
Sniper: Exploring the Level of Abstraction for Scalable and
Accurate Parallel Multi-Core Simulation

Trevor E. Carlson*†

tcarlson@elis.ugent.be
Wim Heirman*†

wheirman@elis.ugent.be
Lieven Eeckhout*

leeckhou@elis.ugent.be
*ELIS Department †Intel ExaScience Lab

Ghent University, Belgium Leuven, Belgium

ABSTRACT
Two major trends in high-performance computing, namely,
larger numbers of cores and the growing size of on-chip cache
memory, are creating significant challenges for evaluating
the design space of future processor architectures. Fast and
scalable simulations are therefore needed to allow for suffi-
cient exploration of large multi-core systems within a limited
simulation time budget. By bringing together accurate high-
abstraction analytical models with fast parallel simulation,
architects can trade off accuracy with simulation speed to
allow for longer application runs, covering a larger portion
of the hardware design space. Interval simulation provides
this balance between detailed cycle-accurate simulation and
one-IPC simulation, allowing long-running simulations to be
modeled much faster than with detailed cycle-accurate sim-
ulation, while still providing the detail necessary to observe
core-uncore interactions across the entire system. Valida-
tions against real hardware show average absolute errors
within 25% for a variety of multi-threaded workloads; more
than twice as accurate on average as one-IPC simulation.
Further, we demonstrate scalable simulation speed of up to
2.0 MIPS when simulating a 16-core system on an 8-core
SMP machine.

Categories and Subject Descriptors
C.4 [Performance of Systems]: Modeling techniques

General Terms
Performance, Experimentation, Design

Keywords
Interval simulation, interval model, performance modeling,
multi-core processor

1. INTRODUCTION
We observe two major trends in contemporary high-per-

formance processors as a result of the continuous progress

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SC11, November 12-18, 2011, Seattle, Washington, USA
Copyright 2011 ACM 978-1-4503-0771-0/11/11 ...$10.00.

in chip technology through Moore’s Law. First, processor
manufacturers integrate multiple processor cores on a single
chip — multi-core processors. Eight to twelve cores per chip
are commercially available today (in, for example, Intel’s
E7-8800 Series, IBM’s POWER7 and AMD’s Opteron 6000
Series), and projections forecast tens to hundreds of cores
per chip in the near future — often referred to as many-
core processors. In fact, the Intel Knights Corner Many
Integrated Core contains more than 50 cores on a single
chip. Second, we observe increasingly larger on-chip caches.
Multi-megabyte caches are becoming commonplace, exem-
plified by the 30MB L3 cache in Intel’s Xeon E7-8870.

These two trends pose significant challenges for the tools
in the computer architect’s toolbox. Current practice em-
ploys detailed cycle-accurate simulation during the design
cycle. While this has been (and still is) a successful ap-
proach for designing individual processor cores as well as
multi-core processors with a limited number of cores, cycle-
accurate simulation is not a scalable approach for simulating
large-scale multi-cores with tens or hundreds of cores, for
two key reasons. First, current cycle-accurate simulation in-
frastructures are typically single-threaded. Given that clock
frequency and single-core performance are plateauing while
the number of cores increases, the simulation gap between
the performance of the target system being simulated versus
simulation speed is rapidly increasing. Second, the increas-
ingly larger caches observed in today’s processors imply that
increasingly larger instruction counts need to be simulated
in order to stress the target system in a meaningful way.

These observations impose at least two requirements for
architectural simulation in the multi-core and many-core
era. First, the simulation infrastructure needs to be par-
allel: the simulator itself needs to be a parallel applica-
tion so that it can take advantage of the increasing core
counts observed in current and future processor chips. A
key problem in parallel simulation is to accurately model
timing at high speed [25]. Advancing all the simulated cores
in lock-step yields high accuracy; however, it also limits sim-
ulation speed. Relaxing timing synchronization among the
simulated cores improves simulation speed at the cost of in-
troducing modeling inaccuracies. Second, we need to raise
the level of abstraction in architectural simulation. Detailed
cycle-accurate simulation is too slow for multi-core systems
with large core counts and large caches. Moreover, many
practical design studies and research questions do not need
cycle accuracy because these studies deal with system-level
design issues for which cycle accuracy only gets in the way
(i.e., cycle accuracy adds too much detail and is too slow,

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

b
a
rn

e
s

c
h
o
le

s
k
y ff
t

fm
m

lu
.c

o
n
t

lu
.n

c
o
n
t

o
c
e
a
n
.c

o
n
t

o
c
e
a
n
.n

c
o
n
t

ra
d
io

s
it
y

ra
d
ix

ra
y
tr

a
c
e

v
o
lr
e
n
d

w
a
te

r.
n
s
q

w
a
te

r.
s
p

C
y
c
le

s
 p

e
r

in
s
tr

u
c
ti
o
n

4.1 16.5

compute communicate synchronize

Figure 1: Measured per-thread CPI (average clock
ticks per instruction) for a range of SPLASH-2
benchmarks, when running on 16 cores. (Given the
homogeneity of these workloads, all threads achieve
comparable performance.)

especially during the early stages of the design cycle).
This paper deals with exactly this problem. Some of the

fundamental questions we want to address are: What is a
good level of abstraction for simulating future multi-core
systems with large core counts and large caches? Can we
determine a level of abstraction that offers both good ac-
curacy and high simulation speed? Clearly, cycle-accurate
simulation yields very high accuracy, but unfortunately, it is
too slow. At the other end of the spectrum lies the one-IPC
model, which assumes that a core’s performance equals one
Instruction Per Cycle (IPC) apart from memory accesses.
While both approaches are popular today, they are inade-
quate for many research and development projects because
they are either too slow or have too little accuracy.

Figure 1 clearly illustrates that a one-IPC core model is
not accurate enough. This graph shows CPI (Cycles Per
Instruction) stacks that illustrate where time is spent for
the SPLASH-2 benchmarks. We observe a wide diversity
in the performance of these multi-threaded workloads. For
example, the compute CPI component of radix is above 2
cycles per instruction, while radiosity and cholesky per-
form near the 0.5 CPI mark. Not taking these performance
differences into account changes the timing behavior of the
application and can result in widely varying accuracy. Ad-
ditionally, as can be seen in Figure 2, simulated input sizes
need to be large enough to effectively stress the memory hier-
archy. Studies performed using short simulation runs (using
the small input set) will reach different conclusions concern-
ing the scalability of applications, and the effect on scaling
of proposed hardware modifications, than studies using the
more realistic large input sets.

The goal of this paper is to explore the middle ground
between the two extremes of detailed cycle-accurate simu-
lation versus one-IPC simulation, and to determine a good
level of abstraction for simulating future multi-core systems.
To this end, we consider the Graphite parallel simulation
infrastructure [22], and we implement and evaluate vari-
ous high-abstraction processor performance models, ranging
from a variety of one-IPC models to interval simulation [14],
which is a recently proposed high-abstraction simulation ap-

 1

 2

 4

 8

 16

 1 2 4 8 16

S
p

e
e

d
u

p

Cores

fft

large small

 1

 2

 4

 8

 16

 1 2 4 8 16

S
p

e
e

d
u

p

Cores

ocean.cont

large small

Figure 2: Measured performance of SPLASH-2 on
the Intel X7460 using large and small input sets.

proach based on mechanistic analytical modeling. In this
process, we validate against real hardware using a set of
scientific parallel workloads, and have named this fast and
accurate simulator Sniper. We conclude that interval simu-
lation is far more accurate than one-IPC simulation when it
comes to predicting overall chip performance. For predict-
ing relative performance differences across processor design
points, we find that one-IPC simulation may be fairly accu-
rate for specific design studies with specific workloads un-
der specific conditions. In particular, we find that one-IPC
simulation may be accurate for understanding scaling be-
havior for homogeneous multi-cores running homogeneous
workloads. The reason is that all the threads execute the
same code and make equal progress, hence, one-IPC sim-
ulation accurately models the relative progress among the
threads, and more accurate performance models may not
be needed. However, for some homogeneous workloads, we
find that one-IPC simulation is too simplistic and does not
yield accurate performance scaling estimates. Further, for
simulating heterogeneous multi-core systems and/or hetero-
geneous workloads, one-IPC simulation falls short because
it does not capture relative performance differences among
the threads and cores.

More specifically, this paper makes the following contri-
butions:

1. We evaluate various high-abstraction simulation ap-
proaches for multi-core systems in terms of accuracy
and speed. We debunk the prevalent one-IPC core sim-
ulation model and we demonstrate that interval simu-
lation is more than twice as accurate as one-IPC mod-
eling, while incurring a limited simulation slowdown.
We provide several case studies illustrating the limita-
tions of the one-IPC model.

2. In the process of doing so, we validate this parallel and
scalable multi-core simulator, named Sniper, against
real hardware. Interval simulation, our most advanced
high-abstraction simulation approach, is within 25%
accuracy compared to hardware, while running at a
simulation speed of 2.0 MIPS when simulating a 16-
core system on an 8-core SMP machine.

3. We determine when to use which abstraction model,
and we explore their relative speed and accuracy in
a number of case studies. We find that the added
accuracy of the interval model, more than twice as
much, provides a very good trade-off between accuracy
and simulation performance. Although we found the

one-IPC model to be accurate enough for some per-
formance scalability studies, this is not generally true;
hence, caution is needed when using one-IPC model-
ing as it may lead to misleading or incorrect design
decisions.

This paper is organized as follows. We first review high-
abstraction processor core performance models and parallel
simulation methodologies, presenting their advantages and
limitations. Next, we detail the simulator improvements
that were critical to increasing the accuracy of multi-core
simulation. Our experimental setup is specified next, fol-
lowed by a description of the results we were able to obtain,
an overview of related work and finally the conclusions.

2. PROCESSOR CORE MODELING
As indicated in the introduction, raising the level of ab-

straction is crucial for architectural simulation to be scalable
enough to be able to model multi-core architectures with
a large number of processor cores. The key question that
arises though is: What is the right level of abstraction for
simulating large multi-core systems? And when are these
high-abstraction models appropriate to use?

This section discusses higher abstraction processor core
models, namely, the one-IPC model (and a number of vari-
ants on the one-IPC model) as well as interval simulation,
that are more appropriate for simulating multi-core systems
with large core counts.

2.1 One-IPC model
A widely used and simple-to-implement level of abstrac-

tion is the so-called ‘one-IPC’ model. Many research stud-
ies assume a one-IPC model when studying for example
memory hierarchy optimizations, the interconnection net-
work and cache coherency protocols in large-scale multi-
processor and multi-core systems [15, 23, 17]. We make the
following assumptions and define a one-IPC model, which
we believe is the most sensible definition within the confines
of its simplicity. Note that due to the limited description of
the one-IPC models in the cited research papers, it is not
always clear what exact definition was used, and whether it
contains the same optimizations we included in our defini-
tion.

The one-IPC model, as it is defined in this paper, assumes
in-order single-issue at a rate of one instruction per cycle,
hence the name one-IPC or ‘one instruction per cycle’. The
one-IPC model does not simulate the branch predictor, i.e.,
branch prediction is assumed to be perfect. However, it
simulates the cache hierarchy, including multiple levels of
caches. We assume that the processor being modeled can
hide L1 data cache hit latencies, i.e., an L1 data cache hit
due to a load or a store does not incur any penalty and
is modeled to have an execution latency of one cycle. All
other cache misses do incur a penalty. In particular, an L1
instruction cache miss incurs a penalty equal to the L2 cache
data access latency; an L2 cache miss incurs a penalty equal
to the L3 cache data access latency, or main memory access
time in the absence of an L3 cache.

2.2 One-IPC models in Graphite
Graphite [22], which forms the basis of the simulator used

in this work and which we describe in more detail later,
offers three CPU performance models that could be classified

as one-IPC models. We will evaluate these one-IPC model
variants in the evaluation section of this paper.

The ‘magic’ model assumes that all instructions take one
cycle to execute (i.e., unit cycle execution latency). Further,
it is assumed that L1 data cache accesses cannot be hidden
by superscalar out-of-order execution, so they incur the L1
data access cost (which is 3 cycles in this study). L1 misses
incur a penalty equal to the L2 cache access time, i.e., L2
data cache misses are assumed not to be hidden. This CPU
timing model simulates the branch predictor and assumes a
fixed 15-cycle penalty on each mispredicted branch.

The ‘simple’ model is the same as ‘magic’ except that it
assumes a non-unit instruction execution latency, i.e., some
instructions such as multiply, divide, and floating-point op-
erations incur a longer (non-unit) execution latency. Similar
to ‘magic’, it assumes all cache access latencies and a fixed
branch misprediction penalty.

Finally, the ‘iocoom’ model stands for ‘in-order core, out-
of-order memory’, and extends upon the ‘simple’ model by
assuming that the timing model does not stall on loads or
stores. More specifically, the timing model does not stall
on stores, but it waits for loads to complete. Additionally,
register dependencies are tracked and instruction issue is
assumed to take place when all of the instruction’s depen-
dencies have been satisfied.

2.3 Sniper: Interval simulation
Interval simulation is a recently proposed simulation ap-

proach for simulating multi-core and multiprocessor systems
at a higher level of abstraction compared to current practice
of detailed cycle-accurate simulation [14]. Interval simula-
tion leverages a mechanistic analytical model to abstract
core performance by driving the timing simulation of an
individual core without the detailed tracking of individual
instructions through the core’s pipeline stages. The foun-
dation of the model is that miss events (branch mispredic-
tions, cache and TLB misses) divide the smooth stream-
ing of instructions through the pipeline into so called in-
tervals [10]. Branch predictor, memory hierarchy, cache co-
herence and interconnection network simulators determine
the miss events; the analytical model derives the timing for
each interval. The cooperation between the mechanistic an-
alytical model and the miss event simulators enables the
modeling of the tight performance entanglement between
co-executing threads on multi-core processors.

The multi-core interval simulator models the timing for
the individual cores. The simulator maintains a ‘window’
of instructions for each simulated core. This window of in-
structions corresponds to the reorder buffer of a superscalar
out-of-order processor, and is used to determine miss events
that are overlapped by long-latency load misses. The func-
tional simulator feeds instructions into this window at the
window tail. Core-level progress (i.e., timing simulation) is
derived by considering the instruction at the window head.
In case of an I-cache miss, the core simulated time is in-
creased by the miss latency. In case of a branch mispredic-
tion, the branch resolution time plus the front-end pipeline
depth is added to the core simulated time, i.e., this is to
model the penalty for executing the chain of dependent in-
structions leading to the mispredicted branch plus the num-
ber of cycles needed to refill the front-end pipeline. In case
of a long-latency load (i.e., a last-level cache miss or cache
coherence miss), we add the miss latency to the core sim-

ulated time, and we scan the window for independent miss
events (cache misses and branch mispredictions) that are
overlapped by the long-latency load — second-order effects.
For a serializing instruction, we add the window drain time
to the simulated core time. If none of the above cases ap-
plies, we dispatch instructions at the effective dispatch rate,
which takes into account inter-instruction dependencies as
well as their execution latencies. We refer to [14] for a more
elaborate description of the interval simulation paradigm.

We added interval simulation into Graphite and named
our version, with the interval model implementation, Sniper1,
a fast and accurate multicore simulator.

2.4 Interval simulation versus one-IPC
There are a number of key differences between interval

simulation and one-IPC modeling.

• Interval simulation models superscalar out-of-order ex-
ecution, whereas one-IPC modeling assumes in-order
issue, scalar instruction execution. More specifically,
this implies that interval simulation models how non-
unit instruction execution latencies due to long-latency
instructions such as multiplies, divides and floating-
point operations as well as L1 data cache misses, are
(partially) hidden by out-of-order execution.

• Interval simulation includes the notion of instruction-
level parallelism (ILP) in a program, i.e., it models
inter-instruction dependencies and how chains of de-
pendent instructions affect performance. This is re-
flected in the effective dispatch rate in the absence of
miss events, and the branch resolution time, or the
number of cycles it takes to execute a chain of depen-
dent instructions leading to the mispredicted branch.

• Interval simulation models overlap effects due to mem-
ory accesses, which a one-IPC model does not. In par-
ticular, interval simulation models overlapping long-
latency load misses, i.e., it models memory-level paral-
lelism (MLP), or independent long-latency load misses
going off to memory simultaneously, thereby hiding
memory access time.

• Interval simulation also models other second-order ef-
fects, or miss events hidden under other miss events.
For example, a branch misprediction that is indepen-
dent of a prior long-latency load miss is completely
hidden. A one-IPC model serializes miss events and
therefore overestimates their performance impact.

Because interval simulation adds a number of complexi-
ties compared to one-IPC modeling, it is slightly more com-
plex to implement, hence, development time takes longer.
However, we found the added complexity to be limited: the
interval model contains only about 1000 lines of code.

3. PARALLEL SIMULATION
Next to increasing the level of abstraction, another key

challenge for architectural simulation in the multi/many-
core era is to parallelize the simulation infrastructure in or-
der to take advantage of increasing core counts. One of the
key issues in parallel simulation though is the balance of

1The simulator is named after a type of bird called a snipe.
This bird moves quickly and hunts accurately.

accuracy versus speed. Cycle-by-cycle simulation advances
one cycle at a time, and thus the simulator threads simu-
lating the target threads need to synchronize every cycle.
Whereas this is a very accurate approach, its performance
may be reduced because it requires barrier synchronization
between all simulation threads at every simulated cycle. If
the number of simulator instructions per simulated cycle is
low, parallel cycle-by-cycle simulation is not going to yield
substantial simulation speed benefits and scalability will be
poor.

There exist a number of approaches to relax the syn-
chronization imposed by cycle-by-cycle simulation [13]. A
popular and effective approach is based on barrier synchro-
nization. The entire simulation is divided into quanta, and
each quantum comprises multiple simulated cycles. Quanta
are separated through barrier synchronization. Simulation
threads can advance independently from each other between
barriers, and simulated events become visible to all threads
at each barrier. The size of a quantum is determined such
that it is smaller than the critical latency, or the time it
takes to propagate data values between cores. Barrier-based
synchronization is a well-researched approach, see for exam-
ple [25].

More recently, researchers have been trying to relax even
further, beyond the critical latency. When taken to the ex-
treme, no synchronization is performed at all, and all sim-
ulated cores progress at a rate determined by their relative
simulation speed. This will introduce skew, or a cycle count
difference between two target cores in the simulation. This
in turn can cause causality errors when a core sees the effects
of something that — according to its own simulated time
— did not yet happen. These causality errors can either
be corrected through techniques such as checkpoint/restart,
but usually they are just allowed to occur and are accepted
as a source of simulator inaccuracy. Chen et al. [5] study
both unbounded slack and bounded slack schemes; Miller et
al. [22] study similar approaches. Unbounded slack implies
that the skew can be as large as the entire simulated execu-
tion time. Bounded slack limits the slack to a preset number
of cycles, without incurring barrier synchronization.

In the Graphite simulator, a number of different syn-
chronization strategies are available by default. The ‘bar-
rier’ method provides the most basic synchronization, re-
quiring cores to synchronize after a specific time interval, as
in quantum-based synchronization. The most loose synchro-
nization method in Graphite is not to incur synchronization
at all, hence it is called ‘none’ and corresponds to unbounded
slack. The ‘random-pairs’ synchronization method is some-
what in the middle between these two extremes and ran-
domly picks two simulated target cores that it synchronizes,
i.e., if the two target cores are out of sync, the simulator
stalls the core that runs ahead waiting for the slowest core
to catch up. We evaluate these synchronization schemes in
terms of accuracy and simulation speed in the evaluation
section of this paper. Unless noted otherwise, the multi-
threaded synchronization method used in this paper is bar-
rier synchronization with a quantum of 100 cycles.

4. SIMULATOR IMPROVEMENTS
As mentioned before, Graphite [22] is the simulation in-

frastructure used for building Sniper. During the course of
this work, we extended Sniper substantially over the origi-
nal Graphite simulator. Not only did we integrate the inter-

val simulation approach, we also made a number of exten-
sions that improved the overall functionality of the simula-
tor, which we describe in the next few sections. But before
doing so, we first detail our choice for Graphite.

4.1 Simulator choice
There are three main reasons for choosing Graphite as

our simulation infrastructure for building Sniper. First, it
runs x86 binaries, hence we can run existing workloads with-
out having to deal with porting issues across instruction-set
architectures (ISAs). Graphite does so by building upon
Pin [19], which is a dynamic binary instrumentation tool.
Pin dynamically adds instrumentation code to a running x86
binary to extract instruction pointers, memory addresses,
register content, etc. This information is then forwarded
to a Pin-tool, Sniper in our case, which estimates timing
for the simulated target architecture. Second, a key benefit
of Graphite is that it is a parallel simulator by construc-
tion. A multi-threaded program running in Graphite leads
to a parallel simulator. Graphite thus has the potential to
be scalable as more and more cores are being integrated
in future multi-core processor chips. Third, Graphite is a
user-level simulator, and therefore only simulates user-space
code. This is appropriate for our purpose of simulating (pri-
marily) scientific codes which spend most of their time in
user-space code; very limited time is spent in system-space
code [21].

4.2 Timing model improvements
We started with the Graphite simulator as obtained from

GitHub.2 Graphite-Lite, an optimized mode for single-host
execution, was back-ported into this version. From this base
we added a number of components that improve the accu-
racy and functionality of the simulator, which eventually led
to our current version of the simulator called Sniper.

The interval core model was added to allow for the sim-
ulation of the Intel Xeon X7460 processor core; in fact, we
validated Sniper against real hardware, as we will explain
in the evaluation section. Instruction latencies were deter-
mined through experimentation and other sources [11].

In addition to an improved core model, there have also
been numerous enhancements made to the uncore compo-
nents of Graphite. The most important improvement was
the addition of a shared multi-level cache hierarchy sup-
porting write-back first-level caches and an MSI snooping
cache coherency protocol. In addition to the cache hier-
archy improvements, we modeled the branch predictor for
the Dunnington machine as the Pentium-M branch predic-
tor [28]. This model was the most recent branch predictor
model publicly available but differs only slightly from the
branch predictor in the Dunnington (Penryn) core.

4.3 OS modeling
As mentioned before, Graphite only simulates an applica-

tion’s user-space code. In many cases, this is sufficient, and
basic system-call latencies can be modeled as simple costs.
In some cases, however, the operating system plays a vital
role in determining application performance. One example
is how the application and kernel together handle pthread
locking. In the uncontended case, pthread locking uses fu-
texes, or fast userspace mutexes [12]. The observation here

2Version dated August 11, 2010 with git commit id
7c43a9f9a9aa9f16347bb1d5350c93d00e0a1fd6

 1

 2

 3

 4

 5

 6

 7

 8

 9

 100 1000

S
pe

ed
up

Rescheduling cost (cycles)

raytrace-4
raytrace-16

fft-16
lu.ncont-16

Figure 3: Resulting application runtime from an in-
creasing rescheduling cost. For fft (very few syn-
chronization calls), lu.ncont (moderate synchroniza-
tion) and raytrace (heavy synchronization), with 4
or 16 threads.

is that for uncontended locks, entering the kernel would be
unnecessary as the application can check for lock availability
and acquire the lock using atomic instructions. In practice,
futexes provide an efficient way to acquire and release rela-
tively uncontended locks in multithreaded code.

Performance problems can arise, unfortunately, when locks
are heavily contended. When a lock cannot be acquired im-
mediately, the pthread_* synchronization calls invoke the
futex_wait and futex_wake system calls to put waiting
threads to sleep. These system calls again compete for spin-
locks inside the kernel. When the pthread synchronization
primitives are heavily contended, these kernel spinlocks also
become contended which can result in the application spend-
ing a significant amount of time inside the kernel. In these
(rare) cases, our model, which assumes that kernel calls have
a low fixed cost, breaks down.

Modeling kernel spinlock behavior is in itself a research
topic of interest [8]. In our current implementation, we em-
ploy a fairly simple kernel lock contention model. To this
end we introduce the concept of a rescheduling cost. This
cost advances simulated time each time a thread enters the
kernel to go into a wait state, and later needs to be resched-
uled once it is woken up. Figure 3 explores the resulting ex-
ecution time when varying this parameter. For applications
with little (fft), or even a moderate amount of synchroniza-
tion (lu.ncont), increasing the rescheduling cost does not
significantly affect the application’s runtime. Yet for ray-

trace, which contains a very high amount of synchroniza-
tion calls, the rescheduling costs quickly compound. This is
because, when one thread incurs this rescheduling cost, it
is still holding the lock. This delay therefore multiplies as
many other threads are also kept waiting.

Figure 4 shows the run-times measured on raytrace. The
hardware set shows that on real hardware, raytrace suf-
fers from severe contention when running on more than four
cores. Our initial simulations (center, baseline) however pre-
dicted near-perfect scaling. After taking a rescheduling cost
into account (right, reschedule-cost), the run-times are pre-
dicted much more accurately. Note that the rescheduling
cost is a very rough approximation, and its value is depen-
dent on the number of simulated cores. We used a value of
1000 cycles for simulations with up to four cores, 3000 cy-
cles for 8 cores, and 4000 cycles for 16 cores. Only raytrace

0.0

0.2

0.4

0.6

0.8

hardware baseline reschedule-cost

E
xe

cu
tio

n
tim

e
(s

)

1 2 4 8 16

Figure 4: Application runtime for raytrace on hard-
ware (left), and simulated before (center) and after
(right) adding basic kernel spinlock contention mod-
eling.

Parameter value
Sockets per system 4
Cores per socket 6
Dispatch width 4 micro-operations
Reorder buffer 96 entries
Branch predictor Pentium M [28]
Cache line size 64 B
L1-I cache size 32 KB
L1-I associativity 8 way set associative
L1-I latency 3 cycle data, 1 cycle tag access
L1-D cache size 32 KB
L1-D associativity 8 way set associative
L1-D latency 3 cycle data, 1 cycle tag access
L2 cache size 3 MB per 2 cores
L2 associativity 12 way set associative
L2 latency 14 cycle data, 3 cycle tag access
L3 cache size 16 MB per 6 cores
L3 associativity 16 way set associative
L3 latency 96 cycle data, 10 cycle tag access
Coherence protocol MSI
Main memory 200 ns access time
Memory Bandwidth 4 GB/s

Table 1: Simulated system characteristics for the
Intel Xeon X7460.

is affected by this; all other application run-times did not
change significantly from the baseline runs with a zero-cycle
rescheduling cost.

5. EXPERIMENTAL SETUP
The hardware that we validate against is a 4-socket Intel

Xeon X7460 Dunnington shared-memory machine, see Ta-
ble 1 for details. Each X7460 processor chip integrates six
cores, hence, we effectively have a 24-core SMP machine to
validate against. Each core is a 45 nm Penryn microarchitec-
ture, and has private L1 instruction and data caches. Two
cores share the L2 cache, hence, there are three L2 caches
per chip. The L3 cache is shared among the six cores on the
chip. As Graphite did not contain any models of a cache
prefetcher, all runs were done with the hardware prefetchers
disabled. Although we recognize that most modern proces-
sors contain data prefetchers, we currently do not model
their effects in our simulator. Nevertheless, there is no fun-
damental reason why data prefetching cannot be added to
the simulator. Intel Speedstep technology was disabled, and
we set each processor to the high-performance mode, run-
ning all processors at their full speed of 2.66 GHz. Bench-
marks were run on the Linux kernel version 2.6.32. Each
thread is pinned to its own core.

Benchmark ‘small’ input size ‘large’ input size
barnes 16384 particles 32768 particles
cholesky tk25.O tk29.O
fmm 16384 particles 32768 particles
fft 256K points 4M points
lu.cont 512×512 matrix 1024×1024 matrix
lu.ncont 512×512 matrix 1024×1024 matrix
ocean.cont 258×258 ocean 1026×1026 ocean
ocean.ncont 258×258 ocean 1026×1026 ocean
radiosity –room –ae 5000.0 –room

–en 0.050 –bf 0.10
radix 256K integers 1M integers
raytrace car –m64 car –m64 –a4
volrend head-scaleddown2 head
water.nsq 512 molecules 2197 molecules
water.sp 512 molecules 2197 molecules

Table 2: Benchmarks and input sets.

The benchmarks that we use for validation and evaluation
are the SPLASH-2 benchmarks [30]. SPLASH-2 is a well-
known benchmark suite that represents high-performance,
scientific codes. See Table 2 for more details on these bench-
marks and the inputs that we have used. The benchmarks
were compiled in 64-bit mode with –O3 optimization and
with the SSE, SSE2, SSE3 and SSSE3 instruction set ex-
tensions enabled. We measure the length of time that each
benchmark took to run its parallel section through the use
of the Read Time-Stamp Counter (rdtsc) instruction. A
total of 30 runs on hardware were completed, and the av-
erage was used for comparisons against the simulator. All
results with error-bars report the confidence interval using a
confidence level of 95% over results from 30 hardware runs
and 5 simulated runs.

6. RESULTS
We now evaluate interval simulation as well as the one-

IPC model in terms of accuracy and speed. We first com-
pare the absolute accuracy of the simulation models and
then compare scaling of the benchmarks as predicted by the
models and hardware. Additionally, we show a collection
of CPI-stacks as provided by interval simulation. Finally,
we compare the performance of the two core models with
respect to accuracy, and we provide a performance and ac-
curacy trade-off when we assume a number of components
provide perfect predictions. Because the interval model is
more complex than a one-IPC model, it also runs slower,
however, the slowdown is limited as we will detail later in
this section.

6.1 Core model accuracy
Reliable and accurate microarchitecture comparisons are

one of the most important tools in a computer architect’s
tool-chest. After varying a number of microarchitecture pa-
rameters, such as branch predictor configuration or cache
size and hierarchy, the architect then needs to accurately
evaluate and trade-off performance with other factors, such
as energy usage, chip area, cost and design time. Addi-
tionally, the architect needs to be able to understand these
factors in order to make the best decisions possible with a
limited simulation time budget.

Figure 5 shows accuracy results of interval simulation com-
pared with the one-IPC model given the same memory hier-
archy modeled after the Intel X7460 Dunnington machine.

 0

 1

 2

 3

 4

b
a

rn
e

s

c
h

o
le

s
k
y ff
t

fm
m

lu
.c

o
n

t

lu
.n

c
o

n
t

o
c
e

a
n

.c
o

n
t

o
c
e

a
n

.n
c
o

n
t

ra
d

io
s
it
y

ra
d

ix

ra
y
tr

a
c
e

v
o

lr
e

n
d

w
a

te
r.

n
s
q

w
a

te
r.

s
p

E
x
e

c
u

ti
o

n
 t

im
e

(r
e

la
ti
v
e

 t
o

 h
a

rd
w

a
re

)

Single core

oneIPC interval

 0

 1

 2

 3

b
a

rn
e

s

c
h

o
le

s
k
y ff
t

fm
m

lu
.c

o
n

t

lu
.n

c
o

n
t

o
c
e

a
n

.c
o

n
t

o
c
e

a
n

.n
c
o

n
t

ra
d

io
s
it
y

ra
d

ix

ra
y
tr

a
c
e

v
o

lr
e

n
d

w
a

te
r.

n
s
q

w
a

te
r.

s
p

E
x
e

c
u

ti
o

n
 t

im
e

(r
e

la
ti
v
e

 t
o

 h
a

rd
w

a
re

)

16 cores

oneIPC interval

Figure 5: Relative accuracy for the one-IPC and
interval models for a single core (top graph) and 16
cores (bottom graph).

We find that the average absolute error is substantially lower
for interval simulation than for the one-IPC model in a sig-
nificant majority of the cases. The average absolute error
for the one-IPC model using the large input size of the
SPLASH-2 benchmark suite is 114% and 59.3% for single
and 16-threaded workloads, respectively. In contrast, the
interval model compared to the X7460 machine has an av-
erage absolute error of 19.8% for one core, and 23.8% for
16 cores. Clearly, interval simulation is substantially more
accurate for predicting overall chip performance than the
one-IPC model; in fact, it is more than twice as accurate.

Figure 6 shows a more elaborate evaluation with a vari-
ety of one-IPC models for a select number of benchmarks.
These graphs show how execution time changes with increas-
ing core counts on real hardware and in simulation. We con-
sider five simulators, the interval simulation approach along
with four variants of the one-IPC model. These graphs rein-
force our earlier finding, namely, interval simulation is more
accurate than one-IPC modeling, and different variants of
the one-IPC model do not significantly improve accuracy.
Note that performance improves substantially for fft as the
number of cores increases, whereas for raytrace this is not
the case. The reason why raytrace does not scale is due to
heavy lock contention, as mentioned earlier. Our OS model-
ing improvements to the Graphite simulator, much like the
updated memory hierarchy, benefit both the interval and
one-IPC models.

6.2 Application scalability
So far, we focused on absolute accuracy, i.e., we evalu-

ated accuracy for predicting chip performance or how long
it takes for a given application to execute on the target hard-
ware. However, in many practical research and development

 0

 1

 2

 3

 4

 5

hardware interval oneIPC iocoom simple magic

E
x
e

c
u

ti
o

n
 t

im
e

 (
s
)

fft

1 2 4 8 16

 0

 1

 2

hardware interval oneIPC iocoom simple magic

E
x
e

c
u

ti
o

n
 t

im
e

 (
s
)

raytrace

1 2 4 8 16

Figure 6: Absolute accuracy across all core models
for a select number of benchmarks: fft (top graph)
and raytrace (bottom graph).

 0

 4

 8

 12

 16

 1 2 4 8 16

S
p
e
e
d
u
p

Cores

barnes

oneIPC
interval

hardware

 0

 4

 8

 12

 16

 1 2 4 8 16

S
p
e
e
d
u
p

Cores

water.nsq

oneIPC
interval

hardware

Figure 7: Application scalability for the one-IPC
and interval models when scaling the number of
cores.

studies, a computer architect is more interested in relative
performance trends in order to make design decisions, i.e., a
computer architect is interested in whether and by how much
one design point outperforms another design point. Simi-
larly, a software developer may be interested in understand-
ing an application’s performance scalability rather than its
absolute performance. Figure 7 shows such scalability re-
sults for a select number of benchmarks. A general observa-
tion is that both interval and one-IPC modeling is accurate
for most benchmarks (not shown here for space reasons), as
exemplified by barnes (left graph). However, for a number
of benchmarks, see the right graph for water.nsq, the in-
terval model accurately predicts the scalability trend, which
the one-IPC model is unable to capture. It is particularly
encouraging to note that, in spite of the limited absolute
accuracy for water.nsq, interval simulation is able to accu-
rately predict performance scalability.

6.3 CPI stacks
A unique asset of interval simulation is that it enables

building CPI stacks which summarize where time is spent.
A CPI stack is a stacked bar showing the different compo-
nents contributing to overall performance. The base CPI
component typically appears at the bottom and represents
useful work being done. The other CPI components rep-

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

b
a
rn

e
s

c
h
o
le

s
k
y ff
t

fm
m

lu
.c

o
n
t

lu
.n

c
o
n
t

o
c
e
a
n
.c

o
n
t

o
c
e
a
n
.n

c
o
n
t

ra
d
io

s
it
y

ra
d
ix

ra
y
tr

a
c
e

v
o
lr
e
n
d

w
a
te

r.
n
s
q

w
a
te

r.
s
p

C
y
c
le

s
 p

e
r

in
s
tr

u
c
ti
o
n

4.1 16.5

issue
depend
branch

ifetch
mem-l3
mem-remote

mem-dram
sync-mutex
sync-cond

Figure 8: Detailed CPI stacks generated through
interval simulation.

 1

 2

 4

 8

 16

 1 2 4 8 16

S
pe

ed
up

hardware
interval

hardware-opt
interval-opt

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1
base

16
base

1
opt

16
opt

C
yc

le
s

pe
r

in
st

ru
ct

io
n

15.9

issue
depend
branch
mem-l3

mem-remote
mem-dram
sync-mutex

Figure 9: Speedup (left) and CPI stacks (right) for
raytrace, before and after optimizing its locking im-
plementation.

resent ‘lost’ cycle opportunities due to instruction interde-
pendencies, and miss events such as branch mispredictions,
cache misses, etc., as well as waiting time for contended
locks. A CPI stack is particularly useful for gaining insight
in application performance. It enables a computer architect
and software developer to focus on where to optimize in or-
der to improve overall application performance. Figure 8
shows CPI stacks for all of our benchmarks.

As one example of how a CPI stack can be used, we ana-
lyzed the one for raytrace and noted that this application
spends a huge fraction of its time in synchronization. This
prompted us to look at this application’s source code to try
and optimize it. It turned out that a pthread_mutex lock
was being used to protect a shared integer value (a counter
keeping track of global ray identifiers). In a 16-thread run,
each thread increments this value over 20,000 times in under
one second of run time. This results in a huge contention of
the lock and its associated kernel structures (see also Sec-
tion 4.3). By replacing the heavy-weight pthread locking
with an atomic lock inc instruction, we were able to avoid
this overhead. Figure 9 shows the parallel speedup (left)
and CPI stacks (right) for raytrace before and after apply-
ing this optimization.

6.4 Heterogeneous workloads
So far, we considered the SPLASH-2 benchmarks, which

are all homogeneous, i.e., all threads execute the same code

0.0

0.5

1.0

1.5

2.0

0 1 2 3

C
y
c
le

s
 p

e
r

in
s
tr

u
c
ti
o

n

Thread ID

364.6

issue
depend
branch
mem-remote
mem-dram
sync

Figure 10: CPI stack for each of the four thread
types spawned by dedup. (Core 0’s very high CPI is
because it only spawns and then waits for threads.)

and hence they have roughly the same execution charac-
teristics. This may explain in part why one-IPC modeling
is fairly accurate for predicting performance scalability for
most of the benchmarks, as discussed in Section 6.2. How-
ever, heterogeneous workloads in which different threads
execute different codes and hence exhibit different execu-
tion characteristics, are unlikely to be accurately modeled
through one-IPC modeling. Interval simulation on the other
hand is likely to be able to more accurately model rela-
tive performance differences among threads in heterogeneous
workloads.

To illustrate the case for heterogeneous workloads, we con-
sider the dedup benchmark from the PARSEC benchmark
suite [3]. Figure 10 displays the CPI stacks obtained by the
interval model for each of the threads in a four-threaded ex-
ecution. The first thread is a manager thread, and simply
waits for the worker threads to complete. The performance
of the three worker threads, according to the CPI stack, is
delimited by, respectively, the latency of accesses to other
cores’ caches, main memory, and branch misprediction. A
one-IPC model, which has no concept of overlap between
these latencies and useful computation, cannot accurately
predict the effect on thread performance when changing any
of the system characteristics that affect these latencies. In
contrast to a homogeneous application, where all threads
are mispredicted in the same way, here the different threads
will be mispredicted to different extents. The one-IPC model
will therefore fail to have an accurate view on the threads’
progress rates relative to each other, and of the load imbal-
ance between cores executing the different thread types.

6.5 Simulator trade-offs
As mentioned earlier in the paper, relaxing synchroniza-

tion improves parallel simulation speed. However, it comes
at the cost of accuracy. Figure 11 illustrates this trade-off
for a 16-core fft application. It shows the three synchro-
nization mechanisms in Graphite, barrier, random-pairs and
none, and plots simulation time, measured in hours on the
vertical axis, versus average absolute error on the horizon-
tal axis. No synchronization yields the highest simulation
speed, followed by random-pairs and barrier synchroniza-
tion. For accuracy, this trend is reversed: barrier synchro-
nization is the most accurate approach, while the relaxed
synchronization models can lead to significant errors.

In addition, we explore the effect of various architectural
options. Figure 11 also shows data points in which the
branch predictor or the instruction caches were not mod-
eled. Turning off these components (i.e. assuming perfect

 0

 1

 2

 3

-50 0 50 100 150 200 250 300 350

S
im

u
la

ti
o
n
 t
im

e
 (

h
)

Error (%)

fft

interval-none

oneIPC-none

oneIPC-barrier

interval-barrier
interval-no-branch

oneIPC-random-pairs

interval-no-icache

interval-random-pairs

 2

 3

-5 0 5 10 15 20 25 30

S
im

u
la

ti
o
n
 t
im

e
 (

h
)

Error (%)

fft [zoomed]

interval-no-icache

interval-random-pairs

interval-barrier

interval-none

interval-no-branch

Figure 11: Accuracy vs. speed trade-off graphs com-
paring both synchronization mechanisms for parallel
simulation.

0%

50%

100%

150%

ra
yt

ra
ce fft

ba
rn

es

vo
lre

nd

ra
di

os
ity

oc
ea

n.
nc

on
t

w
at

er
.s

p

lu
.c

on
t

ch
ol

es
ky

oc
ea

n.
co

nt

fm
m

lu
.n

co
nt

ra
di

x

w
at

er
.n

sq

M
ax

im
um

 e
rr

or

Execution time variability

barrier random-pairs none

Figure 12: Maximum absolute error by synchroniza-
tion method in parallel simulation for simulating a
16-core system.

branch prediction or a perfect I-cache, respectively) brings
the simulation time down significantly, very near to that of
the one-IPC model (which includes neither branch predic-
tion or I-cache models).

6.6 Synchronization variability
It is well-known that multi-threaded workloads incur non-

determinism and performance variability [1], i.e., small tim-
ing variations can cause executions that start from the same
initial state to follow different execution paths. Multiple
simulations of the same benchmark can therefore yield dif-
ferent performance predictions, as evidenced by the error
bars plotted on Figure 5. Increasing the number of threads
generally increases variability. Different applications are sus-
ceptible to this phenomenon to different extents, based on
the amount of internal synchronization and their program-
ming style — applications employing task queues or work
rebalancing often take severely different execution paths in
response to only slight variations in thread interleaving. On
the other hand, applications that explicitly and frequently
synchronize, via pthreads for example, will maintain consis-
tent execution paths.

An interesting observation that we made during our exper-
iments is that performance variability generally is higher for
no synchronization and random-pairs synchronization com-

 0

 1

 2

 3

interval oneIPCS
im

u
la

ti
o
n
 s

p
e
e
d
 (

M
IP

S
)

fmm

1 2 4 8 16

 0

 1

 2

interval oneIPCS
im

u
la

ti
o
n
 s

p
e
e
d
 (

M
IP

S
)

fft

1 2 4 8 16

Figure 13: Simulation speed of 1–16 simulated cores
on an eight-core host machine.

pared to barrier synchronization. This is illustrated in Fig-
ure 12 which shows the maximum error observed across five
simulation runs. The benchmarks are sorted on the horizon-
tal axis by increasing max error for barrier synchronization.
The observation from this graph is that, although sufficient
for some applications, no synchronization can lead to very
high errors for others, as evidenced by the cholesky and
water.nsq benchmarks. Whereas prior work by Miller et
al. [22] and Chen et al. [5] conclude that relaxed synchroniza-
tion is accurate for most performance studies, we conclude
that caution is required because it may lead to misleading
performance results.

6.7 Simulation speed and complexity
As mentioned earlier, the interval simulation code base

is quite small; consisting of about 1000 lines of code. Com-
pared to a cycle-accurate simulator core, the amount of code
necessary to implement this core model is several orders of
magnitude less, a significant development savings.

A comparison of the simulation speed between the inter-
val and one-IPC models can be found in Figure 13. Here
we plot the aggregate simulation speed, for 1–16 core sim-
ulations with no synchronization and the branch predictor
and instruction cache models turned off. As can be seen
on Figure 11, adding I-cache modeling or using barrier syn-
chronization increases simulation time by about 50% each,
which corresponds to a 33% lower MIPS number. These runs
were performed on dual socket Intel Xeon L5520 (Nehalem)
machines with a total of eight cores per machine. When
simulating a single thread, the interval model is about 2–3×
slower than the one-IPC model. But when scaling up the
number of simulated cores, parallelism can be exploited and
aggregate simulation speed goes up significantly — until we
have saturated the eight cores of our test machines. Also,
the relative computational cost of the core model quickly
decreases, as the memory hierarchy becomes more stressed
and requires more simulation time. From eight simulated
cores onwards, on an eight-core host machine, the simula-
tion becomes communication-bound and the interval core
model does not require any more simulation time than the
one-IPC model — while still being about twice as accurate.

Note that the simulation speed and scaling reported for
the original version of Graphite [22] are higher than the num-
bers we show for Sniper in Figure 13. The main difference
lies in the fact that Graphite, by default, only simulates pri-
vate cache hierarchies. This greatly reduces the need for
communication between simulator threads, which enables
good scaling. For this study, however, we model a realis-
tic, modern CMP with large shared caches. This requires
additional synchronization, which affects simulation speed.

7. OTHER RELATED WORK
This section discusses other related work not previously

covered.

7.1 Cycle-accurate simulation
Architects in industry and academia heavily rely on de-

tailed cycle-level simulation. In some cases, especially in
industry, architects rely on true cycle-accurate simulation.
The key benefit of cycle-accurate simulation obviously is ac-
curacy, however, its slow speed is a significant limitation.
Industry simulators typically run at a speed of 1 to 10 kHz.
Academic simulators, such as M5 [4], GEMS [20] and PTL-
Sim [32] are not truly cycle-accurate compared to real hard-
ware, and therefore they are typically faster, with simula-
tion speeds in the tens to hundreds of KIPS (kilo simulated
instructions per second) range. Cycle-accurate simulators
face a number of challenges in the multi-core era. First,
these simulators are typically single-threaded, hence, sim-
ulation performance does not increase with increasing core
counts. Second, given its slow speed, simulating processors
with large caches becomes increasingly challenging because
the slow simulation speed does not allow for simulating huge
dynamic instruction counts in a reasonable amount of time.

7.2 Sampled simulation
Increasing simulation speed is not a new research topic.

One popular solution is to employ sampling, or simulate only
a few simulation points. These simulation points are chosen
either randomly [7], periodically [31] or through phase analy-
sis [26]. Ekman and Stenström [9] apply sampling to multi-
processor simulation and make the observation that fewer
sampling units need to be taken to estimate overall perfor-
mance for larger multi-processor systems than for smaller
multi-processor systems in case one is interested in aggre-
gate performance only. Barr et al. [2] propose the Memory
Timestamp Record (MTR) to store microarchitecture state
(cache and directory state) at the beginning of a sampling
unit as a checkpoint. Sampled simulation typically assumes
detailed cycle-accurate simulation of the simulation points,
and simulation speed is achieved by limiting the number
of instructions that need to be simulated in detail. Higher
abstraction simulation methods use a different, and orthogo-
nal, method for speeding up simulation: they model the pro-
cessor at a higher level of abstraction. By doing so, higher
abstraction models not only speed up simulation, they also
reduce simulator complexity and development time.

7.3 FPGA-accelerated simulation
Another approach that has gained interest recently is to

accelerate simulation by mapping timing models on FP-
GAs [6, 29, 24]. The timing models in FPGA-accelerated
simulators are typically cycle-accurate, with the speedup
coming from the fine-grained parallelism in the FPGA. A
key challenge for FPGA-accelerated simulation is to man-
age simulation development complexity and time because
FPGAs require the simulator to be synthesized to hard-
ware. Higher abstraction models on the other hand are
easier to develop, and could be used in conjunction with
FPGA-accelerated simulation, i.e., the cycle-accurate tim-
ing models could be replaced by analytical timing models.
This would not only speed up FPGA-based simulation, it
would also shorten FPGA-model development time and in
addition it would also enable simulating larger computer sys-

tems on a single FPGA.

7.4 High-abstraction modeling
Jaleel et al. [16] present the CMP$im simulator for simu-

lating multi-core systems. Like Graphite, CMP$im is built
on top of Pin. The initial versions of the simulator assumed
a one-IPC model, however, a more recent version, such as
the one used in a cache replacement championship3, models
an out-of-order core architecture. It is unclear how detailed
the core models are because the simulator internals are not
publicly available through source code.

Analytical modeling is a level of abstraction even higher
than one-IPC simulation. Sorin et al. [27] present an ana-
lytical model using mean value analysis for shared-memory
multi-processor systems. Lee et al. [18] present composable
multi-core performance models through regression.

8. CONCLUSIONS
Exploration of a variety of system parameters in a short

amount of time is critical to determining successful future
architecture designs. With the ever growing number of pro-
cessors per system and cores per socket, there are challenges
when trying to simulate these growing system sizes in rea-
sonable amounts of time. Compound the growing number
of cores with larger cache sizes, and one can see that longer,
accurate simulations are needed to effectively evaluate next
generation system designs. But, because of complex core-
uncore interactions and multi-core effects due to hetero-
geneous workloads, realistic models that represent modern
processor architectures become even more important. In
this work, we present the combination of a highly accurate,
yet easy to develop core model, the interval model, with a
fast, parallel simulation infrastructure. This combination
provides accurate simulation of modern computer systems
with high performance, up to 2.0 MIPS.

Even when comparing a one-IPC model that is able to
take into account attributes of many superscalar, out-of-
order processors, the benefits of the interval model provide a
key simulation trade-off point for architects. We have shown
a 23.8% average absolute accuracy when simulating a 16-
core Intel X7460-based system; more than twice that of our
one-IPC model’s 59.3% accuracy. By providing a detailed
understanding of both the hardware and software, and al-
lowing for a number of accuracy and simulation performance
trade-offs, we conclude that interval simulation and Sniper is
a useful complement in the architect’s toolbox for simulating
high-performance multi-core and many-core systems.

9. ACKNOWLEDGEMENTS
We would like to thank the reviewers for their construc-

tive and insightful feedback. We would also like to thank
Stephanie Hepner for helping to name the simulator. Trevor
Carlson and Wim Heirman are supported by the ExaScience
Lab, supported by Intel and the Flemish agency for Inno-
vation by Science and Technology. Additional support is
provided by The Research Foundation – Flanders projects
G.0255.08 and G.0179.10, UGent-BOF projects 01J14407
and 01Z04109, and the European Research Council under
the European Community’s Seventh Framework Programme
(FP7/2007-2013) / ERC Grant agreement no. 259295.

3JWAC-1 cache replacement championship. http://www.
jilp.org/jwac-1.

10. REFERENCES
[1] A. Alameldeen and D. Wood. Variability in

architectural simulations of multi-threaded workloads.
In Proceedings of the Ninth International Symposium
on High-Performance Computer Architecture (HPCA),
pages 7–18, Feb. 2003.

[2] K. C. Barr, H. Pan, M. Zhang, and K. Asanovic.
Accelerating multiprocessor simulation with a memory
timestamp record. In Proceedings of the 2005 IEEE
International Symposium on Performance Analysis of
Systems and Software (ISPASS), pages 66–77, Mar.
2005.

[3] C. Bienia, S. Kumar, J. P. Singh, and K. Li. The
PARSEC benchmark suite: Characterization and
architectural implications. In Proceedings of the 17th
International Conference on Parallel Architectures and
Compilation Techniques (PACT), pages 72–81, Oct.
2008.

[4] N. L. Binkert, R. G. Dreslinski, L. R. Hsu, K. T. Lim,
A. G. Saidi, and S. K. Reinhardt. The M5 simulator:
Modeling networked systems. IEEE Micro, 26:52–60,
2006.

[5] J. Chen, L. K. Dabbiru, D. Wong, M. Annavaram,
and M. Dubois. Adaptive and speculative slack
simulations of CMPs on CMPs. In Proceedings of the
43rd Annual IEEE/ACM International Symposium on
Microarchitecture (MICRO), pages 523–534. IEEE
Computer Society, 2010.

[6] D. Chiou, D. Sunwoo, J. Kim, N. A. Patil,
W. Reinhart, D. E. Johnson, J. Keefe, and
H. Angepat. FPGA-accelerated simulation
technologies (FAST): Fast, full-system, cycle-accurate
simulators. In Proceedings of the Annual IEEE/ACM
International Symposium on Microarchitecture
(MICRO), pages 249–261, Dec. 2007.

[7] T. M. Conte, M. A. Hirsch, and K. N. Menezes.
Reducing state loss for effective trace sampling of
superscalar processors. In Proceedings of the
International Conference on Computer Design
(ICCD), pages 468–477, Oct. 1996.

[8] Y. Cui, W. Wu, Y. Wang, X. Guo, Y. Chen, and
Y. Shi. A discrete event simulation model for
understanding kernel lock thrashing on multi-core
architectures. In Proceedings of the 16th International
Conference on Parallel and Distributed Systems
(ICPADS), pages 1–8, Dec. 2010.

[9] M. Ekman and P. Stenström. Enhancing
multiprocessor architecture simulation speed using
matched-pair comparison. In Proceedings of the 2005
IEEE International Symposium on Performance
Analysis of Systems and Software (ISPASS), pages
89–99, Mar. 2005.

[10] S. Eyerman, L. Eeckhout, T. Karkhanis, and J. E.
Smith. A mechanistic performance model for
superscalar out-of-order processors. ACM
Transactions on Computer Systems (TOCS),
27(2):42–53, May 2009.

[11] A. Fog. Instruction tables. http://www.agner.org/
optimize/instruction_tables.pdf, April 2011.

[12] H. Franke, R. Russell, and M. Kirkwood. Fuss, futexes
and furwocks: Fast userlevel locking in Linux. In
Proceedings of the 2002 Ottawa Linux Summit, pages

479–495, 2002.

[13] R. M. Fujimoto. Parallel discrete event simulation.
Communications of the ACM, 33(10):30–53, Oct. 1990.

[14] D. Genbrugge, S. Eyerman, and L. Eeckhout. Interval
simulation: Raising the level of abstraction in
architectural simulation. In Proceedings of the 16th
International Symposium on High Performance
Computer Architecture (HPCA), pages 307–318, Feb.
2010.

[15] L. Hammond, V. Wong, M. Chen, B. D. Carlstrom,
J. D. D. an B. Hertzberg, M. K. Prabhu, H. Wijaya,
C. Kozyrakis, and K. Olukotun. Transactional
memory coherence and consistency. In Proceedings of
the International Symposium on Computer
Architecture (ISCA), pages 102–113, June 2004.

[16] A. Jaleel, R. S. Cohn, C.-K. Luk, and B. Jacob.
CMP$im: A Pin-based on-the-fly multi-core cache
simulator. In Proceedings of the Fourth Annual
Workshop on Modeling, Benchmarking and Simulation
(MoBS), co-located with ISCA 2008, pages 28–36,
June 2008.

[17] A. Jaleel, W. Hasenplaugh, M. Qureshi, J. Sebot,
S. Steely, Jr., and J. Emer. Adaptive insertion policies
for managing shared caches. In Proceedings of the 17th
international conference on Parallel architectures and
compilation techniques (PACT), pages 208–219, 2008.

[18] B. Lee, J. Collins, H. Wang, and D. Brooks. CPR:
Composable performance regression for scalable
multiprocessor models. In Proceedings of the 41st
Annual IEEE/ACM International Symposium on
Microarchitecture (MICRO), pages 270–281, Nov.
2008.

[19] C.-K. Luk, R. Cohn, R. Muth, H. Patil, A. Klauser,
G. Lowney, S. Wallace, V. J. Reddi, and
K. Hazelwood. Pin: building customized program
analysis tools with dynamic instrumentation. In
Proceedings of the 2005 ACM SIGPLAN conference on
Programming Language Design and Implementation
(PLDI), pages 190–200. ACM, June 2005.

[20] M. K. Martin, D. J. Sorin, B. M. Beckmann, M. R.
Marty, M. Xu, A. R. Alameldeen, K. E. Moore, M. D.
Hill, and D. A. Wood. Multifacet’s general
execution-driven multiprocessor simulator (GEMS)
toolset. ACM SIGARCH Computer Architecture
News, 33(4):92–99, Nov. 2005.

[21] A. M. G. Maynard, C. M. Donnelly, and B. R.
Olszewski. Contrasting characteristics and cache
performance of technical and multi-user commercial
workloads. In Proceedings of the International
Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS), pages
145–156, Oct. 1994.

[22] J. E. Miller, H. Kasture, G. Kurian, C. Gruenwald III,
N. Beckmann, C. Celio, J. Eastep, and A. Agarwal.
Graphite: A distributed parallel simulator for
multicores. In Proceedings of the 16th International
Symposium on High Performance Computer
Architecture (HPCA), pages 1–12, Jan. 2010.

[23] K. E. Moore, J. Bobba, M. J. Moravan, M. D. Hill,
and D. A. Wood. LogTM: Log-based transactional
memory. In Proceedings of the 13th International
Symposium on High Performance Computer

Architecture (HPCA), pages 254–265, Feb. 2006.

[24] M. Pellauer, M. Adler, M. Kinsy, A. Parashar, and
J. Emer. HAsim: FPGA-based high-detail multicore
simulation using time-division multiplexing. In
Proceedings of the 17th International Symposium on
High Performance Computer Architecture (HPCA),
pages 406–417, Feb. 2011.

[25] S. K. Reinhardt, M. D. Hill, J. R. Larus, A. R.
Lebeck, J. C. Lewis, and D. A. Wood. The Wisconsin
Wind Tunnel: Virtual prototyping of parallel
computers. In Proceedings of the ACM SIGMETRICS
Conference on Measurement and Modeling of
Computer Systems, pages 48–60, May 1993.

[26] T. Sherwood, E. Perelman, G. Hamerly, and
B. Calder. Automatically characterizing large scale
program behavior. In Proceedings of the International
Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS), pages
45–57, Oct. 2002.

[27] D. J. Sorin, V. S. Pai, S. V. Adve, M. K. Vernon, and
D. A. Wood. Analytic evaluation of shared-memory
systems with ILP processors. In Proceedings of the
25th Annual International Symposium on Computer
Architecture (ISCA), pages 380–391, June 1998.

[28] V. Uzelac and A. Milenkovic. Experiment flows and

microbenchmarks for reverse engineering of branch
predictor structures. In 2009 IEEE International
Symposium on Performance Analysis of Systems and
Software (ISPASS), pages 207–217, 2009.

[29] J. Wawrzynek, D. Patterson, M. Oskin, S.-L. Lu,
C. Kozyrakis, J. C. Hoe, D. Chiou, and K. Asanovic.
RAMP: Research accelerator for multiple processors.
IEEE Micro, 27(2):46–57, Mar. 2007.

[30] S. C. Woo, M. Ohara, E. Torrie, J. P. Singh, and
A. Gupta. The SPLASH-2 programs: Characterization
and methodological considerations. In Proceedings of
the 22nd International Symposium on Computer
Architecture (ISCA), pages 24–36, June 1995.

[31] R. E. Wunderlich, T. F. Wenisch, B. Falsafi, and J. C.
Hoe. SMARTS: Accelerating microarchitecture
simulation via rigorous statistical sampling. In
Proceedings of the 30th Annual International
Symposium on Computer Architecture (ISCA), pages
84–95, June 2003.

[32] M. Yourst. PTLsim: A cycle accurate full system
x86-64 microarchitectural simulator. In Proceedings of
the 2007 IEEE International Symmposium on
Performance Analysis of Systems and Software
(ISPASS), pages 23–34. Apr. 2007.

