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● Noisy Intermediate Scale Quantum (NISQ) systems represent the current state 
of the art in quantum machines that can hold 50 - 100 qubits [1] and is limited 
by noise.

● Current NISQ Systems uses superconductors, trapped ions and photonics to 
simulate a qubit (IBM, Xanadu and Microsoft) 

● NISQ systems have significant limitations that prevent us from achieving 
fault-tolerant quantum computers.

● Farhi’s Quantum Approximate Optimization Algorithm [2] is one of the best 
candidate for current and future NISQ architectures since it requires both a 
quantum system and a classical computer to get results (hybrid heuristic).

● Quantum Alternating Operator Anstaz is an extended version of the algorithm 
which covers a wider range of problems and allows for more efficient methods 
to find the close to optimal answer by modifying some parts of the Hamiltonian

Introduction1 Quantum Alternating Operator Ansatz1.1

● Works by alternating between a cost-function based cost/phase 
Hamiltonian and a mixer Hamiltonian. 

● An objective function can be described as and exponentiated into a 
Phase Hamiltonian, C:

● In order to produce dynamicity between states a Mixer Hamiltonian, B is 
required:

● By combining both Hamiltonians:

Motivation2
Making QAOA approachable for non-experts in quantum computing

● Quantum computing can be hard for the uninitiated. However, QAOA 
is a promising heuristic.

● There needs to be a bridge between classical programmers and the 
quantum world.

● QAOAToolkit is a framework that aims to allow classical 
programmers to understand quantum optimization methods better 
using Object Oriented Programming.

● Key Features :
○ Abstraction of QAOA circuit generation

○ Predefined examples with minimal set-up

○ Plug and play concept to allow for flexibility

How it Works3

Hamiltonian3.1
● 2 Hamiltonian classes :

○ Phase_hamiltonian

○ Mixer_hamiltonian

● Phase_hamiltonian
○ Converts classical objective function into QAOA phase hamiltonian expression. 
○ Converts the Hamiltonian expression into QAOA circuit using three different functions.

■ perQubitMap : Maps each variable to an individual qubit.
■ perEdgeMap  : Maps each vertex in graph to a qubit. 
■ perDitMap   : Maps each vertex to k-qubits.

● Mixer_hamiltonian
○ Two functions available to generate qubits, unlike the phase_hamiltonian class which requires a 

objective function, mixer hamiltonian do not.
■ generalXMixer    : applies Rx gate on each qubit.
■ controlledXMixer : applies a Controlled Rx gates based on the 

    neighbouring vertices of the target vertex.

Expectation Value3.2
● Simple class that makes sense of the results from the quantum device or simulator.

● Calculates the expectation value of the circuit using the equation :

Predefined Examples3.3
● To aid classical programmers to transition into quantum programming.

● Amalgamation of all classes to provide a higher layer of abstraction.

● Currently contains two problem classes: Max-cut & Max Independent Set.

● Able to handle directed and weighted graphs.

● User can choose a optimizer of their choice to get the close-to-optimal results.

Skeletor - Plug and Play3.4
● Maximize automation of the QAOA process, while providing 

flexibility.

● Ability to choose:
○ Objective function
○ Type of optimizer:

■ Scipy.optimize library
■ Scikit.optimize
■ Google’s Quantum Tensorflow

● Allows users to compare different approaches for QAOA; easier to 
set-up experiments.

● Consists of 3 major classes:
○ Phase hamiltonian
○ Mixer hamiltonian
○ Expectation value

● Provides a high-level Python API for the QAOA heuristic [3] for those not experts in 
quantum computing using simple OOP concepts to better understand the workings 
of QAOA.

● Hamiltonian classes: Oversees the formation of the unitary operators and 
implementation of the unitaries into a quantum circuit.

● Expectation value class: Deals with the post processing of the results from the 
quantum computer/simulator.

● The split in classes is to give users flexibility when using the framework if they only 
require the use of a particular class/process.

● Predefined examples: Two problems are currently available to aid users to quickly 
deploy a quantum circuit.

● Skeletor class: Where users are given flexibility to change the objective function, 
optimizer and the device.

perDitMap() 

perEdgeMap()

perQubitMap()

Fig. 1 - Class Diagram - Chart showing the three most basic classes in the toolkit. Both 
phase_hamiltonian and mixer_hamiltonian classes share a parent so that arithmetic 
operations can be done on the hamiltonians and made easier for circuit generation.

Fig. 2 - Types of graphs supported by the toolkit - The 
QAOAToolkit is able to generate hamiltonians and circuits for the 
types of graph shown above; unweighted-undirected, 
weighted-undirected and weighted-directed. 

Fig. 3 - Different circuits can be generated- perDitMap and perEdgeMap function 
both require the network graph to generate the circuit. While the perQubitMap 
function does not, and can be used for forming QUBO Hamiltonians.

Fig. 4 -  Two Different Methods for generating mixer hamiltonian 
circuits- 
controlledMixer() improves the search space by only allowing 
dynamicity within the feasible search space unlike the 
generalXMixer() which moves between all Hilbert space [2].

Fig. 5 - Flow diagram - Steps taken to complete one iteration of the QAOA 
heuristic, after step 9, the data is sent to the classical optimizer to find the next 
best possible values of 𝝲 and 𝞫 to get the close-to-optimal results.

Fig . 6 - Comparing two results - By allowing for an OOP concept, multiple 
instances of the skeletor objects can be created with ease and be used on 
different devices: a quantum simulator or a quantum computer.
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