of 3.4GHz. To test our models, we
use the SPEC CPU2006 benchmark suite. We use ten uniformly
distributed checkpoints from each benchmark. Each simulation
checkpoint has three phases that begin with 250M instructions of
cache warm-up, followed by 100k instructions of detailed pipeline

Figure 4: Commit bandwidth distribution for the SPEC
CPU2006 benchmarks of a 4-wide core with in-order com-
mit and out-of-order commit respecting all commit condi-
tions (Safe OOC). Out-of-order commit increases commit
pressure even without aggressive speculation.

warm-up and ends with a detailed simulation of 100M instructions.
Furthermore, three di�erent con�gurations, similar to three con-
ventional out-of-order processors, are used: Intel’s SLM, NHM,
and HSW [5] microarchitectures. Tables 1 and 2 list the detailed
con�guration of the simulation environment.

To implement our out-of-order commit model, we �rst con�gure
a simulated machine with a very large number of core resources.
We then monitor the number of commi�ed and non-commi�ed
instructions that appear in the pipeline, and control, at dispatch,
whether we can support additional instructions in the back end of
the processor. In this way, we dynamically determine the resource
availability in the processor for each cycle based on the out-of-order
commit conditions.

4 OUT-OF-ORDER COMMIT EVALUATION
In this section we analyze the bene�ts of out-of-order commit on
the performance of a number of applications. We look at how the
commit bandwidth changes with out-of-order commit, and how
the e�ective resource size of each critical component changes as
we enable di�erent out-of-order commit conditions. Next, we show
how out-of-order commit conditions a�ect performance. Safe OOC
and Unsafe OOC are two extreme points that are de�ned by either
enabling (respecting) or disabling all of the out-of-order commit
conditions. �is results in a minimum and maximum potential per-
formance improvement across the benchmark suite. To understand
the e�ect of each condition in isolation, we study the e�ect of each
one, both in the presence and absence of other conditions. �ese
studies on Safe OOC and Unsafe OOC conditions were conducted
for both Aggressive (AOOC) and Reluctant (ROOC) out-of-order
commit.
4.1 Microarchitecture Aggressiveness
We target three microarchitectures resembling Intel’s Silvermont
(SLM), Nehalem (NHM) and Haswell (HSW) as small, medium and
large cores (See Table 2 for details). As an overview, Figure 1
shows the performance improvement for each microarchitecture
assuming Safe OOC (all conditions respected) for all benchmarks on
average. We can see that in the case of narrow commit depth (four
in this �gure), a relatively small out-of-order processor (SLM), has
more potential for relative improvement compared to the medium
and aggressive microarchitectures. �e reason is that the smaller
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Figure 5: E�ective resource use in in-order and Aggressive
out-of-order commit across SPEC CPU2006.

processor (with a shorter instruction reach and, given a balanced
design, smaller hardware structures) will more likely stall as it
exposes a smaller amount of the potential ILP in an application. In
case of a larger commit depth, the more aggressive cores (NHM
and HSW) have higher potential performance improvement (See
Section 4.4 for a detailed overview). Out-of-order commit frees
the processor from the traditional limits, reducing the number of
times the processor experiences exhausted resources. In medium
and large aggressive cores, thanks to a larger ROB as well as other
hardware resources, more intrinsic ILP is extracted by traditional
in-order commit, leaving less potential for out-of-order commit
with a narrow commit depth.

4.2 �e E�ect on Commit Bandwidth
Figure 4 shows the distribution of the number of commi�ed in-
structions per cycle for three di�erent microarchitectures, for both
in-order and out-of-order commit, across all SPEC CPU2006 bench-
marks. Although an in-order commit, 4-wide commit HSWmicroar-
chitecture can retire up to four instructions per cycle, this occurs,
on average, less than 20% of the time. In practice we see a large
number of commit stage stalls (zero instructions commi�ed per
cycle). For out-of-order commit, the distribution shi�s toward four
instructions per cycle re�ecting the improved commit performance
(and the resulting improvement in overall performance). Finally
this �gure shows that for smaller, less aggressive cores (such as
SLM, see Table 2), out-of-order commit provides a relatively larger
improvement compared to the other microarchitectures because of
the short commit depth of four. Larger cores improve more with
more aggressive commit depths and out-of-order commit parame-
ters (see section 4.4 for details).

4.3 �e E�ect on Resources
One of the main issues that out-of-order commit can help resolve is
the early release (and subsequent reuse) of hardware resources that
otherwise would still be required to maintain the in-order state in
an in-order commit processor. �erefore, with a small ROB (and
other appropriately sized structures) given in-order commit, the
core canmore easily stall when it runs out of resources. For example,
consider a ROB size of 32 from a SLM microarchitecture. When the
ROB is full it contains 32 micro-operations in �ight and the CPU’s
back end will no longer accept additional micro-operations from
the front end. Increasing the physical size of the ROB along with
other resources is one potential, but rather expensive, solution to
this issue. An alternative solution, and one of the bene�ts of using

Figure 6: E�ect of commit depth on performance improve-
ment normalized to their respective in-order commit per-
formance across SPEC CPU2006. �e smaller core receives
less bene�t from increasing the depth of commit. Safe OOC
saturates at a commit depth of 8, 16 and 32 for SLM, NHM
and HSW respectively. (the distance to the �rst unresolved
instruction from the head of the ROB). �ere is no satura-
tion in performance improvement of Unsafe OOCwhile the
commit depth is increased.

out-of-order commit, is the early release of resources. �is early
release increases the e�ective size of a resource (compared to an
in-order commit core) improving performance of the core.

Benchmark speci�c analysis. �e xalan benchmark is one
of the top 5 benchmarks with a large number of CPU stalls caused
by exhausted resources. Both AOOC and ROOC are very e�ective
for the xalan benchmark. OOC is able to provide additional free
entries in the ROB, RF and LSQ (see Figure 7). On the other hand,
leslie3d has the lowest number of CPU stalls based on exhausted
resources, which limits the potential for improvement with OOC.

Figure 5 compares the e�ective size of the SLM microarchitec-
ture between in-order commit and both safe and unsafe aggres-
sive out-of-order commit (AOOC) models for the SPEC CPU2006
benchmarks. �e results are normalized to a �xed size SLM IOC
microarchitecture (see Table 2). An e�ective size of 1.0 translates
to frequent stalls due to resource exhaustion, while sizes greater
than 1.0 shows the e�ective resource size increases due to OOC.
For aggressive out-of-order commit, the larger e�ective sizes show
the reach of this technique. We see that the utilization of all struc-
tures except for the ROB is almost the same for safe and unsafe
out-of-order commit, which allows Safe OOC to achieve most of
the performance of the unsafe version. Nevertheless, the unsafe
core is much be�er at improving the reach of the ROB, allowing
applications like hmmer continue to show a bene�t when moving
from safe to unsafe out-of-order commit. See Section 4.5.2 for more
details on hmmer.

4.4 Evaluation of Commit Depth
To gauge the e�ect of the commit depth (i.e., how far we scan the
ROB to �nd instructions that can commit out-of-order) we impose a
hard limit on it and evaluate the e�ects on the resulting performance.
�e strictest limit is the commit-width itself: starting to commit
out-of-order from the �rst commit-width instructions. We then
relax this to the immediate vicinity (e.g., double the commit-width)
and progressively relax until we reach the size of the ROB.

In Figure 6 we see that a commit depth of 4 (equal to commit
width) provides the smallest bene�t, but also the smallest di�erence
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between Safe OOC and Unsafe OOC. In addition, the SLM core
bene�ts more fromOOC compared to NHM andHSWwhen commit
depth is smaller than 8. At a commit depth of 8 and above, the
large aggressive cores bene�t much more than the smaller core
type with the maximum improvement of Unsafe OOC at 80%, 119%
and 129% for SLM, NHM and HSW, respectively. For aggressive
cores, the larger commit depth allows for continued performance
improvements, and will be necessary for the design of a balanced,
aggressive out-of-order commit design.

4.5 Out-of-Order Commit Performance
In this section we analyze the out-of-order commit conditions to
determine theminimum (andmaximum) performance improvement
potential. �e minimum and maximum improvement is provided
by Safe OOC and Unsafe OOC, respectively. In Figure 7, we show
the amount of improvement provided by both safe and unsafe out-
of-order commit, for both aggressive and reluctant modes, for all
three microarchitectures.

4.5.1 Safe OOC. Honoring all out-of-order commit conditions
results in a modest performance improvement. One implication
for future processors is that Safe OOC does not require additional
support for speculative out-of-order rollback recovery mechanisms;
it requires support for the commit of instructions out-of-order and
the freeing of structures for use by future instructions.

Safe AOOC. When Safe AOOC is evaluated on the SLM mi-
croarchitecture (see Figure 7a), the range of improvement spans
from a low of 3% (leslie3d) up to 82% (xalan), with an average of
44%. In the NHM microarchitecture, the improvement ranges from
9% to 108% for milc and xalan, with an average improvement of
57%, and for HSW, we see an improvement of 1% for mcf to 110%
for wrf, with an average of 55%. (See Section 4.4 for more details).

Safe ROOC. For Safe ROOC, the performance improvement is
lower for all three microarchitectures compared to AOOC (See Sub-
section 2.3 for additional details). In the SLM microarchitecture,
the range of performance improvement of safe ROOC is from 2% to
55% for calculix and gcc respectively, with an average improve-
ment of 20%. In the NHM microarchitecture, we see performance
improvements that range from 1% (mcf) to 22% (bwaves) with an
average improvement of 7% (8% for HSW). Because NHM and HSM
have fewer CPU stalls, ROOC has less of an e�ect on performance
compared with the smaller, more e�cient core.

4.5.2 Unsafe OOC. By relaxing all conditions, Unsafe OOC
provides themaximumpotential for performance improvement. Un-
safe OOC will require recovery mechanisms for these techniques,
which can reduce the performance potential because of recovery
costs. To understand the e�ectiveness of all conditions together we
consider zero cost for recovery for any misspeculated out-of-order
commit condition.

Unsafe AOOC�is technique provides the highest performance
improvement for all three di�erent architectures. In SLM cores, the
improvement ranges from 9% to 120% for libquantum and astar

applications respectively and the average is 59%. In NHM architec-
ture, the average is 72% and the range is between milc and astar

respectively with 11% and 196% improvement. In HSW cores, simi-
lar to NHM cores, astar has the maximum bene�t from Unsafe ooc
with 192% improvement, while the minimum improvement is for

dealii, at 7%. �e average improvement for this class of architec-
ture is 70%.

Unsafe ROOC Reluctant out-of-order commit is lower perform-
ing because it is not continuously looking to commit additional
instructions (See Section 2.3 for details). In the case of SLM, the
improvement ranges from 3% to 93% respectively for leselie3d
and xalan with an average of a 38% improvement. In NHM, mcf
and bwaveswith 1% and 22% show the maximum and the minimum
improvement with an average of 7% (HSW is similar with an aver-
age of 8%). Between the three microarchitectures, the limited SLM
bene�ts the most from ROOC because of the large number of stalls
seen by this core. �erefore ROOC, especially Unsafe ROOC, is an
interesting methodology to improve the performance of relatively
small but energy e�cient CPUs as we see a relatively high perfor-
mance improvement for a less aggressive commit implementation.

Benchmark-speci�c Analysis. �e hmmer benchmark is a par-
ticularly strong case for the bene�ts of out-of-order commit for
SLM.�is application is L1-cache resident, and exhibits very few
last-level cache misses. Nevertheless, we still see a very strong im-
provement in performance, from 33% to 52% for Safe OOC, increas-
ing to 51% to 66% for Unsafe OOC. Looking ahead to Figure 8 and
Figure 11, we can see that evading the branch condition provides
the most bene�t for this application. Making room for additional
instructions to allow the hardware to expose additional ILP works
well even for those applications without a signi�cant number of
LLC misses.

�e mcf benchmark contains load-dependent branches, has the
highest MPKI (misses per kilo instructions) among the benchmarks
and therefore, it has a rather low IPC when it is executed on an
in-order commit CPU.�is results in a good opportunity to improve
performance as it is extremely limited by these misses.

4.6 Performance E�ects of Commit Conditions
In the previous section, by analyzing safe and unsafe out-of-order
commit, we observe that there is a large gap between the perfor-
mance improvement of these two implementations. Understanding
the cause of this performance improvement (by looking at individ-
ual commit conditions in isolation), allows us to be�er understand
where to focus future hardware e�orts.

4.6.1 Positive Contribution of Out-of-Order Commit Conditions.
To study the gap between safe and unsafe out-of-order commit
(Figure 7), we analyze the e�ect of relaxing each condition in the
presence of the other preserved conditions in Figure 8. We analyze
the SLM microarchitecture in detail and provide averages across
all microarchitectures for both AOOC and ROOC. Each out-of-
order commit condition in analyzed in isolation, and we consider
Unsafe OOC (all relaxed conditions) as the 100% potential improve-
ment budget. In the case of the mcf benchmark in Figure 7a, the
safe and unsafe OOC performance improvement is 33% and 71%
respectively (46% of the potential improvement budget is provided
by Safe OOC). We also observe that by relaxing the LD condition
(unsafe LD), 52% of potential improvement budget is achievable
(see Figure 8a). In Figure 8, we can see in some applications (like
namd in AOOC mode and leslie3d in ROOC mode) that relax-
ing just a single condition is not su�cient to �ll the gap between
safe and unsafe OOC.�is does not mean that a single condition
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Figure 7: IPC improvement of safe and unsafe out-of-order commit relative to in-order commit as a baseline for both reluctant
and aggressive versions applied on SPEC CPU2006 benchmarks on three microarchitectures.

Figure 8: Contribution of safe and selectively unsafe out-of-order commit on three di�erent microarchitectures. Unsafe XX
is equivalent to activating (enforcing) all out-of-order commit conditions except XX (the XX condition is relaxed). By relaxing
the speci�c XX condition, the dependence between other conditions is also observed.

is not important, but rather that other preserved conditions are
preventing out-of-order commit from achieving its full potential.

AOOC. We observe that for most of applications Unsafe BR
and Unsafe LD are the most interesting conditions (Figure 8a).
Additionally, the more aggressive the core, the more important the
Unsafe LD condition becomes. In SLM, NHM and HSW CPUs,
Unsafe LD respectively �lls 4%, 10% and 12%, and Unsafe BR �lls
9%, 8% and 7% of the gap between safe and unsafe OOC. Unsafe ST
is not very e�ective because of the rarity of this condition and the
conservative memory dependence predictor used. Unsafe EXC or
relaxing exceptions are not that e�ective because they are very rare,
especially in integer benchmarks.

ROOC. Relaxing OOC conditions in ROOC has less e�ect in
reducing the gap between safe and unsafe OOC and this is be-
cause of the nature of this on-demand OOC mode which is enabled
and needed more in SLM and much less in NHM and HSW (see
Figure 7b).

Benchmark-speci�c Analysis. �e astar and gobmk bench-
marks have the highest number of mispredicted branches per 1000
instructions. �erefore relaxing the branch condition (unsafe BR)
improves the performance of these two benchmarks by 68% and 94%
respectively. On the other hand, benchmarks such as cactusadm
and lbm have a low branch misprediction rate (0.5%) and therefore
relaxing the branch condition does not show signi�cant improve-
ment for these benchmarks.

�e sphinx benchmark has high degree of intrinsic ILP 1, thus an
increase in the number of e�ective resources allows this benchmark
to improve performance. As most of its load instructions are L2-
cache misses, relaxing the load condition (Unsafe LD) improves
performance of this benchmark.

4.6.2 Negative contribution of OOC conditions. In this section
we analyze the gap between safe and unsafe out-of-order commit
from a di�erent angle. We relax all of the out-of-order commit condi-
tions except for one. For example safe LDmeans the LD condition is
preserved but ST, BR and EXC conditions are relaxed. By preserving
one of the conditions we look at the negative e�ect (performance
reduction) of the activated condition compared to Unsafe OOC.
Figure 11 depicts the e�ect of each condition on performance. For
most of the benchmarks, the BR and the LD conditions are the most
e�ective ones. Among �oating-point benchmarks, LD and EXC
conditions have a large impact on performance. �erefore, relaxing
the EXC condition, as it is rare, could lead to signi�cant perfor-
mance improvements at relatively low cost, especially if recovery
mechanisms in so�ware are used. ST has the least e�ect among out-
of-order commit conditions when it is preserved in isolation from
other conditions. �is is valid between all three microarchitectures.

1 �e sphinx benchmark continues to show performance improvements as the in-order
commit processor aggressiveness increases from SLM to HSW.
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Figure 9: A comparison between safe and unsafe out-of-
order commit across DRAM latencies for SLM and AOOC on
SPEC CPU2006. OOC improvement increases with a higher
DRAM latency. Unsafe OOC outperforms Safe OOC. �is
study uses caches that are four times smaller compared to
Table 1 to put additional stress on the DRAM.�is has been
done for both in-order and out-of-order commit con�gura-
tions.

Figure 10: �e e�ect of aggressive out-of-order commit on
the performancewith andwithout prefetchers in the L1 data
cache across SPEC CPU2006. Improvement is relative to the
baseline IOC architectures without prefetchers.

4.7 Memory Latency Evaluation
Current DRAM cells are optimized for cost, and not for access la-
tency [12]. �e potential to use more a�ordable, but higher latency
memory could have a large impact on allocation of memory in data-
center servers as high density DRAMmodules cost much more than
those that are 4⇥ smaller (1.75⇥ per GB [2]). To evaluate the po-
tential of out-of-order commit to handle higher DRAM latency, we
evaluate memory latency from 200 cycles to 1000 cycles in 200 cycle
increments. In addition, we reduce the size of all caches by 4 times
when compared to Table 1, to put additional stress on the DRAM
subsystem. Here we see an increasing performance improvement
for the Unsafe OOC condition, while Safe OOC increases linearly
compared to the in-order commit core. For memory-intensive ap-
plications, an e�cient implementation of Unsafe OOC could allow
the use of denser, higher-latency DRAM that could potentially cost
much less.

4.8 Prefetching Evaluation
Prefetching is an important way to improve performance of modern
systems. �erefore understanding the contribution of out-of-order
commit in the presence of prefetching is necessary. In gem5, we
con�gure the L1-D cache with a stride prefetcher of degree 8. In
Figure 10, we see the results of this study where hardware prefetch-
ers and aggressive out-of-order commit perform similarly, with
out-of-order commit providing slightly higher performance in all

Table 3: Out-of-Order Commit Costs for Unsafe Branches
Metric-PKI SLM NHM HSW

Avg Max Avg Max Avg Max
Branches 146.2 373.3 153.3 460.8 156.8 495.7
Mispred. br. 7.8 50.9 8.1 54.5 8.2 56.0
Num rollbacks 3.2 24.3 3.1 25.6 3.0 26.5
Instrs rollback 8.5 52.9 6.6 43.0 5.4 34.3

three architectures. When combining both out-of-order commit and
prefetching in the SLM architecture, we see that it is almost additive,
reaching to almost a 70% performance improvement (while prefetch-
ers and out-of-order commit provide approximately a 40% speedup
independently). In fact, combining aggressive out-of-order commit
with prefetchers allows us to reach 84% of the ideal (sum of both) im-
provement for SLM, 77% for NHM, and 83% for HSW, demonstrating
that these techniques work well together. �is demonstrates that
out-of-order commit can both work as an alternative to prefetching,
as well as work together with it to provide a boost in single-core
performance.

4.9 Rollback Costs for Unsafe Branches
While this work does not evaluate hardware costs, we are able
to evaluate the number of rollbacks caused by commi�ing past a
mispredicted branch for each of the evaluated con�gurations. For
this evaluation, we use a commit depth of 8, with aggressive out-of-
order commit (AOOC) and Unsafe BR (only the branch condition
is not respected for out-of-order commit). In Table 3, we list the
number of executed branches, mispredicted branches, the number
of rollbacks caused by speculatively commi�ing a mispredicted
branch, and the number of instructions that were rolled back due
to this rollback. While the number of executed branches increases
with the aggressiveness of the core (because these cores can more
aggressively speculate past branches), the average number of roll-
backs (and instructions rolled back) decreases slightly with the
aggressiveness of the core. �ese aggressive cores resolve specula-
tive state quickly, reducing the number of instructions that need to
be commi�ed out-of-order. �is results in a similar number of roll-
backs per thousand architecturally commi�ed instructions, around
3, for all con�gurations.

5 RELATEDWORK
�e goal of this work is to provide a detailed understanding into
the potential for performance bene�ts across di�erent out-of-order
commit conditions and levels of aggressiveness. While this work
aims to describe the maximum potential bene�t for each individual
condition, there have been many previous works that describe
hardware solutions for early release of hardware structures and
out-of-order commit strategies. Below, we provide an overview of
these works, and how they �t into the categories described in this
work.
5.1 Speculative Release of Hardware Structures
A number of implementations require register and processor state
checkpointing support to speculatively retire or release hardware
structures [1, 6, 7, 11, 14]. Processor state checkpointing, especially
with the advent of very large SIMD registers such as AVX-512
registers which now support up to 32 registers with up to 512 bits
per register, can require a signi�cant amount of state to be saved
when speculation is aggressive.
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Figure 11: Maximum potential performance improvement is provided by Unsafe OOC in which all conditions are unsafe. By
preserving all conditions, maximum performance is reduced. �is �gure shows the negative e�ect of preserving (or making
safe) a single condition compared to themaximumpotential performance improvement. Safe XX is equivalent to disabling all
out-of-order commit conditions (all unsafe, highest performance) where XX indicates the only safe and preserved condition.

5.2 Non-speculative Structure Release
Non-speculative early release of hardware structures before commit
requires knowledge that no older instruction (that has come earlier
in the instruction stream) can cause the program to abort, raise an
exception, or require exposure of the architected state at that time.
Non-speculative solutions have the potential to be the most energy
e�cient, a necessity in an era of the end of Dennard Scaling for
power-limited platforms. A range of solutions, from hardware-only
to so�ware-assisted solutions are described below.

Compiler support. Two previous works [1, 8] allow for early
commit or reclaim of resources based on compiler knowledge, but
require so�ware recompilation.

No checkpoints. A number of solutions do not use check-
points [3, 8, 13] and therefore do not require speculation (they
respect the all commit conditions) or used so�ware help to extend
knowledge to the hardware.

Selective early commit. Early commit of loads [9, 10] allows
for loads that have not yet received data from the memory hierarchy
to become part of the commi�ed state of a processor. �is allows the
processor to continue to process instructions past normally blocked
structures, improving performance for memory-bound workloads.
To accomplish this, the authors [10] decouple page faults that can
occur from the fetching of data. While recompilation is not strictly
required for this technique, the authors evaluate their work using
a compilation strategy to expose loads early.

6 CONCLUSION
To obtain higher performance, extending the reach of the proces-
sor core has been a primary focus of much of microarchitecture
research. One promising direction is the use of out-of-order com-
mit, which releases precious processor resources early to allow the
processor to extend its reach past typical hardware limits. In this
work, we present a limit study for out-of-order commit through
the introduction of reluctant and aggressive out-of-order commit
modes. We show how smaller processors, even with a limited com-
mit scan depth, can bene�t from out-of-order commit strategies,
but that larger, aggressive cores require deeper commit scan depths

to achieve improved performance. In addition, we provide a de-
tailed breakdown of the contributions for each out-of-order commit
condition for the SPEC CPU2006 benchmark suite. Our results
show a very high potential for performance improvement, above
2.25x for some benchmarks, and believe that out-of-order commit
strategies can play an important role for future energy-e�cient
and high-performance processor designs.
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