
QAOAToolkit: Bringing Quantum Optimization to the End User
T Anandakkoomar, Patrick Rebentrost, Trevor E. Carlson

National University of Singapore
https://github.com/nus-comparch/hamiltonian_engine

● Noisy Intermediate Scale Quantum (NISQ) systems represent the current state
of the art in quantum machines that can hold 50 - 100 qubits [1] and is limited
by noise.

● Current NISQ Systems uses superconductors, trapped ions and photonics to
simulate a qubit (IBM, Xanadu and Microsoft)

● NISQ systems have significant limitations that prevent us from achieving
fault-tolerant quantum computers.

● Farhi’s Quantum Approximate Optimization Algorithm [2] is one of the best
candidate for current and future NISQ architectures since it requires both a
quantum system and a classical computer to get results (hybrid heuristic).

● Quantum Alternating Operator Anstaz is an extended version of the algorithm
which covers a wider range of problems and allows for more efficient methods
to find the close to optimal answer by modifying some parts of the Hamiltonian

Introduction1 Quantum Alternating Operator Ansatz1.1

● Works by alternating between a cost-function based cost/phase
Hamiltonian and a mixer Hamiltonian.

● An objective function can be described as and exponentiated into a
Phase Hamiltonian, C:

● In order to produce dynamicity between states a Mixer Hamiltonian, B is
required:

● By combining both Hamiltonians:

Motivation2
Making QAOA approachable for non-experts in quantum computing

● Quantum computing can be hard for the uninitiated. However, QAOA
is a promising heuristic.

● There needs to be a bridge between classical programmers and the
quantum world.

● QAOAToolkit is a framework that aims to allow classical
programmers to understand quantum optimization methods better
using Object Oriented Programming.

● Key Features :
○ Abstraction of QAOA circuit generation

○ Predefined examples with minimal set-up

○ Plug and play concept to allow for flexibility

How it Works3

Hamiltonian3.1
● 2 Hamiltonian classes :

○ Phase_hamiltonian

○ Mixer_hamiltonian

● Phase_hamiltonian
○ Converts classical objective function into QAOA phase hamiltonian expression.
○ Converts the Hamiltonian expression into QAOA circuit using three different functions.

■ perQubitMap : Maps each variable to an individual qubit.
■ perEdgeMap : Maps each vertex in graph to a qubit.
■ perDitMap : Maps each vertex to k-qubits.

● Mixer_hamiltonian
○ Two functions available to generate qubits, unlike the phase_hamiltonian class which requires a

objective function, mixer hamiltonian do not.
■ generalXMixer : applies Rx gate on each qubit.
■ controlledXMixer : applies a Controlled Rx gates based on the

 neighbouring vertices of the target vertex.

Expectation Value3.2
● Simple class that makes sense of the results from the quantum device or simulator.

● Calculates the expectation value of the circuit using the equation :

Predefined Examples3.3
● To aid classical programmers to transition into quantum programming.

● Amalgamation of all classes to provide a higher layer of abstraction.

● Currently contains two problem classes: Max-cut & Max Independent Set.

● Able to handle directed and weighted graphs.

● User can choose a optimizer of their choice to get the close-to-optimal results.

Skeletor - Plug and Play3.4
● Maximize automation of the QAOA process, while providing

flexibility.

● Ability to choose:
○ Objective function
○ Type of optimizer:

■ Scipy.optimize library
■ Scikit.optimize
■ Google’s Quantum Tensorflow

● Allows users to compare different approaches for QAOA; easier to
set-up experiments.

● Consists of 3 major classes:
○ Phase hamiltonian
○ Mixer hamiltonian
○ Expectation value

● Provides a high-level Python API for the QAOA heuristic [3] for those not experts in
quantum computing using simple OOP concepts to better understand the workings
of QAOA.

● Hamiltonian classes: Oversees the formation of the unitary operators and
implementation of the unitaries into a quantum circuit.

● Expectation value class: Deals with the post processing of the results from the
quantum computer/simulator.

● The split in classes is to give users flexibility when using the framework if they only
require the use of a particular class/process.

● Predefined examples: Two problems are currently available to aid users to quickly
deploy a quantum circuit.

● Skeletor class: Where users are given flexibility to change the objective function,
optimizer and the device.

perDitMap()

perEdgeMap()

perQubitMap()

Fig. 1 - Class Diagram - Chart showing the three most basic classes in the toolkit. Both
phase_hamiltonian and mixer_hamiltonian classes share a parent so that arithmetic
operations can be done on the hamiltonians and made easier for circuit generation.

Fig. 2 - Types of graphs supported by the toolkit - The
QAOAToolkit is able to generate hamiltonians and circuits for the
types of graph shown above; unweighted-undirected,
weighted-undirected and weighted-directed.

Fig. 3 - Different circuits can be generated- perDitMap and perEdgeMap function
both require the network graph to generate the circuit. While the perQubitMap
function does not, and can be used for forming QUBO Hamiltonians.

Fig. 4 - Two Different Methods for generating mixer hamiltonian
circuits-
controlledMixer() improves the search space by only allowing
dynamicity within the feasible search space unlike the
generalXMixer() which moves between all Hilbert space [2].

Fig. 5 - Flow diagram - Steps taken to complete one iteration of the QAOA
heuristic, after step 9, the data is sent to the classical optimizer to find the next
best possible values of 𝝲 and 𝞫 to get the close-to-optimal results.

Fig . 6 - Comparing two results - By allowing for an OOP concept, multiple
instances of the skeletor objects can be created with ease and be used on
different devices: a quantum simulator or a quantum computer.

References
[1] John Preskill. Quantum computing in the nisq era and beyond. Quantum, 2:79, Aug 2018.
[2] Edward Farhi, Jeffrey Goldstone, and Sam Gutmann. A quantum approximate optimization
algorithm, 2014.
[3] Stuart Hadfield. Quantum algorithms for scientific computing and approximate optimization,
2018.

Acknowledgements
We would like to thank Entropica Labs for helping us to learn more about QAOA and quantum
computing.

QAOAToolkit

expectation_valuehamiltonian

phase_hamiltonian mixer_hamiltonian

5

Generate mixer
hamiltonian circuit .

4

Instantiate
mixer_hamiltonain class.

3

Convert the hamiltonian into
a quantum circuit using one

of the map functions.

2

“Hamify” the
phase_hamiltonian object

to convert the objective
function into a
hamiltonian.

1

Instantiate
phase_hamiltonian class.

6

Combine both of the
quantum circuits.

7

Run the Circuit on
an actual QPU

/Simulator

8

Instantiate expectation_value
class.

9

Calculate the expectation value
of the circuit from the

QPU/Simulator results!

0

1

2

4
3

1.0

1.0

1.0

1.0 1.0

1.0

0

1

2

4
3

8.0

7.0

6.0

9.0 4.0

10.0
0

1

2

4
3

8.0

7.0

6.0

9.0 4.0

10.0

1

2

0

