QAOAToolkit: Bringing Quantum Optimization to the End User

T Anandakkoomar, Patrick Rebentrost, Trevor E. Carlson

National University of Singapore
https://github.com/nus-comparch/hamiltonian_engine

Quantum Alternating Operator Ansatz &P Skeletor - Plug and Play

L Introduction

e Noisy Intermediate Scale Quantum (NISQ) systems represent the current state e Works by alternating between a cost-function based cost/phase e Maximize automation of the QAOA process, while providing

of the art in quantum machines that can hold 50 - 100 qubits [1] and is limited Hamiltonian and a mixer Hamiltonian. flexibility.

by noise.

e An objective function can be described as and exponentiated into a e Ability to choose:

e Current NISQ Systems uses superconductors, trapped ions and photonics to Phase Hamiltonian, C: o Objective function

simulate a qubit (IBM, Xanadu and Microsoft) B i o Type of optimizer:

Clz) = Z;CO‘(Z) m Scipy.optimize library

e NISQ systems have significant limitations that prevent us from achieving o m Scikit.optimize

fault-tolerant quantum computers. : d : m Google’s Quantum Tensorflow

q P U(C, ’7) _ e—zq/C’ _ He—Z’yCa g 0

e Farhi’s Quantum Approximate Optimization Algorithm [2] is one of the best . e Allows users to compare different approaches for QAOA; easier to

candidate for current and future NISQ architectures since it requires both a e Inorderto produce dynamicity between states a Mixer Hamiltonian, B is set-up experiments.

quantum system and a classical computer to get results (hybrid heuristic). required:n o

. T 0.08 B gasm_simulat

e (Quantum Alternating Operator Anstaz is an extended version of the algorithm b= Z 9

which covers a wider range of problems and allows for more efficient methods =1 .

to find the close to optimal answer by modifying some parts of the Hamiltonian U(B, 5) _ o8B _ H o807 006

J=1

e By combining both Hamiltonians:

V(7. 8)) = U(B,B)UC,7) [¥)

Making QAOA approachable for non-experts in quantum computing 000,

Probabilities
o
o
S

O ~ O ~ O &~ O 0~
SO O &~ ~ O© O ~ ~
SO O O O N N N N
§ §8§ 8§88 8¢

~~~~~~~~~~~~~~~~

: Fig. 6 - Comparing two results - By allowing for an OOP concept, multiple
expectation_value instances of the skeletor objects can be created with ease and be used on
different devices: a quantum simulator or a quantum computer.

e Quantum computing can be hard for the uninitiated. However, QAOA

is a promising heuristic.
e There needs to be a bridge between classical programmers and the

quantum world.

e QAOAToolkit is a framework that aims to allow classical

programmers to understand quantum optimization methods better
using Object Oriented Programming. phase_hamiltonian 3.3 Predefined Examples
e Key Features : e Toaid classical programmers to transition into quantum programming.
o Abstraction of QAOA circuit generation Fig. 1 - Class Diagram - Chart showing the three most basic classes in the toolkit. Both
phase_hamiltonian and mixer_hamiltonian classes share a parent so that arithmetic e Amalgamation of all classes to provide a higher layer of abstraction.
o Predefined examples with minimal set-up operations can be done on the hamiltonians and made easier for circuit generation.

e Currently contains two problem classes: Max-cut & Max Independent Set.

o Plug and play concept to allow for flexibility 1 , ,
/ \ e Able to handle directed and weighted graphs.

//// 1

\® \
S < . : : :

/ ¢ / © e User can choose a optimizer of their choice to get the close-to-optimal results.

\ 10 \ 2 \ - \
1.0 Yo \ 9.0 20 “Hamify” the

& : e
- phase_hamiltonian object
A/ © to convert the objective
) function into a
3 3 hamiltonian.

— 10 4 ‘A;:::::‘-20.-§§§‘>0 —— 100

2

@ HowitWorks

e Consists of 3 major classes:

Run the Circuit on
an actual QPU

o Phase hamiltonian 9.0
o Mixer hamiltonian /Simulator Calculate the expectation value
O Expectation value of the circuit from the

3 Instantiate Convert the hamiltonian into 7 QPU/Simulator results!

100 —p4

) ) o ] phase_hamiltonian class. a quantum circuit using one

e Provides a high-level Python API for the QAOA heuristic [3] for those not experts in Fig. 2 - Types of graphs supported by the toolkit - The of the map functions.

quantum computing using simple OOP concepts to better understand the workings OAOAToolkit is able to generate hamiltonians and circuits for the | -

of QAOA. types of graph shown above; unweighted-undirected, e e s ,

weighted-undirected and weighted-directed.

e Hamiltonian classes: Oversees the formation of the unitary operators and 4 -

implementation of the unitaries into a quantum circuit. (o) C5>

Instantiate expectation_value

e Expectation value class: Deals with the post processing of the results from the Generate mixer class.

quantum computer/simulator. hamiltonian circuit .

e The splitinclasses is to give users flexibility when using the framework if they only
require the use of a particular class/process.
Fig. 5 - Flow diagram - Steps taken to complete one iteration of the QAOA
e Predefined examples: Two problems are currently available to aid users to quickly heuristic, after step 9, the data is sent to the classical optimizer to find the next
deploy a quantum circuit. best possible values of y and B to get the close-to-optimal results.

e Skeletor class: Where users are given flexibility to change the objective function, 3.2 EXPQCtatlon Val ue

optimizer and the device. e Simple class that makes sense of the results from the quantum device or simulator.

e (alculates the expectation value of the circuit using the equation :

(W' (7, 8)) = 0w, [*C(21) + |, [*Clx2) + |0, | *C@3) + loa, [*C24)

perQubitMap()
3.1 ' . .
H ami Iton lan Fig. 3 - Different circuits can be generated- perDitMap and perEdgeMap function q0 —e > 5 5
e 2 Hamiltonian classes : both require the network graph to generate the circuit. While the perQubitMap @ . .
o Phase hamiltonian function does not, and can be used for forming QUBO Hamiltonians. . ‘ e l
2 — @ 3 &
o Mixer hamiltonian » —O—l——© J.
0 perDitMap () s S0 — '+
e Phase_hamiltonian — - o= o o o
o Converts classical objective function into QAOA phase hamiltonian expression.
o Converts the Hamiltonian expression into QAOA circuit using three different functions.
m perQubitMap : Maps each variable to an individual qubit.
m perkEdgeMap : Maps each vertex 1in graph to a qubit. perEdgeMap()

m perDitMap : Maps each vertex to k-qubits. 2

do

—
o —il
e Mixer_hamiltonian a2 ]—L—.—L & &

o Two functions available to generate qubits, unlike the phase_hamiltonian class which requires a
objective function, mixer hamiltonian do not.
B generalXMixer : applies Rx gate on each qubit.
m controlledXMixer : applies a Controlled Rx gates based on the
neighbouring vertices of the target vertex.

o 4
o
« 5
” Fig. 4 - Two Different Methods for generating mixer hamiltonian o &
* circuits- w 5
| * controlledMixer() improves the search space by only allowing
arillao 3 11 dynamicity within the feasible search space unlike the as G

65 — ' ' generalXMixer() which moves between all Hilbert space [2]. measure



