
Behind the Scenes: Memory Analysis of
Graphical Workloads on Tile-based GPUs

Germán Ceballos1, Andreas Sembrant1, Trevor E. Carlson2, and David Black-Schaffer1

1Uppsala University, Department of Information Technology
{german.ceballos, andreas.sembrant, david.black-schaffer}@it.uu.se

2National University of Singapore, Department of Computer Science
tcarlson@comp.nus.edu.sg

Abstract—Graphics rendering is a complex multi-step process
whose data demands typically dominate memory system design
in SoCs. GPUs create images by merging many simpler scenes for
each frame. For performance, scenes are tiled into parallel tasks
which produce different parts of the final output. This execution
model results in complex memory behavior with bandwidth
demands and data sharing varying over time, and which depends
heavily on the structure of the application. To design systems
that can efficiently accommodate and schedule these workloads
we need to understand their behavior and diversity.

In this work, we develop a quantitative characterization of
the data demands of modern graphics rendering. Our approach
uses an architecturally-independent analysis, identifying different
types of data sharing present in the applications, independent of
their scheduling. From this analysis, we present a limit study
into the potential to improve memory system performance by
tackling each type of data sharing.

We see that there is the potential to reduce graphics bandwidth
by 43% if we can take full advantage of data reuse between
tasks and scenes within each frame. For the particularly complex
benchmarks, capturing inter-task reuse alone has the potential
to reduce bandwidth by 15% (up to 31%), while targeting inter-
scene reuse could provide a savings of 60% (up to 75%). These
insights provide us the opportunity to understand where we
should focus design efforts on graphics memory systems.

I . I N T R O D U C T I O N

Most resources in today’s SoCs (compute logic, memory
bandwidth, die area, etc.) are dedicated to rendering graphics.
Yet while these graphics workloads dominate today’s designs,
there has been little work towards understanding their behavior.
In this paper we address this through a quantitative analysis of
the memory system behavior of modern 2D and 3D workloads.

We first break down how rendering is accomplished by
looking at the overall structure of frames, scenes (shader
programs), and tasks (individual rendering tiles). Later, we
explore the diversity of memory footprints across a range of
applications from complex games to simple web page scrolling.
This analysis reveals a wide range of memory demands across
applications, within applications’ scenes and tiles, and over
time (Section V), independent of the hardware and scheduling.
From there we investigate how much data is shared at the
frame, scene, and task level (Section VI), as this sharing can be
realized through reduced bandwidth with appropriate caching
and scheduling. With this information, we then explore the
potential of scheduling and architecture optimizations to take

advantage of data reuse (both sharing and private reuse) at the
scene and task levels (Section VII). In addition to exposing the
diversity of graphics workloads for the first time, this analysis
shows the potential for future work in memory system design
and scheduling to significantly reduce graphics bandwidth by
scheduling scenes and tasks more cleverly.

I I . M O D E R N G R A P H I C S R E N D E R I N G

The rendering process of modern graphics applications is a
complex series of steps wherein each frame is broken down
into multiple smaller rendering passes for different parts of
the image and effects. The final image is created by further
processing which composes the intermediate results.

Each of these computations is accomplished by a shader
program, which uses input buffers or textures and produces
output buffers or textures. These scenes are executed across
the parallel compute resources of the graphics processor by
dividing them up into tasks, which work on separate portions
of each scene in parallel.
• Buffer/Texture: A memory resource read or written during

rendering to store results of each scene. These can be shared
and reused.

• Scene: The execution of a graphics shader program consum-
ing buffers and textures as inputs and typically producing
one or more as outputs.

• Task: Scenes are computed in parallel by tiling the output
image into independent tasks.

• Frame: a frame is produced by executing a series of scenes
to produce the final output. Current systems target to produce
60 to 120 frames per second.
To illustrate the rendering process, we start by looking at

how a frame of the Manhattan benchmark is generated (Figure
1). This benchmark represents a complex game scenario by
rendering a futuristic cityscape animation. Each frame of
Manhattan consists of 60 different scenes, over 4,000 tasks,
and requires more than 95MB of input data. The general flow
is shown in Figure 1 (left). The application starts by rendering
sequences of scenes that store intermediate results in different
output buffers (1). These buffers are merged by following
scenes, and used as inputs to later scenes that add special
lighting and effects (3 and 4), and produce other details such
as texts and 2D overlays (5) for the final frame.

Figure 1. How Manhattan renders a frame. Left: schematic overview of intermediate scenes. Right: details of frame 300. A sequence for the application
Heaven is also shown. See: http://y2u.be/F1_1Zyq3M7Y

Figure 1 (right) shows the full complexity of frame number
300 for Manhattan. Each box in the graph represents a different
scene execution with its corresponding intermediate output
images. Arrows between the boxes show how data is shared
between scenes, indicating both sharing potential and execution
dependencies. Not all scenes use all output buffers, and multiple
input buffers may be consumed by the same scene.

A fragment of this is highlighted in Figure 1, where multiple
scenes are reading and writing to the same intermediate output
buffers. Scene 1 first draws the vehicles. Its result is later used
by Scene 2 to overlay traffic lights, and, finally, by Scene 48,
which outlines the skyline of the buildings in the background.
A similar example from the Heaven benchmark is also shown.

The combinations of scenes for each frame make the
rendering process very complex. However, the actual execution
is far more intricate, as each scene is tiled into multiple tasks
which are then scheduled for parallel execution on the available
hardware. The interplay between the scene structure, task
parallelism, and scheduling that leads to complex memory
system behavior.

Much of this structure comes from the graphics program-
ming model itself: scenes are explicitly data-parallel across the
output image, and the explicit definition of input and output data
for each scene defines dependencies for the parallel execution.
Even though these workloads are ubiquitous today, previous
work has not investigated understanding their behavior as it
relates to memory system design.

To understand the execution of these workloads we need to
first quantitatively characterize their memory behavior in an
architecturally independent way. This cannot be done statically,
since the memory behavior of each shader program will be
determined by the input buffers and textures, which vary over
time. To accomplish this, we present a new taxonomy to
precisely describe the execution model in terms of data accesses
and data reuse.

A. Taxonomy of Memory Accesses

Frames require a significant amount of input data (up to
250MB in the benchmarks studied here), and each piece of
data may be used in one (private data) or multiple (shared data)
steps of the rendering process. From Figure 1, we can see how
part of the final output image is being created by compositing
scenes 1, 2, and 48 to add elements to the image. This process
often reads and writes to the same buffers, creating a producer-
consumer relationship between the scenes and exposing reuse.

At the same time, most modern GPUs tile scenes into
tasks for parallel execution1. While each task produces an
independent portion of the output, tasks can share data from
input textures or buffers, which exposes reuse between the tasks
inside each scene. Lastly, as frames are rendered at a high rate,
there is typically little change between frames, exposing reuse
between frames.

To be precise, we define three different types of sharing:
• Inter-Frame Reuse: memory addresses (data) used by

multiple frames. A frame/scene uses some data if there is a
task in that frame/scene that uses that data.

• Inter-Scene Reuse: data used by multiple scenes within the
same frame, i.e. sharing between tasks in different scenes.

• Inter-Task Reuse: data used by multiple independent tasks
within the same scene, i.e. sharing of data between tasks
within the same scene.

This sharing is a fundamental property of how the
frames/scenes/tasks use the data and does not depend on the
dynamic execution order. However, how much of this sharing
is realized through the memory system’s caches does depend
on the dynamic scheduling of tasks and the architecture.

Figure 2 illustrates this classification. As we can see, Scene
1 is produced in parallel by multiple tasks, with some of them

1The number of tasks is related to how the scenes are tiled for parallel
execution. We assume 64x64 pixel tiles/tasks, although some architectures
(AMD) can process smaller tiles (32x32).

Figure 2. Taxonomy of Memory Accesses.

(top left corner) accessing the same data repeatedly from a
texture (intra-task reuse). Next, Scene 2 executes, and some
of its tasks (bottom left) use data generated by Scene 1 (inter-
scene reuse). At the same time, multiple tasks in Scene 2 are
reading the same input texture from memory to overlay it onto
the vehicles. This will be treated as inter-task reuse according
to our taxonomy. Finally, several of the same input textures
and output buffers are used by the following frames, and thus
will be considered inter-frame reuse.

Some data reuses are dependencies (read-after-write, RAW),
while others are not (read-after-read, RAR). As the graphics
programming model enforces that all tasks are independent,
dependencies can only happen between scenes, and not between
tasks within a given scene.

Understanding data sharing in the execution of an application
is critical for developing memory system and scheduler opti-
mizations that are able to maximize reuse through caches and
minimize bandwidth consumption. In the following sections
we focus on analyzing this behavior in an architecturally
independent manner, to explore the intrinsic behavior of the
applications. The above taxonomy allows us to study sharing
properties inherent to the application and not to its execution,
as we can identify exactly at which level the data was shared.

I I I . S E T U P : S I M U L AT O R A N D B E N C H M A R K S

We evaluated the workloads using the GLTraceSim [1]
tracing and replay framework. This work use GLTraceSim
to understand the sharing characteristics of the applications,
which has not previously been evaluated. GLTraceSim allows
us to model cache miss ratios and bandwidth under different
GPU/CPU core and cache hierarchy configurations.

We examined workloads ranging from complex 3D games
and animations to simple web-page scrolling. Table in Figure 3
summarizes our applications, along with characteristics such as
average achieved frame rate (FPS) on two graphic cards (inte-
grated Intel HD Graphics 4000 and discrete Nvidia GTX1060).
For the integrated card, average bandwidth consumption is
also shown measured from HW counters. These benchmarks
come from three different suites: Phoronix Test Suite [2],
Chrome/Telemetry [3] and GFXBench [4].

Workloads can be divided into three categories according
to average achieved FPS, as a way to estimate the amount
of work (computation) involved to render each frame: Low

(< 30/60 fps on integrated GPU/discrete GPU), Medium
(< 60/120 fps) and High (≥ 60/120 fps). Low FPS benchmarks
such as Manhattan, Heaven, Valley, and Tesseract are intensive
applications that render 3D animations with a large number of
objects on-screen, high-quality textures, complex reflections,
lightning and sophisticated particle interactions. Their frames
use over 100MB of input data, and require more than 50
scenes and thousands of different tasks to render. Medium
FPS workloads, such as OpenArena, Trex and Xonotic_UD
have lower-resoultion textures and simpler environments. Their
frames require between 50-70MB of data and fewer than 20
scenes. Finally, the High FPS benchmarks are mainly from
the Telemetry suite, where several web pages are rendered and
scrolled in the Chrome browser.

The FPS categories give a rough overview of the amount
of work required for each frame, but they cannot explain the
details of their execution based on scenes and tasks. We
need insight into those details to understand how the memory
system interacts with these applications and identify particular
bottlenecks inside the rendering pipeline. This is crucial for
performing memory-related optimizations to achieve higher
frame rates, particularly for complex (Low FPS) applications.
In the following section we analyze this complexity in detail.

I V. B E N C H M A R K C O M P L E X I T Y

FPS and bandwidth consumption have been widely used as
overall metrics for the amount of work required to render a
frame. However, neither are sufficiently detailed to capture the
underlying complexity of the rendering process and explain
their memory behavior.

We address this by looking (1) at how data is used and
shared between frames, (2) within and between scenes inside
each frame, and (3) between and within each task in and across
scenes. This breakdown allows us to understand the underlying
data sharing behavior of the application, and see how those
characteristics will map to specific architectures and schedulers.

Table I also shows the number of scenes and tasks per frame.
Intuitively, these relate to both the length of the rendering
process and the amount of available parallel work. We can
see significant diversity in benchmarks of the same category:
Valley achieves 20% lower frame rate on average than Heaven,
but it generates 40 fewer scenes per frame. On the other hand,
Manhattan spawns a larger number of tasks for each frame

Benchmark
Avg FPS

(Discrete)
Avg. FPS

(Integrated)
Avg. BW

(Integrated)
Avg.

Scenes/Frame Max Scenes
Std. Deviation
Scenes/Frame

Avg. Tasks per
Frame

Std. Dev.
Tasks/Frame

manhattan

heaven

valley

tesseract

openarena

trex

xonotic_UD

xonotic_LD

chrome 36962107173208461

474572011123112280

2,5093,8304231530327162

2,9815,003828192353698

1,4241,9683111058523113

2,8893,0902692644611632

13,53921,9292390781,652418

4,3406,520371301271,332527

2,7453,9471863516291943

Figure 3. (Table I) Graphic Workloads. Benchmarks are colored by FPS category (Low, Mid, High). Overall statistics for the rendering process are also
displayed. Average bandwidth for discrete cards is not included as there is no harwdare support to measure it.

compared to Tesseract, but achieves higher frame rate and
consumes more bandwidth. At the same time, TRex runs slower
than OpenArena, generating twice as many tasks and scenes
on average, but consumes only a third of its bandwidth.

Finally, all Chrome benchmarks have a very similar, and
simple, single-scene structure with only around 600 tasks,
which is why they achieve a very high frame rate. A particularly
interesting benchmark is Xonotic_LD (which is the lower-
quality setting of Xonotic_UD), where the number of scenes is
similar to the Chrome workloads, but bandwidth consumption
is twice as large, and the achieved frame rate is half as high.

From the more detailed statistics, we can see how overall
performance is a complex interaction of many factors including
the number of scenes, their task parallelism and the amount of
data needed and reused. Existing techniques that look at the
actual execution, such as cache miss ratio curves ([5], [6]) or
analytical performance models ([7], [8]), give results that are
highly dependent on the particular scheduling (ordering of tasks
and scenes) and memory system (caching effects of shared
and privately reused data). Those approaches may give an
accurate view of the application on one particular system, but
they conflate system-specific effects and intrinsic application
behavior. Furthermore, as we have seen with Xonotic_UD and
Xonotic_LD, changing the input of what the shader program
is rendering (e.g., textures with different qualities) changes the
behavior at the memory system level, which prevents us from
using static analysis alone (e.g., through compilers).

To address this, we propose to study memory behavior from
an execution-independent perspective at three levels: frames,
scenes, and tasks. To do so, we adopt the notion of footprint,
defined as the total amount of unique data (memory addresses)
used, which is not dependent on the architecture or execution
schedule. This would be equivalent to studying the applications
running under an infinitely large cache and gives an upper
bound for the potential of reuse-aware scheduling heuristics to
reduce bandwidth. Removing architectural and scheduling im-
plications allows us to understand memory properties inherent
to the application, i.e. the potential value of shared data.

Before examining sharing, we first study the total footprint
of the frames, scenes, and tasks, including how the footprints

vary across applications and why. This provides the general
context for later understanding the sharing, such as how much
data is shared out of the total data used and how much is read-
only versus read-write. After looking at the total footprint, we
will investigate the amount of shared data at each level, how
the sharing structure (types of sharing) change depending on
the workloads and the main reasons behind those changes.

V. A N A LY Z I N G F O O T P R I N T S

A. Frame Footprints

Figure 4 compares the graphic workloads based on how
much data they use, and in which manner: unique data per
frame (footprint) versus data shared both within scenes and
within tasks. There is a large diversity in the average footprint
per frame across workloads. Applications such as Heaven and
Valley use over 250MB per frame, Manhattan, Tesseract, Trex
and Openarena range from 50-100MB, and most of the Chrome
benchmarks are under 20MB per frame.

Despite this variation, when we examine how the frame
footprint varies over time within each workload (Figure 5), we
see that the frame size remains constant. This implies that the
memory requirements across frames of the same application
does not change significantly, which motivates a closer look
into the behavior of scenes and tasks within frames.

B. Scene Footprints

Figure 5(a) shows box plots for the scene footprints, skipping
the initialization/startup phases of the applications (Heaven: 32
frames; Manhattan, Valley, Openarena: 100; all others: >400).
Workloads are color coded by their respective FPS categories,
as seen in Table I. The plots show the distribution of the scene
footprints across all frames. Each dot is a scene of a particular
frame, distributed along the x-axis according to its footprint.
The box covers the interquartile range (IQR) of the population
(50% of the scenes) and the color transition inside the box
shows the median size. Whiskers are displayed at 1.5x IQR
to highlight 75% of the scenes. The average scene footprint is
annotated with gray bars and values.

As we can see from Table I, the number of scenes is not
constant for all the frames. Some scenes are always executed,

m
an

ha
tta

n

he
av
en

va
lle
y

te
ss
er
ac
t

op
en

ar
en

a

tr
ex

xo
no

tic
_U

D

0

100

200

Fo
ot

pr
in

t [
M

B]

11
1

71

80

8

26
1

21
5

14
6

56

22
9

19
5

13
8

51

75

45

54

17

33

15 23

5

74

38 33

8

50

38

26

9

am
az

on

bo
ok

in
g

cn
n

eb
ay

fa
ce

bo
ok

go
og

le

re
dd

it

te
ch

cr
un

ch

tw
itt

er

w
ik

ip
ed

ia

y_
an

sw
er

s

y_
ne

w
s

y_
sp

or
ts

yo
ut

ub
e

0

10

20

30

19

2

18

2

17

2

19

2

25

3

17

2

17

2

20

2

18

2

17

2

17

2

17

2

18

2

20

2

Av
er

ag
e

In
te

r-F
ra

m
e

Sh
ar

in
g:

 9
9,

41
%

Pe
rc

en
ta

ge
 o

f F
ra

m
e

Fo
ot

pr
in

t

0%

100%

50%

Pe
rc

en
ta

ge
 o

f F
ra

m
e

Fo
ot

pr
in

t

99
,4

1%
 sh

ar
ed

 d
at

a
be

tw
ee

n
fra

m
es

 (a
vg

.)

Frame Footprint

Intra-Task

Inter-Scene

Inter-Task

Figure 4. Average per-frame footprint and reuse. The Telemetry workloads (Chrome) do not expose any Intra-task or Inter-scene reuse.

but many others are spawned on demand depending on the
content of the final output image. This variability increases the
complexity of the rendering process, but, as we will see later,
the variable scenes represent less than 2% of the total footprint
and less than 4% of the total tasks spawned.

Figure 5(a) shows that some applications present a large
diversity in scene footprints. Manhattan has a significant
number of scenes of 40 to 60MB each, with the majority
between 10 to 20MB. Heaven, on the other hand, achieves
lower frame rate, but most scenes are under 10MB, with
less than 12% over 30MB. High FPS benchmarks such as
Xonotic_LD and Chrome have low variation across scenes,
with tight distributions around their averages of 23 and 17MB.

To clearly show the distribution, the cumulative distribution
function (CDF) of scene footprints is shown in Figure 5. The
CDFs let us quickly identify diversity (by the slope of the
curve) and absolute size. From the x-axis, we can see how
many scenes are under a certain size. For instance, 22% of the
scenes in Manhattan are under 10MB, but 25% of the scenes
are under 37MB. This means that 3% of the scenes are between
10 and 37MB which is a 3.7X increase in size compared to
22% of the scenes. Similarly, Heaven sees a 1.5x increase in
size for 1% of the scenes: between 39MB and 55MB.

The Mid FPS benchmarks (OpenArena, Trex and
Xonotic_UD) have fewer changes in their CDFs, but with
the opposite effect: All scenes are under 30MB in footprint
and compared to the Low FPS workloads, these applications
expose only small increases in size for most of the scenes.
For example, OpenArena jumps from 20% of the scenes
under 19MB, to over 60% of them below 20MB. In Trex the
variation in footprint of 60% of the scenes (15%-75%) is only
7MB.

Finally, the High FPS applications show little diversity in
scene size, with almost flat CDFs. All Chrome benchmarks
have scenes around 18MB, due to the fixed-size textures and
outputs for rendering the web pages. Moreover, Xonotic_LD
shows how changing the rendering configuration on the same
benchmark (from high definition on Xonotic_UD to low
definition on Xonotic_LD) can trade the complex multi-scene
rendering process into a single-scene process for achieving
higher frame rates (with a loss of image quality). This is

captured in the figure as we see how the scene diversity changes
from Xonotic_UD to Xonotic_LD: In the high-definition
execution, there are several extra scenes (lighting, shadows,
reflections, etc.) that are small in footprint but add to the
workload complexity. When changing to low-definition, those
scenes are not executed.

Looking at the scene footprint across a range of benchmarks
reveals the diversity in application structure, with low frame
rate (more complex) applications typically displaying both
larger and more diverse scene footprints.

Scene Variation: The causes behind the workload diversity
are related to how the different shader programs are structured,
i.e. what they execute, the objects needed to be rendered for
the final image, and how those objects change over time (from
frame to frame).

a) Shader program structure (what the scenes are do-
ing/drawing): Different scenes perform different computations
as they draw different objects. Therefore, scenes can use
amounts of data that vary drastically. A simple example can
be seen in Figure 1 with some scenes from Manhattan. Scene
1 draws the vehicles on screen. The application is structured
such that most of the initial environment is generated during
this scene. Later, Scene 2 draws the traffic lights based on
that environment, and finally Scene 48 the buildings in the
background.

When looking at where these scenes are in the distribution
(Figure 5 (a)), we see that Scene 1 is 46.75MB, while Scene 2
is 2.65MB and Scene 48 is 15.02 MB. As expected, drawing
the smaller traffic lights is far less data intensive than the
buildings, and one order of magnitude lower than the vehicles.

Meanwhile, different scenes can compose different parts of
the image simultaneously, creating a tree of producer-consumer
relationships. Thus, scenes from different branches might not
be dependent on each other, implying flexibility in scheduling,
which can affect data reuse for a given architecture. For
instance, in the same frame of Manhattan, the sky and the
advertisements displayed on the buildings are rendered by
independent scenes. All of these independent scenes are merged
in Scene 49 (before the lightning, shadows and special effects)
which is 54.14MB.

Scenes in the same frame
can vary drastically

Scene 1: 46MBScene 2: 3MB Scene 45: 15MB

Task in the same scene can
have different footprint

Two tasks from Scene 2
 0.1MB vs. 1.2 MB

0% 20% 40% 60% 80% 100%

0

20

40

60

80

0

20

40

60

80

0

20

40

60

80

openarena

trex

xonotic_UD

heaven

manhattan

tesseract

valley

chrome

xonotic_LD

Fo
ot

pr
in

t [
M

B]

(c) Percentage of Scenes(b) Task Footprint [MB](a) Scene Footprint [MB]

manhattan

heaven

valley

tesseract

openarena

trex

xonotic_UD

xonotic_LD

chrome

Figure 5. Footprint diversity across scenes (a) and tasks (b), and as CDF (c), colored by FPS category (Low FPS=Red, Mid FPS=Yellow, High FPS=Green)

b) Different input/output resolutions: Another reason for
footprint diversity is simply that some scenes produce smaller
outputs, such as rendering special effects at reduced resolution,
down-sampling, and rendering generic graphics or information
displays. These scenes will have a smaller footprint as the sizes
of their inputs/outputs are naturally smaller.

c) Frames changing over time: Finally, objects in the
frame change over time. This means that the same scene in two
different frames might be of very different size. For example,
Scene 1 drawing the vehicles in Manhattan will increase/reduce
its footprint over time, as the vehicles move in and out of the
frame.

C. Task Footprints

In addition to diversity in scene footprints, there is a similar
degree of diversity among the tasks in a scene. As each task
renders a different part of the scene, each may have a different
footprint depending on which scene it comes from and what
part it is rendering. Understanding inter-scene task footprints
is critical for designing schedulers.

Figure 5(b) shows task footprints across all frames, ranging
from 0 to 2MB. Low FPS benchmarks (red) show a large
diversity in the task footprints, which correlates with their
greater scene diversity. Most of the tasks are between 256kB
and 512kB (64-128 bytes per pixel). High FPS applications
tend to have tasks with smaller footprints (50kB, 12B/pixel).

This diversity can have two different natures, as highlighted
in Figure 5(b). First, tasks within the same scene can have
different footprints. This can be observed in Figure 1, where
Scene 1 draws the vehicles. As the vehicles are in the bottom
part of the image, the tasks that draw those portions will have
large footprints, while the ones towards the top (the sky) will
draw nothing and have small footprints.

This diversity is a consequence of the programming model,
where graphics applications create parallelism in a brute-force

approach: tasks are spawned for pixels even if they do not
need to draw anything. Figure 5 highlights how two tasks
from Scene 2 in Manhattan can vary in size drastically.

In addition to variations within a scene due to differences in
what is being rendered, the overall complexity/footprint of each
scene affects its tasks’ footprint. This can be seen with larger
scenes having tasks that use more data and scenes rendering
at lower resolutions typically generate fewer tasks.

D. Insights from Scene and Task Footprint Analysis

There is significant diversity in memory footprints across
and within graphics applications caused by factors inherent to
the programming model, such as different shader programs, dy-
namic objects on screen, and brute-force parallelism. This diver-
sity occurs at different granularities (between frames, between
scenes, and between tasks within and across scenes) revealing
complex application data behavior. Analyzing footprints at
these levels is a key step to understanding and characterizing
the memory behavior inherent to graphics workloads. This
variation will have different architectural implications, but most
importantly, analyzing it from an architectural independent
perspective (using footprint) allows us to identify trends and
characteristics that differentiate workloads beyond simple FPS
categories.

Now that we have investigated a key component to charac-
terize memory behavior in graphic workloads, we focus on
the portion of the data that is shared to better investigate
architectural implications for scheduling and caching. To do
so, we present a detailed study of sharing between frames,
scenes and tasks (Section VI), and then we explore how their
memory behavior is affected by scheduling during execution
(Section VII).

Figure 6. Sharing diversity across scenes (a) and tasks (b).

V I . A N A LY Z I N G S H A R I N G

Understanding sharing in graphics workloads is vital to
design schedulers and memory hierarchies that can maximize
reuse through caches. We study sharing across all levels
(between frames, between scenes and between tasks), and later
we use this analysis in Section VII to understand the hardware
implications of these sharing properties.

A. Frame Sharing

As frames do not change much over time, we expect a large
amount of data to be reused, as is shown in Figure 4. Across
frames, so much data is reused (over 99%) that it dwarfs the
new data required for each frame. Thus, if the cache can hold
one frame’s worth of data, then main memory bandwidth will
be essentially zero. For these benchmarks, this requires a cache
between 20MB and 260MB which is practical with eDRAM
caches ([9] shows how multiple frames can be partitioned and
rendered at once to take advantage of inter-frame sharing at the
cost of increased latency.). However, for systems that cannot
afford such a large cache, we need to look within the frame
at the scenes and tasks to see what lower-level sharing we can
exploit.

B. Scene Sharing

Within frames, we see that there is significant data sharing
between scenes (inter-scene). This is shown in Figure 4 with
the orange bars, which represent average inter-scene footprint
per frame (in MB). Across workloads inter-scene sharing is
51% of the total frame footprint. Low FPS workloads expose
average inter-scene reuse of 68% (up to 84% in Heaven). In
Mid FPS workloads the average inter-scene reuse per frame is
54% of the total frame footprint (up to 73% in Xonotic_UD),
while high FPS workloads have negligible inter-scene reuse as
they mostly have one scene.

Figure 6 (left) shows the distribution of sharing between
pairs of scenes. From these distributions we can not only
identify pairs of scenes with maximum and average sharing
potential, but also understand the full sharing diversity of
the applications. The Low FPS workloads are particularly
interesting (Manhattan, Heaven), with a significant number of
scenes sharing a large amount of data (30-40MB). These scenes
are also scheduled far apart in time in most of the frames (Scene
1 vs Scene 49), indicating there is a challenge for scheduling
and caching systems to take advantage of the shared data. At
the opposite extreme are the High FPS workloads. With only
one scene per frame, as in Chrome or Xonotic_LD, the inter-
scene sharing is zero (only inter-frame sharing). For these
applications, the only sharing potential is between tasks.

Furthermore, we can check the type of sharing based on
the operations performed by each memory access. From the
total scene sharing, on average, 35% of the data shared is done
in a read-only fashion (reuse) across workloads, while the
remaining is done in a read-write manner. This gives further
insight into the potential for maximizing temporal versus spatial
locality and vice-versa.

C. Task Sharing

Figure 4 shows how the amount of data per frame that was
shared between tasks of the same scene (inter-task sharing).
The bar displays the aggregated data across all scenes, counting
how much data was touched by more than one task inside
each scene (for all the scenes in that frame). On average,
inter-task sharing represents 15% of the total frame footprint.
Considering only the Low FPS benchmarks, this changes
to 19% (up to 23% on Valley) due to the fact that these
benchmarks use more input/output textures. Interestingly, the
High FPS benchmarks, which did not expose inter-scene reuse,
show a significant 16% inter-task reuse.

To look at inter-task sharing, we repeat the same process
from previous section inside each scene, and look at sharing
between all task pairs in Figure 6 (right). Tasks from the Low
FPS benchmarks Manhattan, Tesseract and Valley share on
average 6 times as much data than the Mid FPS workloads.
An exciting case in the Low FPS benchmarks is the sharing
behavior of Heaven (top right of the figure). In Heaven, we can
observe tasks sharing less than the Mid FPS applications on
average, but the spread of the population is much larger (more
than 1.5 times the IQR), meaning that there are a significant
number of tasks that share between 0.5MB and 2MB. This is
promising given that the tasks sharing a large amount of data
could benefit from being co-executed, or scheduled nearby in
time one when running on hardware with small shared caches.

D. Task and Scene Sharing Diversity

A large portion of the diversity in sharing is explained by
the overall footprint of the scene and task, studied in Section V.
In addition, some scenes share data with others because they
are composing results in a producer-consumer fashion, e.g. in
Figure 1, Scene 2 draws the traffic lights over part of of what
Scene 1 drew before, causing those scenes, and the tasks in
those regions, to share data. Similarly, Scene 48 draws the
buildings on the background after Scene 2 finished with the
traffic lights, but since the area for the buildings is much larger,
they will share more data. On the other hand, other scenes
will have rendered parts that were already consumed by other
scenes, and will not share with these scenes.

Task sharing is most common when the tasks render similar
objects or multiple instances of the same object. In Manhattan’s
Scene 1, the vehicles are rendered by multiple tasks, and as
they are close together in image coordinates, they are likely
to use (and therefore share) similar parts of the underlying
texture data. Also, if the same object is drawn multiple times,
those tiles will share input data. This can observed in Figure 1,
which shows the output of one scene of Heaven in 1 with the
two houses. In this case, tasks working on those regions will
be using the same inputs. Therefore, sharing occurs regardless
of the position of the task in the 2D space, if the same object
is shown multiple times on screen.

E. Conclusion on Sharing

There is significant sharing across all levels of the applica-
tions: frames, scenes, and tasks. Frames can be handled by large
caches, but if such a large cache is not practical or possible, it
is necessary to look within the frame at sharing between and
within scenes and tasks. At those levels, we have seen that
the Low FPS applications have significant sharing at both the
scene and task levels, while the High FPS applications show
considerable sharing between tasks. With this understanding
of where sharing occurs, we can now look at the architectural
and scheduling implications.

V I I . S C H E D U L I N G

Traditional graphics scheduling approaches have focused
on keeping hardware resources busy [10]. Yet scheduling can

have a drastic impact in the data locality properties of the
applications as well [11], [12], [13]. Scheduling tasks that share
data together can reduce bandwidth and improve performance
(frame rate) as they will be able to keep reused data in smaller
caches. However, because these reuse effects are dependent
on both the schedule and the particular cache hierarchy, our
analysis to this point has been focused on architecturally
independent metrics, such as footprint, to avoid biasing from
a particular schedule and cache design.

To explore the potential for reuse-aware schedulers, we look
at the effects of targeting each type of sharing individually and
together: intra-task, inter-task and inter-scene. To do so, we
present an approach that analyzes the maximum sharing we
could obtain if we could completely realize sharing for each of
those categories, and how that would affect the data accessed by
the application. This analysis enables us to understand where it
would be profitable to investigate new scheduling and memory
system designs.

The two most used graphics scheduling heuristics are First-
come First-served (FCFS, simple queue) and the Z-scheduler,
however neither of them explicitly look at sharing in their
scheduling decisions. In the Z-scheduler, tasks are enqueued
in a hierarchical Z order. First the entire scene is divided in
four quadrants, creating the partial schedule: top-left quadrant,
top-right, bottom-left and bottom right (Z pattern). The process
is repeated recursively in each of the quadrants until the
granularity is a task. This scheduler was designed to optimize
for tasks working on similar objects.

A. Understanding the limits of scheduling

Scheduling strategies that take advantage of data sharing will
try to maximize data reuse through the caches, minimizing
costly traffic to main memory. For example, private caches
are often able to capture many data reuses local to each task
(intra-task reuses), but only if the task footprint is smaller than
the private cache. Analogously, a GPU’s shared cache can
take advantage of reuses between tasks/scenes if they fit given
the execution schedule. The minimum bandwidth consumption
possible for an application is its footprint. However, that
bandwidth will only be realized if all data reuses are perfectly
captured by the caches and schedule. To understand which of
the different types of sharing affect bandwidth the most (and
thus have the most potential for optimization), we will examine
our applications running under four different optimizations:

1) Perfect Intra-Task Sharing: assuming an infinite size
cache for reuses local to each task (e.g., every task fits
its own data in the cache).

2) Perfect Inter-Task Sharing: assuming an infinite size
cache for data shared between tasks of the same scene.

3) Perfect Inter-Scene Sharing: assuming an infinite size
cache for data shared between scenes within a frame.

4) Perfect Sharing: Enabling all optimizations above to-
gether.

We model these scenarios by classifying memory accesses in
GLTraceSim and using this information to determine whether
an access goes through the standard cache path or is logically

128kB 256kB 512kB 1MB 8MB

0

200

400

600

800
87

1

39
8

80
1

22
7

20
4

57
6

40
3

52
4

21
3

20
5

41
4

39
9

39
2

21
0

20
5

39
5

39
4

38
5

20
8

20
5

37
4

37
4

37
2

20
5

20
4

128kB 256kB 512kB 1MB 8MB

0K

2K

4K

4
86

3

1
60

7

2
08

0

61
0

50
5

3
66

6

1
59

0

1
71

9

57
6

50
6

2
27

0

1
54

6

1
48

4

52
7

50
6

1
72

6

1
48

8

1
39

4

50
7

50
6

1
32

2

1
32

2

1
32

0

50
6

50
6

128kB 256kB 512kB 1MB 8MB

0K

1K

2K

3K

4K

3
75

5

1
55

2

3
09

6

57
7

44
5

2
43

0

1
52

4

2
04

2

54
1

44
6

1
68

8

1
47

8

1
52

2

47
6

44
6

1
43

2

1
42

1

1
36

5

44
9

44
6

1
31

9

1
31

8

1
31

4

44
7

44
6

128kB 256kB 512kB 1MB 8MB

0

10

20

30

32 30 30 32 28 30 29 29 30 29 29 29 29 29 29 29 29 29 29 29 29 29 29 29 29

128kB 256kB 512kB 1MB 8MB

0

100

200

15
2

11
3

87 85 51 93 86 78 64 52 82 81 75 59 52 79 79 74 56 52 73 73 72 53 52

128kB 256kB 512kB 1MB 8MB

0

100

200

23
6

15
1

18
8

98 68 16
4

14
9

14
5

84 69 14
5

14
3

13
6

76 69 13
9

13
9

13
3

73 69 13
1

13
1

13
0

73 72

128kB 256kB 512kB 1MB 8MB

0

200

400

600

67
8

35
5

57
4

19
5

13
1

44
2

35
3

37
9

16
9

13
1

36
8

34
6

33
6

15
3

13
1

33
9

33
7

32
1

14
1

13
1

30
7

30
7

30
3

13
2

13
1

128kB 256kB 512kB 1MB 8MB

0

100

200

300

30
4

25
1

27
0

14
0

13
0

27
0

25
1

24
9

13
1

13
0

25
4

24
8

24
3

13
1

13
0

24
8

24
5

24
1

13
0

13
0

22
5

22
5

22
5

13
0

13
0

128kB 256kB 512kB 1MB 8MB

0

50

100

150

200

20
7

11
6

14
6

95 58 12
5

11
4

10
1

77 59 10
7

10
7

97 69 59 10
3

10
3

96 66 59 94 94 93 60 59

Manhattan

Tesseract

Heaven

OpenArena

Xonotic_LD

Valley

TRex

ChromeXonotic_UD

Ba
nd

w
id

th
 [M

B]
Ba

nd
w

id
th

 [M
B]

Ba
nd

w
id

th
 [M

B]

Baseline (Z-scheduler)

Intra-Task

Inter-Task

Inter-Scene

Perfect Sharing

Figure 7. Graphics bandwidth (average MB per frame) as a function of reuse optimizations (perfect inter-scene sharing, perfect inter-task sharing, perfect
intra-task sharing, and perfect sharing) and cache size. Assumes 64B cacheline.

placed in an infinite cache for the targeted shared data. As a
result, the targeted shared data will always hit after its first
access and does not consume space in the regular shared cache,
leaving it available for whatever other data is brought in later.
In this manner we can evaluate the maximum potential for
capturing all of each type of reuse, without being dependent
on the particular memory hierarchy or schedule.

B. Evaluation

We evaluate a common GPU configuration with 4-cores,
32kB private caches and a shared last level cache of size
ranging from 128kB to 8MB.

Figure 7 shows the average bandwidth consumption per
frame for each optimization across a range of shared cache
sizes. The baseline is a standard Z-scheduler. By comparing
the traditional Z-scheduler with each of the perfect sharing
optimizations we can see how good a job the Z-scheduler is
doing at capturing the available reuses in the applications.

1) Optimizing Intra-task Reuses: When modeling perfect
intra-task reuse, we assume that the data that is accessed
multiple times within the same task will always hit in the
shared cache, which is equivalent to having the tasks access
their data only once. In most applications, small cache sizes
(128kB through 512kB) show a significant benefit from perfect
intra-task reuse. The largest differences are exposed by the
Low FPS applications where bandwidth is reduced by 40% on

average and up to 74% in Heaven over a traditional Z-scheduler.
This means that for all these workloads, a key requirement
is that tasks are able to fit in their local caches in order to
significantly minimize bandwidth.

As the cache size is increased, we see how the difference
between the Z-scheduler and having perfect intra-task reuses
becomes smaller across all applications. This is because the
cache is able to capture all intra-task reuses. Larger caches will
be able to fit tasks with larger footprints more easily (tasks
are often less than 2MB) and thus, the Z-scheduler will see no
additional benefit from perfect intra-task reuse. This implies
that the upper bound for optimizing reuses local to a task is
limited by the number of tasks that fit in the cache. In this
particular case, as the cache is shared among four cores, all
the tasks running in parallel need to fit in the cache for this to
hold, and will be the same when sharing with more cores.

2) Optimizing Inter-task Reuses: Inter-task reuses are inter-
esting because they can be used (1) to schedule tasks one after
the other to maximize temporal reuse, or (2) at the same time
to maximize spatial reuse. Our modeling of perfect inter-task
reuse is equivalent to assume that whenever a task is accessing
data previously accessed by another task, it will be present in
the cache, missing only on new data.

In all but one of the applications, we see how this opti-
mization is more promising than intra-task sharing, even at the
smallest cache size, meaning there is far more potential from

looking at reuse inside the scene than that having perfect local
reuses.

On average we see a 10% bandwidth reduction with a 512kB
cache, and 5.35% on a 1MB cache. The overall improvement
is 3.82% across all cache sizes. This optimization is most
effective in Heaven (up to 32%), Tesseract (11%) and Valley
(10%), all of which are Low FPS benchmarks that exposed the
greatest diversity in sharing (Section VI). The only case where
perfect intra-task uses more bandwidth than inter-task sharing
is Valley (512kB cache), meaning it does not make sense to
optimize reuse between tasks if their data does not fit in the
cache.

3) Optimizing Inter-scene Reuses: The largest effect is seen
with perfect inter-scene sharing, which is not surprising given
the significant amount of the footprint that was shared between
scenes (Section VI). Modeling perfect inter-scene sharing
is analogous to the previous two optimizations, wherein we
assume that scenes that are reusing data from previous scenes
will hit in the shared cache.

The Low FPS benchmarks had several scenes sharing up to
40MB of data. As this optimization assumes this data can be
cached (although this data is still much smaller than caching
the entire scene or frame), reuses local to a scene will not
impact bandwidth. Heaven, Manhattan, Valley and Tesseract
see an average bandwidth reduction of 59% across all cache
sizes, up to 74%.

The Mid FPS benchmarks also see a dramatic reduction
(41% on average) compared to perfect inter-task sharing. This
is remarkable as these benchmarks have fewer scenes, up to
70% smaller in footprint and share up to 60% less than the
Low FPS benchmarks.

Finally the High FPS, single-scene applications (Xonotic_LD
and Chrome) have no sharing, and thus we see no benefit from
the inter-scene optimization. Furthermore, as their tasks are
very small, task data sharing is negligible, and none of the
optimizations make a significant difference. For these single-
scene applications, we would need a cache large enough to
capture the whole frame’s data reuse to observe an impact on
bandwidth, as shown in Section V.

V I I I . R E L AT E D W O R K

Graphics GPU Workload Analysis: Mitra et al. [14]
measured intra-frame texture locality and bandwidth consump-
tion per frame. In addition, Roca et al. [15] use a cycle-level
GPU simulator to look at a number of general application
characteristics to understand workloads from both a bandwidth
and computation perspective. In this work, we explore the
sharing potential for modern graphics applications at the
intra-frame, intra-scene and intra-task levels to understand
bandwidth reduction potential inherent to the applications’
sharing characteristics. George [16] proposed graphics GPU
workload subsetting as a way to select representative graphics
frames for architectural evaluation. Our work goes beyond
frame similarity to look at scene and task properties at a system-
level. Instead of using frame clustering to make simulation

tractable, our approach analyzes traces across hundreds of
frames to derive the potential for bandwidth reduction.

Graphics GPU Techniques: Parallel Frame Render-
ing [17], and the work from Arnau, et al. [9] aim to improve
performance by taking advantage of frame-based locality. Our
analysis methodology, in contrast, aims to show the potential
for savings across many levels of sharing, not only between
frames. In addition, techniques like ARM’s Transaction Elimi-
tation [18] send only final frame-to-frame differences to save
bandwidth and Teapot [19] shows how reducing graphics
quality can improve energy efficiency. These techniques strive
to realize benefits of the memory behavior of the applications,
while our work explores the behavior itself in an architecturally-
independent manner.

GPGPU Simulation and Analysis: The work from
Bakhoda, et al. [20] presents a detailed simulation platform
and study of CUDA applications that target general-purpose
compute and data processing. This work, in contrast, presents
a methodology for analyzing and understanding graphics ap-
plications which use a fundamentally different programming
model and tend to show significant time-varying behavior.

I X . C O N C L U S I O N

In this paper, we explored the diversity of memory behavior
in modern graphics workloads, which are some of the most
popular workloads today, and showed how a simple classifi-
cation based on performance achieved (fps) or bandwidth is
not enough to understand their complexity. To analyze the
applications in detail, we presented a taxonomy to describe the
memory behavior of graphics programs in an architecturally-
and scheduling-independent manner, allowing us to understand
fundamental properties of the applications such as footprint
and sharing at different levels (frames, scenes, and tasks). In
addition, we analyzed a wide range of workloads and explored
the sources of the diversity in memory system behavior.

As a use case for this work, we looked into the potential
gains for developing schedulers and memory hierarchies that
can take advantage of the inherent sharing at the scene and
task levels of the application with perfect sharing optimizations.
We found that bandwidth can be reduced by 43% on average
across all workloads by taking advantage of reuse between
tasks and scenes inside a frame. For intensive, low-frame rate
benchmarks, bandwidth can be reduced by 40% on average
from inter-task reuse (up to 76%) and 60% from inter-scene
reuses (up to 75%). This new workload characterization goes
beyond previous work to identify promising directions for
improving memory system efficiency and runtime graphics
scheduling for future systems.

We also explored how these properties are affected by
the interplay of scheduling and caching when executing on
particular architectures. By simulating four different perfect-
sharing optimizations (at scenes- and task-levels) we were
able to reveal the limits of memory related optimizations, in
particular, how bandwidth would be affected by scheduling
heuristics. We show how bandwidth can be reduced by 43%
on average across all workloads by taking advantage of reuse

between tasks and scenes inside a frame. For intensive, low
frame rate benchmarks, bandwidth can be reduced by 40%
on average from inter-task reuse (up to 76%) and 60% from
inter-scene reuses (up to 75%).

R E F E R E N C E S

[1] A. Sembrant, T. E. Carlson, E. Hagersten, and D. Black-Schaffer, “A
graphics tracing framework for exploring cpu+gpu memory systems.” in
IEEE IISWC., 2017.

[2] Phoronix Test Suite, www.phoronix-test-suite.com.
[3] Telemetry, www.chromium.org/developers/telemetry.
[4] GFXBench, www.gfxbench.com.
[5] E. Berg, H. Zeffer, and E. Hagersten, “A statistical multiprocessor cache

model,” in ISPASS, March 2006, pp. 89–99.
[6] D. Eklov and E. Hagersten, “StatStack: Efficient modeling of LRU

caches,” in ISPASS, March 2010, pp. 55–65.
[7] S. Eyerman, L. Eeckhout, T. Karkhanis, and J. E. Smith, “A mechanistic

performance model for superscalar out-of-order processors,” ACM Trans.
Comput. Syst., vol. 27, no. 2, pp. 3:1–3:37, May 2009.

[8] J. C. Huang, J. H. Lee, H. Kim, and H. H. S. Lee, “GPUMech: Gpu
performance modeling technique based on interval analysis,” in MICRO,
Dec 2014, pp. 268–279.

[9] J. M. Arnau, J. M. Parcerisa, and P. Xekalakis, “Eliminating redundant
fragment shader executions on a mobile gpu via hardware memoization,”
in ISCA, June 2014, pp. 529–540.

[10] J. Ragan-Kelley, “Keeping many cores busy: Scheduling the graphics
pipeline,” in SIGGRAPH, 2010.

[11] A. Muddukrishna, P. A. Jonsson, V. Vlassov, and M. Brorsson, “Locality-
aware task scheduling and data distribution on numa systems,” in
OpenMP in the Era of Low Power Devices and Accelerators. Springer
Berlin Heidelberg, 2013, pp. 156–170.

[12] G. Ceballos, E. Hagersten, and D. Black-Schaffer, “Formalizing data
locality in task parallel applications,” in ICA3PP, 2016, pp. 43–61.

[13] X. Xiang, C. Ding, H. Luo, and B. Bao, “HOTL: A higher order theory of
locality,” in ASPLOS. New York, NY, USA: ACM, 2013, pp. 343–356.

[14] T. Mitra and T.-C. Chiueh, “Dynamic 3D graphics workload characteri-
zation and the architectural implications,” in MICRO, 1999, pp. 62–71.

[15] J. Roca, V. Moya, C. Gonzalez, C. Solis, A. Fernandez, and R. Espasa,
“Workload characterization of 3D games,” in IISWC, Oct 2006, pp. 17–26.

[16] V. M. George, “3D workload subsetting for GPU architecture pathfinding,”
in IISWC, Oct 2015, pp. 130–139.

[17] J.-M. Arnau, J.-M. Parcerisa, and P. Xekalakis, “Parallel frame rendering:
Trading responsiveness for energy on a mobile GPU,” in PACT, 2013,
pp. 83–92.

[18] ARM, “http://www.arm.com/products/graphics-and-multimedia/mali-
technologies.”

[19] J.-M. Arnau, J.-M. Parcerisa, and P. Xekalakis, “TEAPOT: A toolset for
evaluating performance, power and image quality on mobile graphics
systems,” in IISWC, 2013, pp. 37–46.

[20] A. Bakhoda, G. L. Yuan, W. W. L. Fung, H. Wong, and T. M. Aamodt,
“Analyzing CUDA Workloads Using a Detailed GPU Simulator,” in

ISPASS, 2009.

