
Secure Your SoC: Building System-on-Chip

Designs for Security

Shivam Bhasin1 Trevor E. Carlson2 Anupam Chattopadhyay1 Vinay B.Y. Kumar1

Avi Mendelson1,3 Romain Poussier1 Yaswanth Tavva2

1Nanyang Technological University, Singapore

{sbhasin,anupam,vinay.kumar,rpoussier}@ntu.edu.sg
2National University of Singapore, Singapore

tcarlson@comp.nus.edu.sg, yaswanth@u.nus.edu
3Technion – Israel Institute of Technology, Haifa, Israel

avi.mendelson@technion.ac.il

Abstract—Modern System-on-Chip designs (SoCs) are becom-
ing increasingly complex and powerful, catering to a wide range
of application domains. Their use in security-critical tasks calls
for a holistic approach to SoC design, including security as a first-
class architecture constraint, rather than adding security only as
an afterthought. The problem is compounded by the inclusion
of multiple, potentially untrusted, third party components in
the SoC design. To address this challenge systematically, this
paper explores four distinct and important aspects of designing
secure SoCs. First, starting at the component level, an evaluation
framework for assessing component security against physical
attacks is proposed. Second, a scalable simulation framework
is developed to integrate these secure components which offers
flexibility for early- and late-stage SoC development. Third,
dynamic and static techniques are proposed to determine when
the system is under attack, with a key focus on Hardware
Trojans as threat. Finally, a design strategy for integrating
untrusted components into a SoC through hardware Root-of-
Trust is outlined. For each of these aspects we present early-stage
evaluations, and show how these complement each other towards
the design of a secure SoC.

I. INTRODUCTION

Modern System on Chip systems (SoCs) are powerful,

effective and complex. The integration of a wide variety of

components in an SoC enables them to both accomplish the

task at hand, as well as perform that task efficiently. However,

the co-existence of heterogeneous components within an SoC

raises multiple security concerns. Only by handling each of

these concerns in a systematic way can one ensure the design

of a trusted and reliable system.

This paper presents recent developments toward designing

a secure SoC under the SOCure framework [1]. The main

objective of the SOCure project is to assure hardware security-

by-design in the presence of untrusted on-chip Intellectual

Properties (IPs), as well as modern, and invasive, physical

attacks. To this end, this paper describes four distinct aspects

of designing secure SoCs.

The first part looks at physical attacks at the component

level. Components in a SoC like cryptographic accelerators

(e.g. AES), form the backbone of the security subsystem and

must be protected against a range of attacks. We propose a

generic evaluation framework to assess the security of various

components at different granularity. At the cost of precision

in evaluation results, the designer can evaluate security of

design at different design stages from right from algorithm

specification to precise evaluation considering implementation

details and device properties.

Next, we propose a scalable simulation framework, Hydra.

As the complexity of an SoC increases, hardware design,

from early debugging to feature development becomes time

consuming. The need for flexible simulation infrastructures

that provide efficient, targeted simulation solutions for the

current phase of development, becomes necessary for fast and

efficient evaluation. To address this issue, we present a unified

management and simulation environment to manage resources

across a variety of back-end simulation platforms. With this

system, we aim to demonstrate that automation improves pro-

ductivity, and allows for ease of migration to the appropriate

simulator for the work in each stage of development.

Furthermore, SoC designers deal with a variety of com-

ponents (or IPs) from multiple untrusted parties allowing the

possibility of hardware Trojan in those IPs. To protect such

systems against security attacks is a challenging task that

requires out-of-the-box thinking. As no single tool can be used

to protect the entire system, we propose to take a hierarchical

approach that allows hosting a set of tools simultaneously,

to use a Security Management Unit (SMU) to control the

complexity of such an attack. We also propose to use a new

design methodology, termed Design for Security (DFS), in

order to identify when the system is under attack.

Finally, we demonstrate an approach to integrate untrusted

IPs into a system based on hardware root of trust. Recently,

these problems are being addressed systematically through

the design of secure SoCs, where a Physically Unclonable

Function (PUF) along with True Random Number Generator

(TRNG) are used for key management. This enables an

opportunity to address the vulnerabilities of existing protocols

through the RoT, albeit at the cost of increased resource usage

and performance overhead. We report our experimental studies

using a RISC-V based secure SoC and Xilinx KC705 FPGA

board and selective protocols, such as integration of untrusted

SoC components.



The rest of the paper is organised as follows. Section 2

and 3 present the evaluation and simulation framework for a

complex SoC respectively. Section 4 describes the hierarchical

protection of SoC system against Hardware Trojan. Section 5

presents an approach to integrate of untrusted IPs in a system

based on hardware root of trust. Final conclusions are drawn

in Section 6.

II. SECURITY EVALUATIONS AGAINST PHYSICAL ATTACKS:

A TIME VERSUS ACCURACY TRADEOFF

The security evaluation of cryptographic implementations

with respect to physical attacks (faults, side channels, etc)

is a complex and yet mandatory step. When it comes to

analysing the security of the final implementation, a complete

and thorough evaluation is preferred in order to show the

precise security level. However, such an analysis is very

time-consuming and will only be performed during the final

design/implementation steps. If a security flaw is exhibited,

a new design must be proposed and a new evaluation must

be performed, resulting in a long time to market and eventual

monetary losses. This loss can be prevented if the security

flaw is found earlier in the design steps. For that purpose,

this section puts together a security evaluation framework

that allows a trade-off between the accuracy of the results

at different design stages.

A. Framework

The overall framework is depicted in Figure 1. It takes as

an input a given implementation of primitives and underlying

set of countermeasures. Then, for a given threat considered,

it will output up to three evaluation methodologies, ranging

from fast and loose to complex and accurate.

Fig. 1. Overview of the evaluation framework.

Considering several evaluation levels allow having dedi-

cated methodologies for the different steps occurring during

the design of a product. More practically, we aim at easing

the development by providing tools and methods to detect,

analyse and compare the security of different implementations

at earlier stages and different levels of granularity. That is, we

divide the evaluations into three different ranges that we now

exhibit in the context of side-channel attacks:

• Fast evaluation will contain measurement-free tools to

estimate the security level of a design choice. This will

be done through the use of information theory metrics

and shortcut formulas [2]. thus producing fast tools with

a coarse security estimate. At pre-silicon level, tools as

proposed in [3] can be helpful.

• Hybrid evaluation will compute a security estimate

through basic measurements or simulations. Leakage de-

tection/mapping [4], [5] and shortcut formulas augmented

with real traces are different tool examples that will

be used for this type of evaluation. The estimation can

also be extented to standards like FIPS140-2 or common

criterea by exisiting techniques such as [6].

• Comprehensive evaluation will contain methods to com-

pute a precise estimate of the actual security of a given

implementation. This will involve performing advanced

attacks and pre-processing and will output meaningful

security graphics [5]

While previous examples, focused on side-channel attacks for

simplicity, the same approach can be extended to other phys-

ical attacks like fault attacks based on evaluation approaches

as proposed in [7].

B. Assessing The Countermeasure Jungle

A designer has a range of choices to adopt a counter-

measure. The proposed evaluation framework is capable of

evaluating these countermeasures at different granularity levels

and thus representing adversaries of different capabilities.

While fast evaluation only gives a basic overview of a complex

countermeasure like high-order masking, it can easily assess

the security of simple countermeasures such as jitter or noise

addition. Hybrid evaluation can carefully evaluate more com-

plex countermeasures like hiding [8] and to an extent masking,

based on a more accurate leakage model and noise setting.

Finally, a comprehensive evaluation is required for complex

but provable countermeasures like higher-order masking con-

sidering advanced device-level effects like coupling leading to

combination of shares [9], [10].

C. Applicability

Methodologies that belong to the fast evaluation range can

be used at the early design steps, in order to (e.g.) compare sets

of primitives and countermeasures. This allows selecting the

ones that meet the desired security margins. Hybrid evaluation

strategies will be used to get a fine-grained analysis, eventually

aiding the implementation step. Finally, due to its complexity

and accuracy, comprehensive evaluation techniques are the

methods of choice when it comes to computing the security

of the final implementations.

D. Example

As an example, we consider the case where a designer aims

at implementing a secure block cipher on a micro-controller.

For that purpose, (s)he has the choice between several ciphers

(e.g. AES, PRESENT) and several software platforms (e.g.

ATmega series, Cortex-M series). We further assume that (s)he

wants to implement a masked version of the cipher to get some

side-channel resistance. We now show how our framework can

be applied to help in solving these design choices.



1) Phase 1: As a first step to discriminate between the

numerous combinations, we suggest to first apply a fast

evaluation to isolate some candidates. Based on some prior

knowledge of the signal to noise ratios from different devices,

an overview of the different masking algorithm and block

ciphers, we use shortcut formulas to estimate the leakage

information, the success rate and other metrics related to a

side-channel attacks [2], [11].

2) Phase 2: Once few implementation candidates remain,

we suggest going for a hybrid evaluation strategy as a second

shortlisting procedure. Using actual traces from early stage

implementations of the remaining candidates or carefully

simulated traces, the designer can compute information theory

metrics and more accurate formulas, along with statistical tests

to verify the soundness of the masking algorithm [2], [4].

3) Phase 3: For the final stage, we assume that the designer

is left with only one or very few implementation candidates

for which (s)he desires to know the actual security. To that

purpose, (s)he would apply an intensive comprehensive eval-

uation that would require performing multiple repetitions of

actual profiled horizontal DPAs, mixing leakage mapping, di-

mensionality reduction techniques to output accurate security

graphics [5].

We emphasize that while a comprehensive final evaluation

should be done on an actual implementation, the ability to

detect threats at earlier design stages can be crucial in term

of overall design time. Simulated environments are important

tools to enhance the performance of fast and hybrid evalu-

ations, whose goal is to detect issues early and to compare

different methods in a high-level view. To that purpose, the

next section introduces our simulation system Hydra.

III. ACCELERATING SECURE SYSTEMS RESEARCH WITH

AUTOMATED DISTRIBUTED SIMULATION

Systems research can be both complex and extremely time

consuming. From idea to implementation, designs need to

be evaluated and verified from multiple levels: starting from

models to architecture simulation and finally RTL designs.

In this section, we describe the current state of hardware

simulation methodologies, and describe how both a holistic

and automated approach is needed to address the varied

concerns seen during the development process.

TABLE I
FUNDAMENTAL SIMULATION TRADE-OFFS. EVEN THOUGH TECHNIQUES

LIKE FPGA-BASED SIMULATION RUN DESIGNS FASTER, THEIR PHYSICAL

SIMULATION CAPACITY IS LIMITED, AND THEIR SETUP COSTS ARE HIGH,
PREVENTING FAST EVALUATION DURING LATENCY-CRITICAL

EARLY-PHASE DEVELOPMENT.

Methodology Impl. Level of Startup Sim. Sim.
time detail time time capacity

Modeling high low fast very fast high
SW simulation medium high fast slow high
HW sim. (FPGA) high high slow fast low

Traditionally, some of the most important characteristics for

simulation have been the performance and level of detail of

the simulation solutions used. But, given the availability of

new classes of simulation (FPGAs1, cloud-computing-based,

etc.), and the development stage of the design, there is now a

larger space of simulation parameters that can be taken into

account to optimize the user’s time-to-result.

In fact, given the broad applicability of these tools, under-

standing the key characteristics of each is critical. A few key

examples of these are the (1) implementation time, (2) simula-

tion detail required, (3) simulation startup costs, (4) simulation

time and (5) simulation capacity (See Table I for an overview

of these trade-offs for common methodologies). There tends to

be a tension between the level of accuracy and the simulation

performance seen; thus, with new methodologies like FPGA-

based solutions, faster does not always mean a shorter time-

to-solution.

For example, given a small design, very short test simu-

lations and early stage evaluations, software-based RTL sim-

ulators can be more practical and provide an overall lower

latency. This is because of the startup cost for some solutions

(number 3, above, for FPGA-based simulation), can be very

large (hours) compared to the time it might take to simulate

a short debugging run in software (minutes). On the other

hand, the use of hardware accelerated simulation is often

preferred for extensive evaluations and longer runs (including

full-system, kernel and other experiments that require long

time frames).

There is, therefore, no all-in-one solution that addresses the

needs of each simulation situation. Instead, there is a need to

move towards a progressive approach with a common frame-

work that supports multiple simulation options. In addition to

simulation itself, the management of a large number of simula-

tions is needed to allow for checking, tracking, collection and

archiving the results. At the same time, the platform should be

flexible enough to migrate to new simulators and scale across

machines spanning a variety of architectures and capabilities

(which is the result of consistent system refreshes to maintain

efficiency and performance). To handle each of these tasks,

we propose Hydra, a unified, flexible management platform

for distributed multi-system simulations.

The key reasons for building this type of platform are

enumerated as follows:

1) The need for a unified interface for progressive hardware

systems simulation.

2) The ability to easily migrate between different simu-

lation methodologies, using the same job format, con-

strains and designs, depending on the current stage of

the design (early discovery vs. system refinement, etc.).

3) The need for unified resource management platform.

4) The need for an automated, distributed, multi-system

simulation.

1Prior work [12] uses FPGA for accelerated simulation and energy esti-
mation while Simmani [13] uses Amazon Web Services (AWS) F1 (FPGA)
instances to accelerate power modeling. Both works do not measure the power
of the FPGA itself, but instead use the FPGA as a way to simulate new
ASIC and SoC designs, achieving results that allow for a direct comparison
to software-based simulations.



Fig. 2. The SOCure simulation framework, Hydra. The steps of the method-
ology include (1) saving the design to version control, (2) configuring and
queuing jobs, (3) design file consolidation, (4) design simulation, and (5)
viewing and processing results.

The Hydra Framework (Figure 2) achieves cycle-level dis-

tributed RTL simulation using two main approaches – (1)

FPGA-accelerated simulation, and (2) software-based simu-

lation. The main components of infrastructure, apart from the

users themselves, include (1) the job management system,

and (2) the simulation backends that provide both the FPGA-

accelerated and software-based methodologies.

The job system acts as the backbone to submit new tasks,

consolidate the hardware designs, run, and finally fetch the

results. It has three main components – (1) the user, (2) the

server and (3) the worker nodes. Our infrastructure supports a

constraint-based resource management system, with technol-

ogy library requirements and tool requirements (like Synop-

sys, Cadence or Xilinx tools). With a given task definition,

where the user specifies the designs (using version control ID

numbers) to be instantiated, the system compiles, simulates

and exchanges data between runs for reproducible, consistent

results. The key feature of Hydra is the ability to choose the

system most appropriate for the task at hand, and the phase

of the design that the designer is in2. Given the overhead of

managing large-scale compilation, simulation and evaluation

frameworks, building a framework that is flexible from the

ground-up allows hardware designers to select the tool that is

appropriate for the stage of the design that is currently being

evaluated.

IV. HIERARCHICAL PROTECTION OF SOC SYSTEM

AGAINST HARDWARE TROJAN HORSES

This part focuses on IoT devices which are comprised out of

multi IP modules. Such devices are typically being assembled

to form a System-on-a-Chip (SoC) based processor. Thus, each

of these modules, may be developed by a different team and

probably use different design tools. Under such an distributed

development environment, there are many potential ways, one

can insert Trojan Horses to the system [14]. This may be done

as part of almost any design stage; e.g., at the IP level, at

integration time, at the tool chain or even at packaging time.

Protecting an existing system against Trojan horses is a

huge task, thus this research advocate the notion DFS; i.e., to

2For example, software RTL simulation might be preferred for simulating
1 million cycles or fewer, while FPGA-accelerated simulation can be recom-
mended for much longer runs.

consider security protection aspects, as part of the developing

flow and not to add it at the end of the developing process.

In order to achieve this goal we suggest to have the

protection at different granularity levels:

• at the system level, we suggest to define a ”security

monitor module” based on the use of machine learning

algorithms in order to identify abnormal behaviors

• at the IP integration level, we suggest to use encrypted

ports and channels

• we suggest to force inserting “markers” that will serve as

assertions to guarantee correct behavior of the system

• we suggest to extend the use of debugging interfaces,

such as JTAG [15] that were designed to assist the post

silicon phase, and use them in order to exam the internal

state of the machine, at any given time so that we could

assist the Security Control Unit to detect when the system

is under attack.

• New standards such as iJTAG [16], allow the testing unit

to access the internal scan logic [17]. We are planning to

extend these interfaces in order to exam if an IP contains

an Hardware Trojan horse.

A special attention will be given during our research to

new techniques in reverse engineering. Figure 3, which is

taken from [18], provides an insight view of the way reverse

engineering is usually done today. The process is done in two

phases, the first aims to extract the netlist, or similar repre-

sentation of the internal structure of the chip, and the second

phase aims at “extracting” the possible functionalities of the

given processor. By comparing the expected functionalities to

the actual behavior, we hope to be able to identify Trojan

horses, back doors, special circuits that were inserted to ease

side-channel attacks [19], etc.

Fig. 3. Phases in Reverse Engineering.

Our research already indicated [17] that the use of the

internal scan channel, can be used to extract a graph that will

be close enough to the actual netlist. Based on that graph,

we are applying algorithms, which are based on graph theory

[20] or machine learning [21] to perform the extraction of the

functionality of a given chip.



One of the major problems of using these techniques for

“real-life” cases, is the fact that modern processors are using

encryption and other countermeasures to protect the access to

the internal scan. Thus, this issue doesn’t exist when applying

these techniques at the integration time, or at the testing time,

since here, we can use the given interfaces to the testing

environment in order to extract other information regarding

the chip that the IP provider may try to hide.

V. SECURE INTEGRATION OF UNTRUSTED SOC

COMPONENTS THROUGH HARDWARE ROOT OF TRUST

Trusted computing base (TCB) in a secure system is defined

to include components trusted by design, hardware and soft-

ware. Anything outside the TCB is potentially untrusted, for

instance: software∗, external memory∗, on-chip components

(incl. hardware Trojans). In securely integrating such compo-

nents, while cryptographic-primitives∗ have an indispensable

role, parallels from fault-tolerance parlance could be drawn

to work with ‘security faults’ due to these components—

to one or more of prevent, detect or correct such ‘faults’,

using techniques such as fault-masking and fault-isolation∗.

The words with an asterisk mark the scope for this section.

A trusted execution environment (TEE) on a secure plat-

form provides some isolation guarantees between programs

co-executing over untrusted shared resources: e.g., memory

hierarchy. A TEE, with remote attestation, offers a lightweight

solution to trusted computing compared to expensive alter-

natives such as fully-homomorphic encryption, secure multi-

party computation, or authenticated memory encryption with

integrity trees. The security of a TEE, and indeed any higher

level security solution, presumes a secure hardware root-of-

trust (RoT) beneath it. Most commercial SoC vendors today

include a TEE framework. The isolation guarantees, however,

are often weak without other side-channel attack protections.

Fig. 4. Keystone ([22], Fig. 1) + ITUS [23]

This section presents an outline of integration of the open

Keystone Enclaves TEE framework [22] into ITUS [23], a

RISC-V based secure SoC FPGA prototype (Fig. 4).

A. Keystone

Keystone is implemented entirely as software, and only

presumes that the RISC-V cores support the Physical Memory

Protection (PMP) specification. It enables process isolation—

the entire process stack—on external memory. As illustrated

in Fig. 4 (based on Fig. 1 in [22]), the Enclavei, together

with its private runtime (RT) and the U-mode application,

all reside in an isolated enclave address space. The core of

Keystone is implemented in the M-mode security monitor

(SM), which manages the PMP configuration registers. The

SM itself lives in a dedicated PMP isolated region in memory

and helps to dynamically allocate regions for enclave process

stack. While the SM, a part of the TCB, also implements

the necessary cryptographic support—such as for secure boot,

enclave measurements, and root-of-trust management—this

work moves much of these functions from SM to hardware.

B. ITUS hardware RoT

A PUF-based key manager together with the secure boot

framework, in ITUS, constitutes the hardware RoT supporting

Keystone (Fig. 4). The secure boot framework supports two

public-key signature scheme options—the classical ECDSA

and the post-quantum XMSS [24]—implemented fully as

hardware, in a signature verification unit (SVU). The key

manager in hardware is built around ColPUF [25], a PUF

appropriate for FPGAs and accepts 16 bit challenges with 128

bit responses, error-corrected using a lightweight BCH(15,7,2)

instance. It is a weak PUF, with extensible response lengths.

It also includes a ring-oscillator based TRNG. Asymmetric

key derivation under NIST B-233 elliptic curve is also imple-

mented as hardware. The interface to PUF is only available to

software signed by an entity authorized to access it—enabled

by the secure boot framework; the PUF responses and the

derived keys never leave the hardware boundary in plaintext.

1) Secure Boot: While many variations are possible, the

following is our secure boot protocol. It begins at power-on, by

verifying the ZSBL (zero-stage bootloader, bootROM), ensur-

ing first-instruction-integrity. The FSBL contains a Challenge-

Syndrome pair (CSPdev) corresponding to the PUF, collected

earlier using a custom ‘enrollment bootloader’, signed by an

authorized party and verified by secure boot. After FSBL is

verified, also in hardware, the CSPdev is used to regenerate the

device root key pair (SKdev, PKdev) from the PUF. Verification

of subsequent boot stages can be requested through software

calls to the SVU. To limit the exposure of SKdev, other

auxiliary root keys—such as for remote attestation and sealed

storage—may be derived from it through the key manager.

2) Sealed storage for Keystone enclaves: On top of the

isolation guarantees of Keystone, assuming additional forti-

fication through side-channel attack protections (e.g., PMP +

cache-partitioning [22]), sealed storage techniques can be used

to cover additional physical threats such as on external mem-

ory (e.g., snooping, replay). This can be seen as a lightweight

alternative to encryption with expensive integrity trees, used in

the absence of a TEE. A sealing key requested for an enclave

application (Eappi) may be derived from (one or more of) the

measurement of Eappi and the platform state (measurements

taken in hardware) and the device root sealing key. This binds

the encryption to Eappi, the platform configuration, and the

device itself. In other words, data sealed with this key can



TABLE II
RESOURCE USAGE FOR ROT COMPONENTS IN ITUS

Total LUTs FFs DSP48s

Key+manager 7913 3454 -
PUF+BCH(15,7,2) 6924 2051 -
TRNG 637 272 -

SHA256 1402 1546 -

Elliptic+Curve+Keygen† 21473 249 -
SVU+XMSS+Verify+[24] 12162 16348 -

SVU+ECDSA+Verify† 27170 6722 -

RocketTile+(reference) 29081 14061 34
core+FPU 4074 + 14585 1582 + 4163 4 + 20

† these modules would share the curve point-multiplier

only be unsealed (decrypted) under those exact circumstances

enabling regeneration of the sealing key.

C. Evaluation and discussion

The overheads due to the decision to implement most of

the RoT components as dedicated hardware, to reduce the

software footprint in the TCB, can be seen in Table II. From a

security perspective, the key manager necessarily must remain

in hardware. The hardware for key generation, signing and

verification can be implemented with significant hardware

reuse for both XMSS and ECDSA schemes. While this is an

early FPGA prototype, later ASIC iterations of the SoC would

replace some of the cryptographic IPs with countermeasures

against physical attacks and leakage.

VI. CONCLUSIONS

Guaranteeing security of a SoC is becoming a challenging

problem due to growing body of threats, ranging from physical

side-channel attacks, to untrusted third party components pig-

gybacking hardware Trojan horses. In this paper, we outline

four key aspects of a secure SoC design, namely, low level

attack evaluation, high level simulation, static and dynamic

mitigation of attacks and integration of untrusted components

through hardware root-of-trust. We present early evaluation

results and show that the complementary nature of these

approaches can enforce security. Designing a secure SoC

beyond FPGA prototypes with in-depth scrutiny is envisioned

in the next phase.

ACKNOWLEDGMENT

The authors acknowledge the support from the Sin-

gapore National Research Foundation (“SOCure” grant

NRF2018NCR-NCR002-0001 – www.green-ic.org/socure).

REFERENCES

[1] “Socure: Research programme in assuring hardware security by design
in systems on chip,” http://www.green-ic.org/socure.

[2] A. Duc, S. Faust, and F.-X. Standaert, “Making masking security proofs
concrete (or how to evaluate the security of any leaking device), extended
version,” Journal of Cryptology, vol. 32, no. 4, pp. 1263–1297, 2019.

[3] R. Sadhukhan, P. Mathew, D. B. Roy, and D. Mukhopadhyay, “Count
your toggles: a new leakage model for pre-silicon power analysis of
crypto designs,” Journal of Electronic Testing, vol. 35, no. 5, 2019.

[4] B. J. Gilbert Goodwill, J. Jaffe, P. Rohatgi et al., “A testing methodology
for side-channel resistance validation,” in NIST non-invasive attack

testing workshop, vol. 7, 2011, pp. 115–136.

[5] F. Durvaux and F.-X. Standaert, “From improved leakage detection to
the detection of points of interests in leakage traces,” in Annual Inter-

national Conference on the Theory and Applications of Cryptographic

Techniques. Springer, 2016, pp. 240–262.
[6] D. B. Roy, S. Bhasin, S. Guilley, A. Heuser, S. Patranabis, and

D. Mukhopadhyay, “Cc meets fips: A hybrid test methodology for first
order side channel analysis,” IEEE Transactions on Computers, vol. 68,
no. 3, pp. 347–361, 2018.

[7] S. Saha, S. N. Kumar, S. Patranabis, D. Mukhopadhyay, and P. Dasgupta,
“Alafa: Automatic leakage assessment for fault attack countermeasures,”
in Proceedings of the 56th Annual Design Automation Conference, 2019.

[8] M. Nassar, S. Bhasin, J.-L. Danger, G. Duc, and S. Guilley, “Bcdl: a
high speed balanced dpl for fpga with global precharge and no early
evaluation,” in 2010 Design, Automation & Test in Europe Conference

& Exhibition (DATE 2010). IEEE, 2010, pp. 849–854.
[9] T. De Cnudde, B. Bilgin, B. Gierlichs, V. Nikov, S. Nikova, and V. Ri-

jmen, “Does coupling affect the security of masked implementations?”
in International Workshop on Constructive Side-Channel Analysis and

Secure Design. Springer, 2017, pp. 1–18.
[10] A. Jati, N. Gupta, A. Chattopadhyay, S. K. Sanadhya, and D. Chang,

“Threshold implementations of GIFT : A trade-off analysis,” IEEE

Transactions on Information Forensics and Security, vol. 15, 2020.
[11] R. Poussier, V. Grosso, and F.-X. Standaert, “Comparing approaches

to rank estimation for side-channel security evaluations,” in Interna-

tional Conference on Smart Card Research and Advanced Applications.
Springer, 2015, pp. 125–142.

[12] D. Kim, A. Izraelevitz, C. Celio, H. Kim, B. Zimmer, Y. Lee,
J. Bachrach, and K. Asanovicc, “Strober: fast and accurate sample-based
energy simulation for arbitrary rtl,” in 2016 ACM/IEEE 43rd Annual

International Symposium on Computer Architecture (ISCA). IEEE,
2016, pp. 128–139.

[13] D. Kim, J. Zhao, J. Bachrach, and K. Asanović, “Simmani: Runtime
power modeling for arbitrary rtl with automatic signal selection,” in
Proceedings of the 52nd Annual IEEE/ACM International Symposium

on Microarchitecture, 2019, pp. 1050–1062.
[14] H. Li, Q. Liu, and J. Zhang, “A survey of hardware trojan threat and

defense,” Integration, vol. 55, pp. 426 – 437, 2016.
[15] “IEEE standard test access port and boundary scan architecture,” IEEE

Std 1149.1-2001, pp. 1–212, 2001.
[16] “IEEE standard for access and control of instrumentation embedded

within a semiconductor device,” IEEE Std 1687-2014, pp. 1–283, 2014.
[17] L. Azriel, R. Ginosar, S. Gueron, and A. Mendelson, “Using scan side

channel to detect ip theft,” IEEE Transactions on Very Large Scale

Integration (VLSI) Systems, vol. 25, no. 12, pp. 3268–3280, 2017.
[18] L. Azriel, R. Ginosar, and A. Mendelson, “Sok: An overview of

algorithmic methods in ic reverse engineering,” in Proceedings of the

3rd ACM Workshop on Attacks and Solutions in Hardware Security

Workshop, ser. ASHES’19. ACM, 2019.
[19] L. Lin, W. Burleson, and C. Paar, “Moles: Malicious off-chip leakage

enabled by side-channels,” in 2009 IEEE/ACM International Conference

on Computer-Aided Design - Digest of Technical Papers, 2009.
[20] M. Fyrbiak, S. Wallat, S. Reinhard, N. Bissantz, and C. Paar, “Graph

similarity and its applications to hardware security,” IEEE Transactions

on Computers, vol. 69, no. 4, pp. 505–519, 2020.
[21] R. Elnaggar, K. Chakrabarty, and M. B. Tahoori, “Hardware trojan

detection using changepoint-based anomaly detection techniques,” IEEE

Transactions on Very Large Scale Integration (VLSI) Systems, vol. 27,
no. 12, pp. 2706–2719, 2019.

[22] D. Lee, D. Kohlbrenner, S. Shinde, K. Asanović, and D. Song, “Key-
stone: An open framework for architecting trusted execution envi-
ronments,” in Proceedings of the Fifteenth European Conference on

Computer Systems, 2020, pp. 1–16.
[23] V. B. Kumar, A. Chattopadhyay, J. Haj-Yahya, and A. Mendelson,

“Itus: A secure risc-v system-on-chip,” in 2019 32nd IEEE International

System-on-Chip Conference (SOCC). IEEE, 2019, pp. 418–423.
[24] V. B. Kumar, N. Gupta, A. Chattopadhyay, M. Kasper, C. Krauß,

and R. Niederhagen, “Post-quantum secure boot,” in 2020 Design,

Automation & Test in Europe Conference & Exhibition (DATE). IEEE,
2020, pp. 1582–1585.

[25] B. Srinivasu, P. Vikramkumar, A. Chattopadhyay, and K.-Y. Lam,
“Colpuf: a novel configurable lfsr-based puf,” in IEEE Asia Pacific

Conference on Circuits and Systems (APCCAS), 2018, pp. 358–361.


