
Maximizing Limited Resources: A Limit-based Study and
Taxonomy of Out-of-order Commit

Mehdi Alipour · Trevor E. Carlson · David Black-Schaffer · Stefanos Kaxiras

Abstract Out-of-order execution is essential for high 
performance, general-purpose computation, as it can 
find and execute useful work instead of stalling. How-
ever, it is typically limited by the requirement of vis-
ibly sequential, atomic instruction execution — in other 
words, in-order instruction commit. While in-order com-
mit has a number of advantages, such as providing 
precise interrupts and avoiding complications with the 
memory consistency model, it requires the core to hold 
on to resources (reorder buffer entries, load/store queue 
entries, physical registers) until they are released in pro-
gram order. In contrast, out-of-order commit can re-
lease some resources much earlier, yielding improved 
performance and/or lower resource requirements. Non-
speculative out-of-order commit is limited in terms of 
correctness by the conditions described in the work of 
Bell and Lipasti [5].

In this paper we revisit out-of-order commit by ex-
amining the potential performance benefits of lifting 
these conditions one by one and in combination, for 
both non-speculative and speculative out-of-order com-
mit. While correctly handling recovery for all out-of-
order commit conditions currently requires complex track-
ing and expensive checkpointing, this work aims to demon-
strate the potential for selective, speculative out-of-order 
commit using an oracle implementation without specu-
lative rollback costs.

Mehdi Alipour · David Black-Schaffer · Stefanos Kaxiras
Uppsala University, Department of Information Technology
Uppsala, Sweden
E-mail: first.last@it.uu.se

Trevor E. Carlson
National University of Singapore (NUS),
Department of Computer Science
Singapore
E-mail: tcarlson@comp.nus.edu.sg

Through this analysis of the potential of out-of-
order commit, we learn that: a) there is significant un-
tapped potential for aggressive variants of out-of-order
commit; b) it is important to optimize the out-of-order
commit depth for a balanced design, as smaller cores
benefit from reduced depth while larger cores continue
to benefit from deeper designs; c) the focus on imple-
menting only a subset of the out-of-order commit con-
ditions could lead to efficient implementations; d) the
benefits of out-of-order commit increases with higher
memory latency and in conjunction with prefetching;
e) out-of-order commit exposes additional parallelism
in the memory hierarchy.

Keywords Superscalar Processors · Out-of-Order
Commit · Performance Evaluation · Memory Hierarchy
Parallelism

1 Introduction

Typical dynamically-scheduled superscalar processors
execute instructions out-of-order but commit in-order
to present to the programmer the illusion that instruc-
tions execute atomically and sequentially as intended
by the program. In this context, precise interrupts are
easily provided as the processor verifies correct execu-
tion before each instruction is committed [25].

The disadvantage of in-order commit (IOC) is that
it ties up resources (such as reorder buffer [ROB] en-
tries, load-store queue [LSQ] entries, and physical reg-
isters) for a much longer time than is necessary for
correct execution. In-order commit ties up resources
until all instructions complete and commit in the cor-
rect sequential program order. This means that execu-
tion is halted when any of the resources are exhausted:
when the ROB fills up, or when we run out of either



2 Mehdi Alipour, Trevor E. Carlson, David Black-Schaffer, Stefanos Kaxiras

SLM
SLM_ROOC

SLM_AOOC

NHM
NHM_ROOC

NHM_AOOC

HSW
HSW_ROOC

HSW_AOOC

0.75
1.00
1.25
1.50
1.75
2.00
2.25

IP
C,
 n
or
m
al
ize
d 
to
 S
LM

commit-depth=4 commit-depth=ROB size

Fig. 1: Performance comparison (harmonic mean of
IPCs across SPEC CPU2006 [16]) of in-order and two
types of safe out-of-order commit, reluctant (ROOC)
and aggressive (AOOC), with a commit depth of 4 and
ROB size for increasingly aggressive microarchitectures.
These experiments respect all traditional commit con-
ditions, and show that aggressive out-of-order commit
can reach the performance of the next class of proces-
sor.

LSQ entries or registers. To overcome this hurdle, de-
signers size these structures so that they minimize the
chances of any single resource becoming exhausted, cre-
ating a balanced microarchitecture. This, however, con-
tributes to the power-inefficiency of the OoO cores. At
the very least, after a certain point, increasing the size
of the LSQ (which is usually implemented as an ex-
pensive CAM) or the size of the register file results
in an increase in energy consumption that far exceeds
the performance benefit, a significant disadvantage for
power-constrained processors. Thus, the incentive for
pursuing out-of-order commit (OOC) lies in the promise
of higher performance with fewer resources. A turn-
ing point in our understanding of out-of-order commit
came with the work of Bell and Lipasti [5] who artic-
ulated the limiting factors for non-speculative OOC.
The necessary conditions to allow an instruction to be
committed range from the completion status of the in-
struction itself, to the branch prediction and exception
state of intervening instructions. Several proposals for
out-of-order commit, implicitly or explicitly, abide by
these conditions, potentially harming efficiency to en-
force them.

1.1 Analyses performed

The question we explore in this paper is what could
the performance gain be if we had the means to evade
any one or even all of these conditions together. To the
best of our knowledge, this work is the first to evalu-
ate the potential performance contribution of relaxing
each individual commit condition. For example, we in-

vestigate the potential performance gain if we could
correctly commit past unresolved branches, stores with
unresolved addresses, or instructions that can generate
exceptions. We explore the interactions of out-of-order
commit across a range of important processor design
points, including variations in: prefetchers, MSHRs, mem-
ory latency, branch prediction, and the size of the dy-
namic instruction window. Answering these questions
allows us to understand the most profitable conditions
to address. Our work confirms previous studies [2, 5, 21]
that the least aggressive core benefits the most from
least aggressive out-of-order commit and in addition, by
introducing a taxonomy, for the first time we show that
more aggressive cores gain more, comparatively, from
aggressive out-of-order commit. All in all, our study
shows that as a future direction, not only safe but also
unsafe out-of-order commit appears to be very promis-
ing. This is especially true if the potential benefits can
be tapped with much more efficient and selective mech-
anisms to guarantee correctness, instead of bulk check-
pointing and rollback. Already, such non-speculative
mechanisms have been proposed [24].

1.2 Why We Do it

Bell and Lipasti first articulated the conditions for “safe”
non-speculative out of order commit [5] in an effort to
tackle the problem of improving single-thread perfor-
mance. This was at the same time that IC manufac-
turing broke through the 100nm technology node [10,
3]. However, the acceptance for OOC architectures has
been slow. Today, significantly improving single-thread
performance in an energy-efficient manner remains a
challenge. The goal of this work is to help researchers
to hone in on the most profitable aspects of OOC by
offering: i) a detailed exploration of the limits of out-
of-order commit conditions and ii) a taxonomy for out-
of-order commit [2].

1.3 Analyses outside the scope of this work

However, in this paper we do not quantify the cost that
would be required to guarantee correctness when com-
mitting past any or all of these conditions, as this would
be tied to a specific hardware or software mechanism.
Instead, we evaluate the potential performance benefits
available as a means to gauge the potential of future
proposals in relation to their cost. In the same vein,
we have not explored every possible core optimization
that could be construed as extending the instruction
window outside the core (e.g, run-ahead execution). In
this work we chose to study three common architectures
to provide baselines with understood costs.



Maximizing Limited Resources: A Limit-based Study and Taxonomy of Out-of-order Commit 3

1.4 Contribution

We study safe—non-speculative— out-of-order commit
(refraining from committing until all conditions are met)
and unsafe—speculative— out-of-order commit (com-
mitting even before all conditions are met assuming the
potential for correct recovery). In addition to studying
both safe and unsafe out-of-order commit as a minimum
and maximum potential performance improvement, we
also study out-of-order commit in two additional di-
mensions: aggressiveness and degree of speculation:

– Aggressiveness: A dimension that determines the
potential benefit is the aggressiveness of the out-of-
order-commit implementation: how far into the in-
struction window we try to commit. Prior work [22]
examines this aggressiveness in their implementa-
tion of checkpoint-based out-of-order commit, where
they show a middle-ground in aggressiveness is needed
to mitigate checkpoint-based penalties while still
improving performance.
In addition, work on non-speculative out-of-order
commit [5] has recognized that a restricted commit
window can achieve a good portion of the perfor-
mance improvements compared to an unrestricted,
unlimited out-of-order commit implementation.

– Degree of speculation: Apart from the aggres-
siveness of commit, we also consider varying degrees
of speculation. The insight of this study is that selec-
tive speculation, preserving or relaxing of one more
conditions necessary for out-of-order commit, could
lead to more efficient implementations. In fact, re-
cent work [15, 24] has shown that this might be the
case for load instructions.

1.5 Results

This study aims to provide a guidepost for each major
parameter of out-of-order commit to provide an upper
bound on the performance benefits given a particular
aggressiveness and degree of selective speculation. In
this work, we show that

– there is significant untapped potential for unsafe
out-of-order commit beyond traditional in-order and
safe out-of-order commit; the gap widens in more
powerful architectures;

– for energy-efficient cores with moderately-sized in-
struction windows, reluctant1, limited, out-of-order

1 Reluctant out-of-order commit continues normal in-oredr
commit and is only enabled when the hardware cannot continue
to make forward progress. This mode switching happens early
enough which is a cycle before the related queue (ROB, IQ,
LSQ) is full so that the CPU stall is avoided

commit is sufficient to reap the most benefit, while
aggressive versions of out-of-order commit become
a requirement for larger cores;

– the order of importance of the commit conditions
changes depending on the type of application, the
architecture (limited or aggressive OoO processor),
and the aggressiveness of out-of-order commit (com-
mit depth);

– we unexpectedly found that a focus on specific out-
of-order commit conditions could be an important
future direction for high-performance, efficient out-
of-order processors;

– the potential benefits of out-of-order commit increases
with memory latency (relatively more for unsafe)
while the benefits of the prefetching strategy that
we picked are orthogonal to out-of-order commit
benefits. This raises the enticing possibility of re-
ducing system-wide silicon financial cost without
compromising performance by coupling dense but
higher-latency (slow-but-efficient) DRAM with out-
of-order commit cores;

– out-of-order commit increases memory hierarchy par-
allelism [7];

– While it is generally acceptable that by releasing
pipeline resources as early as possible, out-of-order
commit improves performance in minor and small
cores relatively more than in large cores, in this work
we show that this is only true for reluctant out-of-
order commit. In fact, performance improvement in
large out-of-order cores can exceed that of smaller
cores if aggressive out-of-order commit is employed;

– Our results show the potential for future systems
that implement out-of-order commit, and indicate
which are the most promising directions (safe vs.
unsafe commit, and which of Bell and Lipasti’s con-
ditions [5] are most important to support) for future
designs.

The rest of this paper is organized as follows. In
Section 2 we first provide an overview of the conditions
that need to be honored for in-order commit as well
as provide an overview of out-of-order commit. Next,
in Section 3 we present our evaluation methodology
and simulated system configurations. Section 4 pro-
vides a detailed performance analysis for each out-of-
order commit condition, both from the point of view of
aggressive and reluctant out-of-order commit. In Sec-
tion 5 and Section 6 we compare the early release
of physical register and memory hierarchy parallelism,
respectively, with Out-of-Order commit; extending pre-
vious work [2]. Finally, the related works and conclusion
are presented in Section 7 and 8 respectively.



4 Mehdi Alipour, Trevor E. Carlson, David Black-Schaffer, Stefanos Kaxiras

2 Out-of-Order Commit

The introduction of the reorder buffer (ROB) to pro-
vide in-order commit in an out-of-order scheduled su-
perscalar pipeline was an important advance for com-
puter architecture culminating an effort that started
with Tomasulo’s algorithm, and included techniques such
as reservation stations and the register update unit
(RUU) [26]. The reorder buffer maintains precise ar-
chitectural state in the presence of interrupts, unknown
memory dependencies, or memory re-orderings that can
perturb the ordering required by a memory consistency
model. Out-of-order commit, on the other hand, at-
tempts to break this rigid updating of the architectural
state either in a safe way (i.e., one that does not require
additional speculation and rollback to revert changes to
the architectural state) or in an unsafe way (i.e., one
that does).

2.1 Safe vs. Unsafe OOC

A turning point in our understanding of out-of-order
commit came with the work of Bell and Lipasti [5] in
the form of a number of limiting conditions for safe out-
of-order commit. The necessary conditions to allow an
instruction to be committed out-of-order are:
1. The instruction is completed: instructions can com-

mit only after their completion.
2. The instruction is not involved in memory replay

traps. This condition simply says that we cannot
commit speculative loads or their dependent instruc-
tions. This condition relates to unresolved memory
dependencies or memory consistency enforcement.
For example, total store order (TSO) requires a re-
play of speculative loads that violate load→load or-
dering when this reordering is detected by other
cores.

3. Register WAR hazards are resolved (i.e., a write to
a particular register cannot be permitted to commit
before all prior reads of that architectural register
have been completed).

4. Previous branches are successfully predicted. This
condition simply says that we can commit only while
on the correct path of execution.

5. No prior instruction in program order is going to
raise an exception. This condition provides precise
interrupts and is essential in easing handling of, e.g.,
page faults.
In the rest of this paper we will use the following

convention to discuss how we evade the Bell/Lipasti
conditions.
1. Safe_OOC where all out-of-order-commit condi-

tions are preserved. This case provides the minimum

potential performance improvement of out-of-order
commit, but also the minimum hardware to imple-
ment as it does not rely on speculation and rollback
beyond what is already available in the out-of-order
core.

2. Unsafe_OOC where one or more (or all) of the
out-of-order commit conditions are evaded (apart
from true dependencies). Doing so, the maximum
potential performance improvement of out-of-order
commit is evaluated, but this may require extra sup-
port for speculation and rollback to be able to revert
changes in the architectural state that were found
to be incorrect after the commit.

2.2 Reluctant vs. Aggressive OOC

Aside from the limiting conditions described above, a
separate dimension is the aggressiveness of committing
out-of-order. Thus, concerning the mechanics of out-of-
order commit, we distinguish two versions:

1. Reluctant out-of-order-commit (ROOC): where the
out-of-order commit mechanisms are engaged only
when needed and,

2. Aggressive out-of-order-commit (AOOC): where
the out-of-order commit mechanisms are continu-
ously active, looking for opportunities to commit
instructions as early as possible.

While the always on nature of the aggressive out-of-
order commit is obvious in its meaning, the when needed
of the reluctant out-of-order-commit requires clarifica-
tion. For this paper, reluctant out-of-order commit is
engaged only when the core is in imminent danger of
going into a complete stall. In other words, we engage
reluctant out-of-order commit only when one of the crit-
ical resources (ROB entries, registers, load-store queue
entries) is all but exhausted and cannot support the
fetching of new instructions in the front end of the
pipeline. As such, reluctant out-of-order commit acts as
a safety valve to release the pressure on resources (just
before this pressure reaches a critical point), rather
than aggressively trying to keep resource pressure low.

In contrast, aggressive out-of-order commit releases
resources more eagerly, but disregards the following is-
sues:

1. it might prove wasteful as traditional in-order com-
mit may still be able to provide sufficient resources
for forward progress;

2. it may be futile as the chances of encountering an
instruction that restricts further commit (e.g., an
unresolved branch) tends to increase with aggres-
siveness.



Maximizing Limited Resources: A Limit-based Study and Taxonomy of Out-of-order Commit 5

3. it creates a significant management problem as out-
of-order commit can create gaps in several struc-
tures, including the ROB and also the load queue
and store queue (which is not completely addressed
in prior works [21, 22, 5]).

Commit Width and Depth
The final parameter to explore within the context

of out-of-order commit is the commit depth to scan
for potential instructions to commit out-of-order. While
commit width is the number of instructions that can be
committed simultaneously per cycle, the commit depth
is the measure of how far the core can scan looking for
instructions to commit out-of-order in a given cycle.

2.3 OOC Conditions

In Section 3, we describe the methodology used to com-
mit instructions out-of-order. With this methodology,
we can selectively relax the commit conditions described
in Subsection 2.1 (except completion) while still guar-
anteeing correct execution. For example, by relaxing
the branch condition (Unsafe_BR): “committing only
down a non-speculative path,” we can continue to free
resources past unresolved branches but effectively only
commit from the correct path. In this paper we do
not evaluate the implementation required to relax these
conditions, but instead evaluate the potential for per-
formance improvement. We evaluate the maximum po-
tential performance improvement with a speculative out-
of-order rollback cost of zero. In this section we provide
details on the performance implications of the relax-
ation of a single and combination of conditions.

2.3.1 Instruction complete

The core waits for an instruction to finish executing be-
fore commit can occur. We do not examine early com-
mit of loads [14, 15] that miss in the cache and instead
we consider them available for commit only after the
data returns and is bound to the destination register.

2.3.2 Memory replay traps (safe_ST and safe_LD)

We describe two sub-cases for this condition:
Store-Load (safe_ST): This condition applies to

same-thread memory dependencies involving a store and
a load. In particular, we cannot commit a load out-
of-order in the presence of a prior store with an un-
resolved address. If the store and the load prove to
be dependent (the load should have taken the value
of the store) the commit would have been incorrect.
The LD condition disallows the commit of a load and

its dependent instructions until all prior stores resolve
their addresses and all the memory dependencies are
correctly enforced. By relaxing this condition, we can
commit loads and their dependent instructions even if
prior non-aliasing stores have unresolved addresses.

Load-Load (safe_LD): This concerns memory con-
sistency models that enforce load→load ordering (e.g.,
Sequential Consistency or TSO). Under this ordering
constraint it is possible to allow loads out-of-order as
long as this is not observed in the memory system. The
safe_LD condition disallows the out-of-order commit
of loads unless it is guaranteed that the correct or-
der will be observed by the memory system. To relax
this condition we allow load→load re-orderings that are
not observed by other cores. A very specific case would
be a memory mapped IO (MMIO) request that might
change the order of memory operations. The MMIO
case acts as a ’coprocessor’, meaning that we have a
multi-processor system here. We ignore memory requests
from other cores (IO coprocessor).

2.3.3 WAR hazards

WAR hazards are already handled by the out-of-order
core within the ROB, and we assume a solution such
as the Value Buffer [21] for committing out-of-order.
Thus, we do not consider this condition further.

2.3.4 Unresolved Branches (safe_BR)

This condition guarantees that we commit only from
the correct path of execution. Out-of-order commit should
not proceed past unresolved branches until they are cor-
rectly resolved. We can relax this condition and commit
past an unresolved branch if we are able to undo the
commit. To evaluate maximum performance potential
we assume a zero rollback cost for out-of-order commit
misspredictions. However, the normal branch mispre-
diction cost (10 cycles) is faithfully accounted (see Sub-
section 4.9 for more details.). In addition, we evaluate
the rollback count for this condition in Subsection 4.9.

2.3.5 Exceptions (safe_EXC)

This condition caters to precise interrupts. Enforcing
this condition requires that we do not commit past an
instruction (floating-point, memory access, or any in-
struction that may cause an exception) unless we make
sure that the instruction will not cause a exception. To
relax this safe_EXC condition, we assume the code re-
gions are exception free.



6 Mehdi Alipour, Trevor E. Carlson, David Black-Schaffer, Stefanos Kaxiras

Fig. 2: Conceptual comparison of in-order and out-of-
order commit (commit depth=4). C: Ready to commit,
X: Not ready to commit, E: Executing, I: Issued, O:
Empty entry.

Fig. 3: Functionality of AOOC and ROOC. In this
example AOOC commits one more instruction than
ROOC (commit depth=4). C: Ready to commit, X:
Not ready to commit, E: Executing, I: Issued, O:
Empty entry.

2.4 Safe and Unsafe Out-of-Order Commit

Normally, discussion of out-of-order commit tends to
focus on the changes that occur in the back end of
the pipeline. However, the purpose of out-of-order com-
mit is to enable the front end to proceed. The per-
ception that out-of-order commit increases performance
can also be misleading: instruction execution is not sped
up; it is the removal of conditions that stall the front
end that increases performance. More specifically, in
an unconstrained architecture (unrestricted ROB, reg-
isters, and load/store queue entries), safe out-of-order
commit does not perform faster than in-order commit.
For restricted, real-world implementations, Safe_OOC
helps to ameliorate this problem.

In contrast, Unsafe_OOC has the capacity to ex-
ceed the performance of an unconstrained in-order com-
mit architecture as it removes penalties needed to guar-
antee correctness (e.g., correctly handling memory de-

pendencies, correctly enforcing memory consistency or-
dering, etc.) in situations that the hardware does not
have any other means of imposing such correctness. In
this case, Unsafe_OOC has the potential to violate cor-
rectness and requires a means to revert back to a safe
state if a violation occurs. This can be a good trade-off
when the conditions that violate correctness are rare.
We implement an oracle version of Unsafe_OOC, in
that it violates the correctness conditions because it
will be safe to do so (and therefore no correctness prob-
lems will occur). This removes the need to provide the
mechanisms to revert to a safe state in the case of a mis-
speculation. This model provides a best-case speedup as
recovery from misspeculation is zero cost.

2.5 Aggressive and Reluctant OOC

Orthogonal to the enforcement of the out-of-order com-
mit conditions, the aggressiveness of out-of-order com-
mit plays a significant role in the resulting performance
and the cost it incurs. We introduced two approaches
for out-of-order commit: Aggressive (AOOC) and Re-
luctant (ROOC) out-of-order commit. A good way to
describe them is to contrast their main difference: how
often each mechanism is engaged.

AOOC is engaged all the time, i.e., it constantly
tries to find instructions to commit out-of-order if the
opportunity arises. In this respect it aims to increase
commit bandwidth.

In contrast, ROOC is only engaged when one of the
critical resources in the core (ROB entries, registers,
Load/store queue entries) is about to be exhausted.
ROOC is concerned about front end stalls, not about
commit bandwidth. This means that the number of in-
structions that ROOC needs to find that can commit
out-of-order is limited: ROOC needs to provide enough
free entries in the ROB/registers/LSQ so that the front
end can dispatch as many instructions as possible (up to
the dispatch width) to the out-of-order engine. Figure 2
shows this with an example. The reason that the com-
mit stage of an in-order commit is blocked is because
of an unresolved instruction at the head of ROB. For
example, given a four-wide superscalar, shown in Fig-
ure 2, tries to commit four instructions per cycle. While
the first instruction at the head of ROB can commit,
the second oldest instruction causes the commit stage
to block and instead of four, only one instruction com-
mits (in-order).

The behavior of out-of-order commit depends on its
aggressiveness:

AOOC: AOOC attempts to find up to commit-
width instructions so it can satisfy the need to commit



Maximizing Limited Resources: A Limit-based Study and Taxonomy of Out-of-order Commit 7

Table 1: Baseline core parameters

Full system simulation 3.4 GHz, x86-64
L1i/d 32KiB, 8-way, 4clk
L2 256KiB, 8-way, 12clk
L3 1MiB, 8-way, 36clk
DRAM 200clk
Branch Predictor Tournament, front end penalty 10clk
Prefetcher OFF(default)/ON Stride, degree 8

Table 2: Microarchitecture configuration with reorder
buffer (ROB), instruction queue (IQ), load and store
queues (LQ/SQ) and integer and floating-point regis-
ter file (RF) details. Dispatch width (D), commit width
(CW) and Out-of-Order commit depth (CD) is the
same to enable a fair comparison (SLM hardware has
a D/CW of 2). Register values are additional physical
registers above architectural state.

Microarchitecture D/CW/CD ROB IQ LQ/SQ RF(INT,FP)
Silvermont-like (SLM) 4/4/8 32 32 10/16 32,32
Nehalem-like (NHM) 4/4/8 128 56 48/36 68,68
Haswell-like (HSW) 4/4/8 192 60 72/42 130,130

at the highest possible commit bandwidth. In our ex-
ample it aims to find four instructions. However, since
only one more is needed to fill the gap in the head group
of four leading instructions, AOOC produces an excess
of commit-ready instructions that can potentially be
exploited in the near future.

ROOC: ROOC on the other hand, aims to find
the minimum number of instructions needed to commit
(out-of-order) so that no resource is exhausted and the
front end can continue to issue instructions at its peak
bandwidth. The reason for seeking the minimum num-
ber of instructions to commit out-of-order is that this
minimizes the perturbations in instruction order. This
could potentially lead to more efficient hardware im-
plementations. While Figure 3 only considers the ROB,
in the general case all dispatch-related resources are
considered in the same way. In our particular exam-
ple, ROOC needs to find just one instruction to com-
mit out-of-order. The ROB already contains two empty
slots, and the in-order commit mechanisms can find one
instruction to commit, leaving one left for ROOC.

In contrast, in AOOC mode, there are in total three
instructions that commit (instructions #1, #3 and #4
in Figure 3). The result is that AOOC needs to scan
deeper than ROOC.

3 Methodology

We use the gem5 [6] simulator in full system mode to
simulate an x86-64 target with a frequency of 3.4GHz.
To test our models, we use the SPEC CPU2006 bench-
mark suite. We use ten uniformly distributed check-
points from each benchmark. Each simulation check-

point has three phases that begin with 250M instruc-
tions of cache warm-up, followed by 100k instructions of
detailed pipeline warm-up and ends with a detailed sim-
ulation of 100M instructions. Furthermore, three dif-
ferent configurations, similar to three conventional out-
of-order processors, are used: Intel’s SLM, NHM, and
HSW [9] microarchitectures. Tables 1 and 2 list the de-
tailed configuration of the simulation environment.

To implement our out-of-order commit model, we
first configure a simulated machine with a very large
number of core resources. We then monitor the number
of committed and non-committed instructions that ap-
pear in the pipeline, and control, at dispatch, whether
we can support additional instructions in the back end
of the processor. In this way, we dynamically determine
the resource availability in the processor for each cycle
based on the out-of-order commit conditions.

4 Out-of-Order Commit Evaluation

In this section we analyze the benefits of out-of-order
commit on the performance of a number of applica-
tions. We look at how the commit bandwidth changes
with out-of-order commit, and how the effective re-
source size of each critical component changes as we
enable different out-of-order commit conditions. Next,
we show how out-of-order commit conditions affect per-
formance. Safe_OOC and Unsafe_OOC are two ex-
treme points that are defined by either enabling (re-
specting) or disabling all of the out-of-order commit
conditions. This results in a minimum and maximum
potential performance improvement across the bench-
mark suite. To understand the effect of each condition
in isolation, we study the effect of each one, both in the
presence and absence of other conditions. These stud-
ies on Safe_OOC and Unsafe_OOC conditions were
conducted for both Aggressive (AOOC) and Reluctant
(ROOC) out-of-order commit.

4.1 Microarchitecture Aggressiveness

We target three microarchitectures resembling Intel’s
Silvermont (SLM), Nehalem (NHM) and Haswell (HSW)
as small, medium and large cores (See Table 2 for de-
tails). As an overview, Figure 1 shows the performance
improvement for each microarchitecture assuming Safe-
OOC (all conditions respected) for all benchmarks on
average across SPEC CPU2006 [16] . We can see that
in the case of narrow commit depth (four in this fig-
ure), a relatively small out-of-order processor (SLM),
has more potential for relative improvement compared
to the medium and aggressive microarchitectures. The



8 Mehdi Alipour, Trevor E. Carlson, David Black-Schaffer, Stefanos Kaxiras

SLM SLMOOC

NHM
NHMOOC

HSW
HSWOOC

20
40
60
80

100

Cy
cle

s (
%
)

4 committed
3 committed

2 committed
1 committed

0 committed

Fig. 4: Commit bandwidth distribution for the SPEC
CPU2006 benchmarks of a 4-wide core with in-order
commit and out-of-order commit respecting all commit
conditions (Safe_OOC). Out-of-order commit increases
commit pressure even without aggressive speculation.

reason is that the smaller processor (with a shorter in-
struction reach and, given a balanced design, smaller
hardware structures) will more likely stall as it exposes
a smaller amount of the potential ILP in an applica-
tion. In case of a larger commit depth, the more ag-
gressive cores (NHM and HSW) have higher potential
performance improvement (See Section 4.4 for a de-
tailed overview). Out-of-order commit frees the proces-
sor from the traditional limits, reducing the number of
times the processor experiences exhausted resources. In
medium and large aggressive cores, thanks to a larger
ROB as well as other hardware resources, more intrinsic
ILP is extracted by traditional in-order commit, leav-
ing less potential for out-of-order commit with a narrow
commit depth.

4.2 The Effect on Commit Bandwidth

Figure 4 shows the distribution of the number of com-
mitted instructions per cycle for three different microar-
chitectures, for both in-order and out-of-order commit,
across all SPEC CPU2006 benchmarks. Although an in-
order commit, 4-wide commit HSW microarchitecture
can retire up to four instructions per cycle, this occurs,
on average, less than 20% of the time. In practice we
see a large number of commit stage stalls (zero instruc-
tions committed per cycle). For out-of-order commit,
the distribution shifts toward four instructions per cy-
cle reflecting the improved commit performance (and
the resulting improvement in overall performance). Fi-
nally this figure shows that for smaller, less aggressive
cores (such as SLM, see Table 2), out-of-order commit
provides a relatively larger improvement compared to
the other microarchitectures because of the short com-

LQ SQ IQ RF ROB
0.0

0.5

1.0

1.5

2.0

No
rm

al
ize

d 
ef
fe
ct
iv
e 
siz

e

IOC Safe_OOC Unsafe_OOC

Fig. 5: Effective resource use in in-order and Aggressive
out-of-order commit across SPEC CPU2006.

mit depth of four. Larger cores improve more with more
aggressive commit depths and out-of-order commit pa-
rameters (see section 4.4 for details).

4.3 The Effect on Resources

One of the main issues that out-of-order commit can
help resolve is the early release (and subsequent reuse)
of hardware resources that otherwise would still be re-
quired to maintain the in-order state in an in-order
commit processor. Therefore, with a small ROB (and
other appropriately sized structures) given in-order com-
mit, the core can more easily stall when it runs out of
resources. For example, consider a ROB size of 32 from
a SLM microarchitecture. When the ROB is full it con-
tains 32 micro-operations in flight and the CPU’s back
end will no longer accept additional micro-operations
from the front end. Increasing the physical size of the
ROB along with other resources is one potential, but
rather expensive, solution to this issue. An alternative
solution, and one of the benefits of using out-of-order
commit, is the early release of resources. This early re-
lease increases the effective size of a resource (compared
to an in-order commit core) improving performance of
the core.

Benchmark specific analysis. The xalan bench-
mark is one of the top 5 benchmarks with a large num-
ber of CPU stalls caused by exhausted resources. Both
AOOC and ROOC are very effective for the xalan bench-
mark. OOC is able to provide additional free entries in
the ROB, RF and LSQ (see Figure 7).

On the other hand, leslie3d has the lowest num-
ber of CPU stalls based on exhausted resources, which
limits the potential for improvement with OOC.

Figure 5 compares the effective size of the SLM mi-
croarchitecture between in-order commit and both safe
and unsafe aggressive out-of-order commit (AOOC) mod-
els for the SPEC CPU2006 benchmarks. The results
are normalized to a fixed size SLM_IOC microarchitec-
ture (see Table 2). An effective size of 1.0 translates to
frequent stalls due to resource exhaustion, while sizes



Maximizing Limited Resources: A Limit-based Study and Taxonomy of Out-of-order Commit 9

4 8 16 32 128
192

(a) SLM

20

40

60

80

100

120

Pe
rfo

rm
an
ce

im
pr
ov
em

en
t (
%
)

4 8 16 32 128
192

Commit depth

(b) NHM

20

40

60

80

100

120

Safe_OOC Unsafe_OOC

4 8 16 32 128
192

(c) HSW

20

40

60

80

100

120

Fig. 6: Effect of commit depth on performance improve-
ment normalized to their respective in-order commit
performance across SPEC CPU2006. The smaller core
receives less benefit from increasing the depth of com-
mit. Safe_OOC saturates at a commit depth of 8, 16
and 32 for SLM, NHM and HSW respectively. (the dis-
tance to the first unresolved instruction from the head
of the ROB). There is no saturation in performance im-
provement of Unsafe_OOC while the commit depth is
increased.

greater than 1.0 shows the effective resource size in-
creases due to OOC.

For aggressive out-of-order commit, the larger effec-
tive sizes show the reach of this technique. We see that
the utilization of all structures except for the ROB is
almost the same for safe and unsafe out-of-order com-
mit, which allows Safe_OOC to achieve most of the
performance of the unsafe version. Nevertheless, the un-
safe core is much better at improving the reach of the
ROB, allowing applications like hmmer continue to show
a benefit when moving from safe to unsafe out-of-order
commit. See Section 4.5.2 for more details on hmmer.

4.4 Evaluation of Commit Depth

To gauge the effect of the commit depth (i.e., how far we
scan the ROB to find instructions that can commit out-
of-order) we impose a hard limit on it and evaluate the
effects on the resulting performance. The strictest limit
is the commit-width itself: starting to commit out-of-
order from the first commit-width instructions. We then
relax this to the immediate vicinity (e.g., double the
commit-width) and progressively relax until we reach
the size of the ROB.

In Figure 6 we see that a commit depth of 4 (equal
to commit width) provides the smallest benefit, but also
the smallest difference between Safe_OOC and Un-
safe_OOC. In addition, the SLM core benefits more
from OOC compared to NHM and HSW when com-
mit depth is smaller than 8. At a commit depth of 8
and above, the large aggressive cores benefit much more

than the smaller core type with the maximum improve-
ment of Unsafe_OOC at 80%, 119% and 129% for SLM,
NHM and HSW, respectively. For aggressive cores, the
larger commit depth allows for continued performance
improvements, and will be necessary for the design of a
balanced, aggressive out-of-order commit design.

4.5 Out-of-Order Commit Performance

In this section we analyze the out-of-order commit con-
ditions to determine the minimum (and maximum) per-
formance improvement potential. The minimum and
maximum improvement is provided by Safe_OOC and
Unsafe_OOC, respectively. In Figure 7, we show the
amount of improvement provided by both safe and un-
safe out-of-order commit, for both aggressive and reluc-
tant modes, for all three microarchitectures.

4.5.1 Safe_OOC

Honoring all out-of-order commit conditions results in a
modest performance improvement. One implication for
future processors is that Safe_OOC does not require
additional support for speculative out-of-order rollback
recovery mechanisms; it requires support for the com-
mit of instructions out-of-order and the freeing of struc-
tures for use by future instructions.

Safe_AOOC. When Safe_AOOC is evaluated on
the SLM microarchitecture (see Figure 7a), the range
of improvement spans from a low of 3% (leslie3d) up
to 82% (xalan), with an average of 44%. In the NHM
microarchitecture, the improvement ranges from 9% to
108% for milc and xalan, with an average improvement
of 57%, and for HSW, we see an improvement of 1%
for mcf to 110% for wrf, with an average of 55% (See
Section 4.4 for more details).

Safe_ROOC. For Safe_ROOC, the performance
improvement is lower for all three microarchitectures
compared to AOOC (See Subsection 2.5 for additional
details). In the SLM microarchitecture, the range of
performance improvement of safe ROOC is from 2% to
55% for calculix and gcc respectively, with an average
improvement of 20%. In the NHM microarchitecture,
we see performance improvements that range from 1%
(mcf) to 22% (bwaves) with an average improvement of
7% (8% for HSW). Because NHM and HSM have fewer
CPU stalls, ROOC has less of an effect on performance
compared with the smaller, more efficient core.

4.5.2 Unsafe_OOC

By relaxing all conditions, Unsafe_OOC provides the
maximum potential for performance improvement. Un-



10 Mehdi Alipour, Trevor E. Carlson, David Black-Schaffer, Stefanos Kaxiras

0
20
40
60
80

100
120
140

Pe
rfo

rm
an

ce
im

pr
ov

em
en

t (
%
) a) AOOC across SpecCPU

SLM_Unsafe
SLM_Safe

NHM_Unsafe
NHM_Safe

HSW_Unsafe
HSW_Safe

astar
bwaves

bzip cactusadm

calculix
dealii

gamess
gcc gemsfdtd

gobmk
gromacs

h264ref
hmmer

lbm leslie3d
libquantum

mcf milc namd
omnetpp

perl povray
sjeng

soplex
sphinx3

tonto
wrf xalan

zeusmp
SpecCPU-avg

0
20
40
60
80

100
120
140

b) ROOC across SpecCPU

Fig. 7: IPC improvement of safe and unsafe out-of-order commit relative to in-order commit as a baseline for both
reluctant and aggressive versions applied on SPEC CPU2006 benchmarks on three microarchitectures.

safe_OOC will require recovery mechanisms for these
techniques, which can reduce the performance potential
because of recovery costs.

To understand the effectiveness of all conditions to-
gether we consider zero cost for recovery for any mis-
speculated out-of-order commit condition.

Unsafe_AOOC This technique provides the high-
est performance improvement for all three different ar-
chitectures. In SLM cores, the improvement ranges from
9% to 120% for libquantum and astar applications
respectively and the average is 59%. In NHM archi-
tecture, the average is 72% and the range is between
milc and astar respectively with 11% and 196% im-
provement. In HSW cores, similar to NHM cores, astar
has the maximum benefit from Unsafe_ooc with 192%
improvement, while the minimum improvement is for
dealii, at 7%. The average improvement for this class
of architecture is 70%.

Unsafe_ROOC Reluctant out-of-order commit is
lower performing because it is not continuously looking
to commit additional instructions (See Section 2.5 for
details). In the case of SLM, the improvement ranges
from 3% to 93% respectively for leselie3d and xalan
with an average of a 38% improvement. In NHM, mcf
and bwaves with 1% and 22% show the maximum and
the minimum improvement with an average of 7% (HSW
is similar with an average of 8%). Between the three
microarchitectures, the limited SLM benefits the most
from ROOC because of the large number of stalls seen
by this core. Therefore ROOC, especially Unsafe_ROOC,
is an interesting methodology to improve the perfor-
mance of relatively small but energy efficient CPUs as
we see a relatively high performance improvement for
a less aggressive commit implementation.

Benchmark-specific Analysis. The hmmer bench-
mark is a particularly strong case for the benefits of out-
of-order commit for SLM. This application is L1-cache
resident, and exhibits very few last-level cache misses.
Nevertheless, we still see a very strong improvement in
performance, from 33% to 52% for Safe_OOC, increas-
ing to 51% to 66% for Unsafe_OOC. Looking ahead
to Figure 8 and Figure 11, we can see that evading
the branch condition provides the most benefit for this
application. Making room for additional instructions to
allow the hardware to expose additional ILP works well
even for those applications without a significant num-
ber of LLC misses. The mcf benchmark contains load-
dependent branches, has the highest MPKI (misses per
kilo instructions) among the benchmarks and therefore,
it has a rather low IPC when it is executed on an in-
order commit CPU. This results in a good opportunity
to improve performance as it is extremely limited by
these misses.

4.6 Performance Effects of Commit Conditions

In the previous section, by analyzing safe and unsafe
out-of-order commit, we observe that there is a large
gap between the performance improvement of these two
implementations. Understanding the cause of this per-
formance improvement (by looking at individual com-
mit conditions in isolation), allows us to better under-
stand where to focus future hardware efforts.

4.6.1 Positive Contribution of Out-of-Order Commit
Conditions

To study the gap between safe and unsafe out-of-order
commit (Figure 7), we analyze the effect of relaxing



Maximizing Limited Resources: A Limit-based Study and Taxonomy of Out-of-order Commit 11

0
20
40
60
80

100

Co
nt
rib

ut
io
n 
in

im
pr
ov

em
en

t (
%
) a) SLM-AOOC across SpecCPU

Safe Unsafe_LD Unsafe_ST Unsafe_BR Unsafe_EXC

0
20
40
60
80

100
b) AOOC, SpecCPU average

astar
bwaves

bzip cactusadm

calculix
dealii

gamess
gcc gemsfdtd

gobmk
gromacs

h264ref
hmmer

lbm leslie3d
libquantum

mcf milc namd
omnetpp

perl povray
sjeng

soplex
sphinx3

tonto
wrf xalan

zeusmp

0
20
40
60
80

100
c) SLM-ROOC across SpecCPU

SLM-avg
NHM-avg

HSW-avg

0
20
40
60
80

100
d) ROOC, SpecCPU average

Fig. 8: Contribution of safe and selectively unsafe out-of-order commit on three different microarchitectures.
Unsafe_XX is equivalent to activating (enforcing) all out-of-order commit conditions except XX (the XX condition
is relaxed). By relaxing the specific XX condition, the dependence between other conditions is also observed.

each condition in the presence of the other preserved
conditions in Figure 8. We analyze the SLM microar-
chitecture in detail and provide averages across all mi-
croarchitectures for both AOOC and ROOC. Each out-
of-order commit condition in analyzed in isolation, and
we consider Unsafe_OOC (all relaxed conditions) as
the 100% potential improvement budget. In the case of
the mcf benchmark in Figure 7a, the safe and unsafe
OOC performance improvement is 33% and 71% re-
spectively (46% of the potential improvement budget is
provided by Safe_OOC). We also observe that by re-
laxing the LD condition (unsafe_LD), 52% of potential
improvement budget is achievable (see Figure 8a). In
Figure 8, we can see in some applications (like namd in
AOOC mode and leslie3d in ROOC mode) that re-
laxing just a single condition is not sufficient to fill the
gap between safe and unsafe OOC. This does not mean
that a single condition is not important, but rather that
other preserved conditions are preventing out-of-order
commit from achieving its full potential.

AOOC. We observe that for most of applications
Unsafe_BR and Unsafe_LD are the most interesting
conditions (Figure 8a). Additionally, the more aggres-
sive the core, the more important the Unsafe_LD con-
dition becomes. In SLM, NHM and HSW CPUs, Un-
safe_LD respectively fills 4%, 10% and 12%, and Un-
safe_BR fills 9%, 8% and 7% of the gap between safe
and unsafe OOC. Unsafe_ST is not very effective be-
cause of the rarity of this condition and the conserva-
tive memory dependence predictor used. Unsafe_EXC
or relaxing exceptions are not that effective because
they are very rare, especially in integer benchmarks.

ROOC. Relaxing OOC conditions in ROOC has
less effect in reducing the gap between safe and un-
safe OOC and this is because of the nature of this on-
demand OOC mode which is enabled and needed more

in SLM and much less in NHM and HSW (see Fig-
ure 7b).

Benchmark-specific Analysis. The astar and
gobmk benchmarks have the highest number of mis-
predicted branches per 1000 instructions. Therefore re-
laxing the branch condition (unsafe_BR) improves the
performance of these two benchmarks by 68% and 94%
respectively. On the other hand, benchmarks such as
cactusadm and lbm have a low branch misprediction
rate (0.5%) and therefore relaxing the branch condi-
tion does not show significant improvement for these
benchmarks.

The sphinx benchmark has high degree of intrinsic
ILP2, thus an increase in the number of effective re-
sources allows this benchmark to improve performance.
As most of its load instructions are L2-cache misses,
relaxing the load condition (Unsafe_LD) improves per-
formance of this benchmark.

4.6.2 Negative contribution of OOC conditions

In this section we analyze the gap between safe and
unsafe out-of-order commit from a different angle.

We relax all of the out-of-order commit conditions
except for one. For example safe_LD means the LD
condition is preserved but ST, BR and EXC conditions
are relaxed. By preserving one of the conditions we look
at the negative effect (performance reduction) of the
activated condition compared to Unsafe_OOC.

Figure 11 depicts the effect of each condition on
performance. For most of the benchmarks, the BR and
the LD conditions are the most effective ones. Among
floating-point benchmarks, LD and EXC conditions have
a large impact on performance. Therefore, relaxing the
EXC condition, as it is rare, could lead to significant

2 The sphinx benchmark continues to show performance im-
provements as the in-order commit processor aggressiveness in-
creases from SLM to HSW.



12 Mehdi Alipour, Trevor E. Carlson, David Black-Schaffer, Stefanos Kaxiras

200 400 600 800 1000
DRAM latency (cycle)

0
20
40
60
80

100
120
140
160

Pe
rfo

rm
an

ce
im

pr
ov

em
en

t (
%

)
Safe_OOC Unsafe_OOC

Fig. 9: A comparison between safe and unsafe out-of-
order commit across DRAM latencies for SLM and
AOOC on SPEC CPU2006. OOC improvement in-
creases with a higher DRAM latency. Unsafe_OOC
outperforms Safe_OOC. This study uses caches that
are four times smaller compared to Table 1 to put ad-
ditional stress on the DRAM. This has been done for
both in-order and out-of-order commit configurations.

performance improvements at relatively low cost, espe-
cially if recovery mechanisms in software are used. ST
has the least effect among out-of-order commit condi-
tions when it is preserved in isolation from other condi-
tions. This is valid between all three microarchitectures.

4.7 Memory Latency Evaluation

Current DRAM cells are optimized for cost, and not
for access latency [20]. The potential to use more af-
fordable, but higher latency memory could have a large
impact on allocation of memory in datacenter servers
as high density DRAM modules cost much more than
those that are 4× smaller (1.75× per GB [4]). To eval-
uate the potential of out-of-order commit to handle
higher DRAM latency, we evaluate memory latency from
200 cycles to 1000 cycles in 200 cycle increments. In
addition, we reduce the size of all caches by 4 times
when compared to Table 1, to put additional stress on
the DRAM subsystem. Here we see an increasing per-
formance improvement for the Unsafe_OOC condition,
while Safe_OOC increases linearly compared to the in-
order commit core. For memory-intensive applications,
an efficient implementation of Unsafe_OOC could al-
low the use of denser, higher-latency DRAM that could
potentially cost much less.

4.8 Prefetching Evaluation

Prefetching is essential for performance in modern sys-
tems and interacts tightly with the pipeline and out-
of-order commit. We do not consider all prefetching
options, but instead focus on the potential benefits.
Therefore, to evaluate this interaction, we configure the
L1-D cache in gem5 with a stride prefetcher of degree
8. Figure 10 compares the relative performance gains

IOC+pref

AOOC
AOOC+pref

(b) SLM

0

20

40

60

80

Pe
rfo

rm
an

ce
im

pr
ov

em
en

t (
%

)

IOC+pref

AOOC
AOOC+pref

(b) NHM

0

20

40

60

80

IOC+pref

AOOC
AOOC+pref

(c) HSW

0

20

40

60

80

Fig. 10: The effect of aggressive out-of-order commit on
the performance with and without prefetchers in the
L1 data cache across SPEC CPU2006. Improvement
is relative to the baseline IOC architectures without
prefetchers.

of prefetchers for in-order commit, out-of-order com-
mit, and prefetchers for out-of-order commit. Across
all three architectures, both out-of-order commit and
prefetching on their own provide roughly 40% improve-
ment in performance, with out-of-order commit being
slightly better. However, the combination of out-of-order
commit and prefetching delivers nearly 70% better per-
formance, nearly the sum of the two independent contri-
butions. In fact, combining aggressive out-of-order com-
mit with prefetchers allows us to reach 84% of the ideal
(sum of both) improvement for SLM, 77% for NHM,
and 83% for HSW, showing that these techniques work
well together.

4.9 Rollback Costs for Unsafe Branches

While this work does not evaluate hardware costs, we
are able to evaluate the number of rollbacks caused by
committing past a mispredicted branch for each of the
evaluated configurations. For this evaluation, we use a
commit depth of 8, with aggressive out-of-order commit
(AOOC) and Unsafe_BR (only the branch condition
is not respected for out-of-order commit). In Table 3,
we list the number of executed branches, mispredicted
branches, the number of rollbacks caused by specula-
tively committing a mispredicted branch, and the num-
ber of instructions that were rolled back due to this roll-
back. While the number of executed branches increases
with the aggressiveness of the core (because these cores
can more aggressively speculate past branches), the av-
erage number of rollbacks (and instructions rolled back)
decreases slightly with the aggressiveness of the core.
These aggressive cores resolve speculative state quickly,
reducing the number of instructions that need to be
committed out-of-order. This results in a similar num-
ber of rollbacks per thousand architecturally committed
instructions, around 3, for all configurations.



Maximizing Limited Resources: A Limit-based Study and Taxonomy of Out-of-order Commit 13

0
−20
−40
−60
−80Co

nt
rib

ut
io
n 
in

de
gr
ad

at
io
n 
(%

) a) SLM-AOOC across SpecCPU

Safe_LD Safe_ST Safe_BR Safe_EXC

0
−20
−40
−60
−80

b) AOOC, SpecCPU average

astar
bwaves

bzip cactusadm

calculix
dealii

gamess
gcc gemsfdtd

gobmk
gromacs

h264ref
hmmer

lbm leslie3d
libquantum

mcf milc namd
omnetpp

perl povray
sjeng

soplex
sphinx3

tonto
wrf xalan

zeusmp

0
−20
−40
−60
−80

b) SLM-ROOC across SpecCPU

SLM-avg
NHM-avg

HSW-avg

0
−20
−40
−60
−80

d) ROOC, SpecCPU average

Fig. 11: Maximum potential performance improvement is provided by Unsafe_OOC in which all conditions are
unsafe. By preserving all conditions, maximum performance is reduced. This figure shows the negative effect of
preserving (or making safe) a single condition compared to the maximum potential performance improvement.
Safe_XX is equivalent to disabling all out-of-order commit conditions (all unsafe, highest performance) where XX
indicates the only safe and preserved condition.

Table 3: Out-of-Order Commit Costs for Unsafe
Branches

Metric-PKI SLM NHM HSW
Avg Max Avg Max Avg Max

Branches 146.2 373.3 153.3 460.8 156.8 495.7
Mispred. br. 7.8 50.9 8.1 54.5 8.2 56.0
Num rollbacks 3.2 24.3 3.1 25.6 3.0 26.5
Instrs rollback 8.5 52.9 6.6 43.0 5.4 34.3

5 Memory Parallelism

Overlapping cache misses to service them in parallel,
in particular long-latency accesses to DRAM, but also
lower-latency accesses to the LLC, can result deliver
significant performance benefits [8]. This memory par-
allelism is typically achieved through the use of multi-
ple Miss Status Holding Registers (MSHRs) [19], which
track outstanding memory requests, and allow them to
execute in parallel. In this section, we compare in-order
commit and out-of-order commit in terms of memory
parallelism (both to DRAM (MLP) and within the cache
hierarchy (MHP) [7]) by changing the number of L1
MSHRs and observing the effect on performance. To
explore these effects, we select three applications that
are highly memory-bound [18] (mcf), medium memory-
bound (lbm), and largely not memory-bound (gcc) in
Figure 12. One key observation is that out-of-order com-
mit, in both reluctant and aggressive modes, is much
better than in-order commit in exposing intrinsic ap-
plication memory parallelism. Figure 12 shows that the
gap between in-order and out-of-order commit is much
larger in the case of HSW which means that the more
aggressive is the microarchitectures, the more MLP is
covered if we apply out-of-order instruction commit. In
case of lbm, comparing the SLM, NHM and HSW we
observed that the rate of performance improvement in
the range of (1 <= MSHRSize <= 5) is higher than

the rate in the range of (5 < MSHRSize <= 9). In
the range of (MSHRSize > 9)), HSW and NHM have
continued improvement. This is most likely the result
of an additional loop iteration containing DRAM ac-
cesses that is being covered by out-of-order instruction
commit.

Figure 12 also allows us to explore the impact of
memory-boundedness by comparing across the three
applications (mcf is most memory bound, gcc least). Al-
thoughmcf (Figure 12 (d), (e) and (f)) is more memory-
bound than lbm, (Figure 12 (g), (h) and (i)), it exposes
less memory parallelism when the number of MSHRs
is increased (the gap between in-order commit and safe
aggressive out-of-order commit is larger in case of lbm
compared to mcf ). This is because mcf has more iso-
lated cache misses, that are misses that cannot be ser-
viced at the same time to provide memory level par-
allelism. Also, mcf has branch instructions based on
memory accesses (dependent loads) that miss in the
cache hierarchy, thereby reducing the number of in-
structions that can potentially be committed out-of-
order. lbm has medium level of memory-boundedness
[18], and therefore exposes much more memory paral-
lelism as the number of MSHRs is increased. Its per-
formance improvement is therefore much better when
the CPU commits instructions out-of-order. gcc bench-
mark, Figure 12 (j), (k) and (l), is one of the least
memory-bound benchmarks. As a result, increasing the
number of MSHRs does not improve its performance,
even in the case of unsafe out-of-order commit. Over-
all, out-of-order commit outperforms in-order commit
by exposing additional memory parallelism (both to
DRAM and in the hierarchy). In summary, in case of
MLP, out-of-order commit provides more benefit for
bigger architecture and more memory-bound applica-
tions.



14 Mehdi Alipour, Trevor E. Carlson, David Black-Schaffer, Stefanos Kaxiras

1 2 3 4 5 6 7 8 9 10
1
2
3
4
5
6
7
8
9

No
rm

al
ize

d 
Pe

rfo
rm

an
ce

im
pr
ov

em
en

t (
%
)

(a) SPEC2006, SLM

1 2 3 4 5 6 7 8 9 10
1
2
3
4
5
6
7
8
9

(b) SPEC2006, NHM

IOC Safe-AOOC Unsafe-AOOC

1 2 3 4 5 6 7 8 9 10
1
2
3
4
5
6
7
8
9

(c) SPEC2006, HSW

1 2 3 4 5 6 7 8 9 10
1
2
3
4
5
6
7
8
9

(d) mcf, SLM

1 2 3 4 5 6 7 8 9 10
1
2
3
4
5
6
7
8
9

(e) mcf, NHM

1 2 3 4 5 6 7 8 9 10
1
2
3
4
5
6
7
8
9

(f) mcf, HSW

1 2 3 4 5 6 7 8 9 10
1
2
3
4
5
6
7
8
9

(g) lbm, SLM

1 2 3 4 5 6 7 8 9 10
1
2
3
4
5
6
7
8
9

(h) lbm, NHM

1 2 3 4 5 6 7 8 9 10
1
2
3
4
5
6
7
8
9

(i) lbm, HSW

1 2 3 4 5 6 7 8 9 10
1
2
3
4
5
6
7
8
9

(j) gcc, SLM

1 2 3 4 5 6 7 8 9 10
MSHR size

1
2
3
4
5
6
7
8
9

(k) gcc, NHM

1 2 3 4 5 6 7 8 9 10
1
2
3
4
5
6
7
8
9

(l) gcc, HSW

Fig. 12: Memory hierarchy parallelism comparison between in-order commit and safe and unsafe out-of-order
commit in MSHRs size of 1 to 10. The results have been normalized to in-order commit with MSHR size of one.
Subgraph (a), (b) and (c) are based on harmonic mean across SPEC CPU2006. The mcf, lbm and gcc benchmarks
are respectively representative of categories with high, medium and low memory boundedness.

6 Early Release of Physical Registers vs.
Out-of-order Commit

Register renaming enables the avoidance of false de-
pendencies through the register file, thereby improving
core performance. It does this by translating architec-
tural registers to larger set of physical registers. As this
renaming is done early in the pipeline, and the physi-

cal registers are not released until commit, which may
happen long after the last consumer reads the data, the
physical register entries may be kept alive for longer
than what the dependencies alone require. To address
this resource constraint, techniques such as delayed al-
location and Rarly Release of the Physical Register



Maximizing Limited Resources: A Limit-based Study and Taxonomy of Out-of-order Commit 15

Table 4: The Contribution of exhausted (full) regis-
ter file (RF) and reorder buffer (ROB) on CPU stalls.
Other reasons to the CPU stalls could be the instruc-
tion queue (IQ), the load-store queue (LSQ), instruc-
tions cache misses or not having a free functional unit
to allocate to the ready-to-dispatch instructions.

Microarchitecture RF% ROB% Other%
min avg max min avg max min avg max

SLM 6 59 86 13 36 92 0 5 27
NHM 2 68 91 8 30 98 0 20 7
HSW 2 69 91 8 29 98 0 20 7

(ERPR) [23] have been developed. In this section, we
compare ERPR with the OOC taxonomy [2].

OOC and ERPR are similar as they release physical
register as early as possible. Aggressive OOC outper-
forms ERPR in general because it releases ROB and
LSQ entries early, as well as physical registers. Unfor-
tunately, neither ERPR nor OOC can release IQ entries
earlier than usual because OOC only address processor
state after the instructions have left the IQ and ERPR
is effective before instructions are inserted tot the IQ.
From another point of view OOC put additional pres-
sure on the IQ and provides free entries in one or all of
the resource of superscalar processors.

6.1 Analysis of CPU Aggressiveness

CPU aggressiveness analysis in this context is based
on microarchitecture configurations (see Table 2) and
commit-depth. The overall trend of Figure 13 shows
that AOOC outperforms ROOC and ERPR in all con-
figurations. This is not surprising, as AOOC is always
enabled, while ROOC is enabled only when a resources
is exhausted (see Section 2.5).

ERPR is essentially a subset of AOOC that only fo-
cuses on the register file (RF). Therefore, the higher is
the program sensitivity to the RF capacity, the higher is
the effect of ERPR. To better understand this behavior,
we analyzed the reasons for CPU stalls across different
microarchitectures (Table 4). The data show that in-
creasing the effective size of RF (e.g., what ERPR does
conceptually) is less effective in SLM compare to NHM
and HSW barbecue is SLM, the CPU stalls are more
often due to other resources, such as the ROB size. As
a result since in SLM architecture the size of RF is
less effective in CPU stalls, ROOC outperforms ERPR
in terms of performance improvement (ROOC can vir-
tually extend the effective size of ROB, LSQ as well
as RF although ERPR only does this on RF). RF in
NHM and HSW architectures is more effective on CPU
stall than in SLM architecture therefore, ERPR out-

performs ROOC regarding performance improvement
in these two architecture.

By focusing only on ERPR, we observe that the
wider the core the more effective is the is increasing
commit-depth (wider commit-depth covers more ready
instructions to commit). For example, in the case of
SLM, although widening the commit-depth releases ad-
ditional physical registers earlier than general, these
freed registers are not effective anymore because the
CPU stalls are due to limits in other resources (like
ROB, IQ or LSQ). As NHM and HSW have more re-
sources, increasing the commit-depth is more effective
in those architectures. In the case of AOOC, increas-
ing the commit-depth is more effective than ROOC
and ERPR because it enables additional instructions
to be committed out-of-order. (because it is active on
every cycle compare to ROOC and also affects all of
the resources compare to ERPR that only affects the
RF) In addition, we can see that the more aggressive
the CPU, the more effective is increasing the commit-
depth. This is because wider cores execute and com-
plete instructions that are far from the head of ROB
earlier with their additional resources(either provided
by the baseline or released by the OOOC), and they
can therefore provide more instructions to commit if
the commit-depth is increased.

6.2 Analysis of Out-of-Order Conditions

Figure 13 shows the potential for performance improve-
ment from relaxing the out-of-order commit conditions
across the three architectures for both safe and unsafe
out-of-order-commit. As has been seen previously [2, 5,
21], the least aggressive out-of-order commit configu-
ration (safe_OOC with a commit depth of 4) is most
beneficial for the least aggressive out-of-order processor,
SLM (compare the left-most bars of Figure 13(a-c)).
This is expected, as the SLM processor has the least ex-
ecution hardware and therefore suffers from more stalls
than the more aggressive processors.

Increasing the commit depth from 4 to 8 (second
group of bars in Figure 13(a-c)) shows that the more ag-
gressive out-of-order processors (NHM and HSW) now
benefit more from out-of-order commit than the sim-
pler SLM architecture. This new result shows the inter-
action between the aggressiveness of the out-of-order
execution and out-of-order commit: for more aggres-
sive out-of-order execution, there is more benefit from
more aggressive out-of-order commit. The reason is that
aggressive architectures appear to have more unused
resources available for computation. This trend con-
tinues through the more aggressive out-of-order com-
mit modes as well, with unsafe optimizations (Figure



16 Mehdi Alipour, Trevor E. Carlson, David Black-Schaffer, Stefanos Kaxiras

4 8 16 32
0

20
40
60
80

100

Pe
rfo

rm
an

ce
im

pr
ov

em
en

t (
%
) (a) SLM-SAFE

4 8 16 32 128
Commit Depth

0
20
40
60
80

100

(b) NHM-SAFE
AOOC ROOC ERPR

4 8 16 32 128 192
0

20
40
60
80

100

(c) HSW-SAFE

4 8 16 32
0

20
40
60
80

100

(d) SLM-UnsafeLD

4 8 16 32 128
0

20
40
60
80

100

(e) NHM-UnsafeLD

4 8 16 32 128 192
0

20
40
60
80

100

(f) HSW-UnsafeLD

4 8 16 32
0

20
40
60
80

100

(g) SLM-UnsafeBR

4 8 16 32 128
0

20
40
60
80

100

(h) NHM-UnsafeBR

4 8 16 32 128 192
0

20
40
60
80

100

(i) HSW-UnsafeBR

4 8 16 32
0

20
40
60
80

100

(j) SLM-UnsafeST

4 8 16 32 128
0

20
40
60
80

100

(k) NHM-UnsafeST

4 8 16 32 128 192
0

20
40
60
80

100

(l) HSW-UnsafeST

4 8 16 32
0

20
40
60
80

100

(m) SLM-UnsafeEXC

4 8 16 32 128
0

20
40
60
80

100

(n) NHM-UnsafeEXC

4 8 16 32 128 192
0

20
40
60
80

100

(o) HSW-UnsafeEXC

4 8 16 32
0

20
40
60
80

100

(p) SLM-Unsafe

4 8 16 32 128
0

20
40
60
80

100

(q) NHM-Unsafe

4 8 16 32 128 192
0

20
40
60
80

100

(r) HSW-Unsafe

Fig. 13: Comparison between AOOC, ROOC and ERPR in different commit-depth and microarchitecture setup
in six different modes. UnsafeXX is equivalent to (enforcing) all out-of-order commit conditions except condition
XX . By relaxing the specific XX condition, the dependence between other conditions is also observed.

13(d-r)) benefiting the more aggressive out-of-order ex-
ecution designs (NHM and HSW) more than the sim-
pler one (SLM). The reasons for this are similar to
the safe case, as the more aggressive processors are
faster to achieve the first out-of-order condition, in-
struction completion, and therefore providing greater
commit depths (e.g changing the commit depth from 4
to 8 in Figure 13 (a-c)) results in a larger likelihood
of finding instructions to commit out-of-order. Table 5

uses this analysis to rank the relative importance of
each out-of-order commit condition for the three ar-
chitectures. This information provides a guideline for
which areas to work on to achieve the best performance
improvement depending on the baseline out-of-order ex-
ecution.



Maximizing Limited Resources: A Limit-based Study and Taxonomy of Out-of-order Commit 17

Condition/commit-depth 4 8 16 32 128 192

Unsafe_LD 1 2 2 2 NA NA
Unsafe_BR 2 1 1 1 NA NA
Unsafe_ST 4 4 4 4 NA NA
Unsafe_EXC 3 3 3 3 NA NA

(a) SLM
Condition/commit-depth 4 8 16 32 128 192

Unsafe_LD 1 2 2 2 2 NA
Unsafe_BR 3 1 1 1 1 NA
Unsafe_ST 4 4 4 4 4 NA
Unsafe_EXC 2 3 3 3 3 NA

(b) NHM
Condition/commit-depth 4 8 16 32 128 192

Unsafe_LD 4 2 2 2 2 2
Unsafe_BR 1 1 1 1 1 1
Unsafe_ST 3 3 4 4 4 4
Unsafe_EXC 2 4 3 3 3 3

(c) HSW

Table 5: Ranking of the benefits of out-of-order commit
conditions in different microarchitecture based on the
depth of commit.

7 Related Work

The goal of this work is to provide a detailed under-
standing into the potential for performance benefits
across different out-of-order commit conditions and lev-
els of aggressiveness. While this work aims to describe
the maximum potential benefit for each individual con-
dition, there have been many previous works that de-
scribe hardware solutions for early release of hardware
structures and out-of-order commit strategies.Below,
we provide an overview of these works, and how they
fit into the categories described in this work.

7.1 Speculative Release of Hardware Structures
A number of implementations require register and pro-
cessor state checkpointing support to speculatively re-
tire or release hardware structures [12, 11, 22, 1, 17].

Processor state checkpointing, especially with the
advent of very large SIMD registers such as AVX-512
registers which now support up to 32 registers with up
to 512 bits per register, can require a significant amount
of state to be saved when speculation is aggressive.

7.2 Non-speculative Structure Release

Non-speculative early release of hardware structures be-
fore commit requires knowledge that no older instruc-
tion (that has come earlier in the instruction stream)
can cause the program to abort, raise an exception, or
require exposure of the architected state at that time.
Non-speculative solutions have the potential to be the
most energy efficient, a necessity in an era of the end of
Dennard Scaling for power-limited platforms. A range

of solutions, from hardware-only to software-assisted
solutions are described below.

Compiler support. Two previous works [1, 13]
allow for early commit or reclaim of resources based
on compiler knowledge, but require software recompi-
lation.

Checkpoint-free. A number of solutions do not
use checkpoints [5, 21, 13] and therefore do not require
speculation (they respect the all commit conditions) or
used software help to extend knowledge to the hard-
ware.

Selective early commit. Early commit of loads [14,
15] allows for loads that have not yet received data from
the memory hierarchy to become part of the commit-
ted state of a processor. This allows the processor to
continue to process instructions past normally blocked
structures, improving performance for memory-bound
workloads. To accomplish this, the authors [15] de-
couple page faults that can occur from the fetching of
data. While recompilation is not strictly required for
this technique, the authors evaluate their work using a
compilation strategy to expose loads early. Late alloca-
tion and early release of physical registers is proposed
as a register renaming scheme in [23]. They explored the
effect of late allocation and early release of physical reg-
ister on the performance of an 8-way superscalar pro-
cessor without the need for additional speculation and
maintains precise exceptions. The out-of-order commit
methods evaluated in this work overlap with the early
release of registers while also evaluating the early re-
lease of other structures (like the LSQ).

Evading out-of-order commit conditions.
[24] provides a coherency protocol level solution such
that the load→load reordering can be evaded non spec-
ulatively under TSO. In their design, it is no longer nec-
essary to squash and re-execute speculatively reordered
loads if their reordering can be hidden by the coherency
protocol. This allows speculatively reordered loads, that
otherwise adhere to the rest of the Bell-Lipasti condi-
tions, to be committed out-of-order without affecting
the memory model.

8 Conclusion

To obtain higher performance, extending the reach of
the processor core has been a focus in much of microar-
chitecture research. One promising direction is the use
of out-of-order commit, which releases precious proces-
sor resources early to allow the processor to extend its
reach past typical hardware limits. In this work, we
present a limit study for out-of-order commit through
the introduction of reluctant and aggressive out-of-order



18 Mehdi Alipour, Trevor E. Carlson, David Black-Schaffer, Stefanos Kaxiras

commit modes. We show how smaller processors, even
with a limited commit scan depth, can benefit from
out-of-order commit strategies, but that larger, aggres-
sive cores require deeper commit scan depths to achieve
improved performance. In addition, we provide a de-
tailed breakdown of the contributions for each out-of-
order commit condition for the SPEC CPU2006 bench-
mark suite, and compare against similar works such
as early release of physical registers. Our results show
a very high potential for performance improvement,
above 2.25x for some benchmarks, and believe that out-
of-order commit strategies can play an important role
for future energy-efficient and high-performance proces-
sor designs.

References

1. Afram, F., Zeng, H., Ghose, K.: A group-commit
mechanism for ROB-based processors implement-
ing the x86 ISA. In: HPCA, pp. 47–58 (2013)

2. Alipour, M., Carlson, T.E., Kaxiras, S.: Exploring
the performance limits of out-of-order commit. In:
CF, pp. 211–220 (2017)

3. Allan, A., Edenfeld, D., Joyner Jr., W.H., Kahng,
A.B., Rodgers, M., Zorian, Y.: 2001 technology
roadmap for semiconductors. Computer 35(1), 42–
53 (2002)

4. Badalone, R.: Dram’s surprising role in the cost
of data centers. http:www.datacenterknowledge.
com/archives/2015/11/12/dont/ (2015)

5. Bell, G.B., Lipasti, M.H.: Deconstructing commit.
In: ISPASS, pp. 68–77 (2004)

6. Binkert, N., Beckmann, B., Black, G., Reinhardt,
S.K., Saidi, A., Basu, A., Hestness, J., Hower, D.R.,
Krishna, T., Sardashti, S., Sen, R., Sewell, K.,
Shoaib, M., Vaish, N., Hill, M.D., Wood, D.A.: The
gem5 simulator. SIGARCH Comput. Archit. News
39(2), 1–7 (2011)

7. Carlson, T.E., Heirman, W., Allam, O., Kaxiras, S.,
Eeckhout, L.: The load slice core microarchitecture.
In: ISCA, pp. 272–284 (2015)

8. Chou, Y., Fahs, B., Abraham, S.: Microarchitec-
ture optimizations for exploiting memory-level par-
allelism. In: ISCA, pp. 76–88 (2004)

9. Corporation, I.: Intel R© 64 and ia-32 ar-
chitectures optimization reference manual.
http://www.intel.com/content/www/us/en/
architecture-and-technology/64-ia-32-
architectures-optimization-manual.html
(2016)

10. Corporation, I.: Intel R© intel’s ’tick-tock’ seemingly
dead, becomes ’process-architecture-optimization’.
http://www.anandtech.com/show/10183/

intels-tick-tock-seemingly-dead-becomes-
process-architecture-optimization (2016)

11. Cristal, A., Ortega, D., Llosa, J., Valero, M.: Out-
of-order commit processors. In: HPCA, pp. 48–59
(2004)

12. Cristal, A., Santana, O.J., Valero, M., Martínez,
J.F.: Toward kilo-instruction processors. ACM
Trans. Archit. Code Optim. 1(4), 389–417 (2004)

13. Duong, N., Veidenbaum, A.V.: Compiler-assisted,
selective out-of-order commit. IEEE Computer Ar-
chitecture Letters 12(1), 21–24 (2013)

14. Gwennap, L.: Digital leads the pack with 21164. In:
Microprocessor Report, 8(12), pp. 249–260 (1994)

15. Ham, T., Aragón, J.L., Martonosi, M.: Desc: De-
coupled supply-compute communication manage-
ment for heterogeneous architectures. In: MICRO,
pp. 191–203 (2015)

16. Henning, J.L.: SPEC CPU2006 benchmark descrip-
tions. SIGARCH Comput. Archit. News 34(4), 1–
17 (2006)

17. Hilton, A., Roth, A.: BOLT: Energy-efficient out-
of-order latency-tolerant execution. In: HPCA, pp.
1–12 (2010)

18. Jaleel, A.: Memory characterization of workloads
using instrumentation driven simulation. http://
www.glue.umd.edu/ajaleel/workload (2010)

19. Kroft, D.: Lockup-free instruction fetch/prefetch
cache organization. In: ISCA, pp. 81–87 (1981)

20. Lee, D., Kim, Y., Seshadri, V., Liu, J., Subrama-
nian, L., Mutlu, O.: Tiered-latency dram: A low
latency and low cost dram architecture. In: HPCA,
pp. 615–626 (2013)

21. Marti, S., Borras, J., Rodriguez, P., Tena, R.,
Marin, J.: A complexity-effective out-of-order re-
tirement microarchitecture. IEEE Transactions on
Computers 58(12), 1626–1639 (2009)

22. Martinez, J.F., Renau, J., Huang, M.C., Prvulovic,
M.: Cherry: Checkpointed early resource recycling
in out-of-order microprocessors. In: MICRO, pp.
3–14 (2002)

23. Monreal, T., Vinals, V., Gonzalez, J., Gonzalez,
A., Valero, M.: Late allocation and early release of
physical registers. IEEE Trans. Comput. 53(10),
1244–1259 (2004)

24. Ros, A., Carlson, T.E., Alipour, M., Kaxiras, S.:
Non-speculative load-load reordering in TSO. In:
ISCA, pp. 187–200 (2017)

25. Smith, J.E., Pleszkun, A.R.: Implementing precise
interrupts in pipelined processors. IEEE Transac-
tions on Computers 37(5), 562–573 (1988)

26. Sohi, G.S., Vajapeyam, S.: Instruction issue logic
for high-performance, interruptable pipelined pro-
cessors. In: ISCA, pp. 27–34 (1987)

http:www.datacenterknowledge.com/archives/2015/11/12/dont/
http:www.datacenterknowledge.com/archives/2015/11/12/dont/
http://www.intel.com/content/www/us/en/architecture-and-technology/64-ia-32-architectures-optimization-manual.html
http://www.intel.com/content/www/us/en/architecture-and-technology/64-ia-32-architectures-optimization-manual.html
http://www.intel.com/content/www/us/en/architecture-and-technology/64-ia-32-architectures-optimization-manual.html
http://www.anandtech.com/show/10183/intels-tick-tock-seemingly-dead-becomes-process-architecture-optimization
http://www.anandtech.com/show/10183/intels-tick-tock-seemingly-dead-becomes-process-architecture-optimization
http://www.anandtech.com/show/10183/intels-tick-tock-seemingly-dead-becomes-process-architecture-optimization
http://www.glue.umd.edu/ajaleel/workload
http://www.glue.umd.edu/ajaleel/workload

	Introduction
	Out-of-Order Commit
	Methodology
	Out-of-Order Commit Evaluation
	Memory Parallelism
	Early Release of Physical Registers vs. Out-of-order Commit
	Related Work
	Conclusion

